# Instrumenting IOR to Diagnose Performance Issues on Lustre File Systems

Doug Petesch Mark Swan Cray, Inc.

1

# Agenda

## Background

- Lustre components
- Measuring I/O performance
- IOR basics

## Examples of imperfections

- Distribution of files on OSTs
- OSTs (disk position)
- OSSs (IB cable connection, failover)

2

• LNET router (node failure)



CUG 2013





4

# DATA I/O RATE = -----TIME

# **Application vs. File System performance**



5

**Application view:** 

- Fixed amount of data to move
- Measure time to complete

File System view:

- Run for a fixed time
- Measure data moved

# **Reasons to use IOR**

6

- Scales from a single thread to thousands of nodes
- Can generate a wide variety of I/O patterns
- Can be run by unprivileged users
- Often specified as official measurement method

### • Easy to modify

- Record time stamp of each transfer
- Each rank print timings to own file
- Scripts automatically generate plots with gnuplot

# **Fixed Data vs. Fixed Time**



7

#### • "Fixed data" is default for IOR

- Rate determined by slowest file system component
- Does not keep whole file system busy all the time

```
"Fixed time" IOR options:
# posix file per process, O_DIRECT, 8 MiB records
OPTIONS="-E -B -F -e -g -b 48g -t 8m"
# write for 3 minutes then read for 2 minutes
aprun -n $RANKS IOR $OPTIONS -w -D 180 -k
aprun -n $RANKS IOR $OPTIONS -r -D 120
```

#### Ideally equivalent

• But only under perfect conditions

# **Sample IOR command line and output**

aprun -n 100 IOR -C -B -F -t 4m -b 4g -k

| Summary:                                    |                          |  |  |  |  |  |
|---------------------------------------------|--------------------------|--|--|--|--|--|
| api                                         | POSIX                    |  |  |  |  |  |
| test filename                               | testdir/IOR_POSIX        |  |  |  |  |  |
| access                                      | = file-per-process       |  |  |  |  |  |
| pattern                                     | = segmented (1 segment)  |  |  |  |  |  |
| ordering in a file                          | = sequential offsets     |  |  |  |  |  |
| ordering inter file=constant task offsets=1 |                          |  |  |  |  |  |
| clients                                     | = 100 (4 per node)       |  |  |  |  |  |
| repetitions                                 | = 1                      |  |  |  |  |  |
| xfersize                                    | = 4 MiB                  |  |  |  |  |  |
| blocksize                                   | = 4 GiB                  |  |  |  |  |  |
| aggregate filesize                          | = 400 GiB                |  |  |  |  |  |
|                                             |                          |  |  |  |  |  |
| Max Write: 6015.63                          | MiB/sec (6307.84 MB/sec) |  |  |  |  |  |
| Max Read: 3046.21                           | MiB/sec (3194.19 MB/sec) |  |  |  |  |  |

8

# Output from IOR -vvv (verbose=3)

| Test | 0: | Iter=0, | Task=0, | Time=1365558598.489247,                | write open start  |
|------|----|---------|---------|----------------------------------------|-------------------|
| Test | 0: | Iter=0, | Task=0, | Time=1365558598.489978,                | write open stop   |
| Test | 0: | Iter=0, | Task=0, | Time=1365558 <mark>598</mark> .496538, | write start       |
| Test | 0: | Iter=0, | Task=0, | Time=1365558641.157996,                | write stop        |
| Test | 0: | Iter=0, | Task=0, | Time=1365558666.575858,                | write close start |
| Test | 0: | Iter=0, | Task=0, | Time=1365558666.576329,                | write close stop  |
| Test | 0: | Iter=0, | Task=0, | Time=1365558666.597461,                | read open start   |
| Test | 0: | Iter=0, | Task=0, | Time=1365558666.597855,                | read open stop    |
| Test | 0: | Iter=0, | Task=0, | Time=1365558666.599108,                | read start        |
| Test | 0: | Iter=0, | Task=0, | Time=1365558754.811135,                | read stop         |
| Test | 0: | Iter=0, | Task=0, | Time=1365558801.056288,                | read close start  |
| Test | 0: | Iter=0, | Task=0, | Time=1365558801.056823,                | read close stop   |

9





#### aprun -n 100 IOR -C -B -F -t 4m -b 4g -k NetApp E5400 file system with 18 OSTs

dc\_esfs1 Unbalanced\_100files\_4m\_823394 9Apr





## **Better Balance = Better Performance**

Still 100 files on 18 OSTs

Write: 6308 MB/sec Read: 3194 MB/sec Write: 8419 MB/sec Read: 5594 MB/sec



qos\_threshold\_rr=100

CUG 2013



Cray Sonexion 1300, 18 SSUs, 144 OSTs, 1152 (3 GiB) files







## **One IB link at SDR speed**



48 cabinet Cray XE 14 SSU Sonexion 1600 112 OSTs, 896 files 224 nodes, ~5% of total

1 OSS cable at SDR rate: (96 GiB)/(103 sec) = 1 GB/sec

- Affects writes for FGR group
- Affects reads just for 1 OSS

Other FGR group effects due to job placement in torus.

(16)

# **One IB link at SDR speed**



48 cabinet Cray XE 14 SSU Sonexion 1600 112 OSTs, 896 files 224 nodes, ~5% of total

1 OSS cable at SDR rate: (96 GiB)/(103 sec) = 1 GB/sec

- Affects writes for FGR group
- Affects reads just for 1 OSS

(17)

# **Failed LNET router**



Cray XE 6 SSUs of Sonexion 1600 48 OSTs, 12 OSSs 4:3 router:OSS ratio

XE router: 2.6 GB/sec OSS potential: 3 GB/sec

Group with 3 routers is slower

(18)

Time for fixed data

#### **Failed LNET router**



Cray XE 6 SSUs of Sonexion 1600 48 OSTs, 12 OSSs 4:3 router:OSS ratio

XE router: 2.6 GB/sec OSS potential: 3 GB/sec

Group with 3 routers is limited to 2.6 GB/sec per OSS

Rate over fixed time



# **Thank You**

**Questions?** 



21)