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Abstract—Large Lustre file systems are made of
thousands of individual components all of which hag to
perform nominally to deliver the designed 1/O
bandwidth. Many disk drives and switch ports and ay
redundant components may operate in a degraded set
at times to provide resiliency. When the measured
performance of a file system does not meet expedtats,
it is important to identify the slow pieces of sucha
complex infrastructure quickly. This paper will describe
how Cray has instrumented IOR (a popular I/O
benchmark program) to automatically generate pictues
that show the relative performance of the many OSTs
servers, LNET routers and other components
involved. The plots have been used to diagnose nyan
uniqgue problems with Lustre installations and help
understand how unavoidable variations in component

level performance affects file system level I/O
performance.
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. INTRODUCTION

A large external Lustre file system is a collectiof
thousands of semi-independant pieces of hardwafiyare
and firmware. There are many opportunities fortakiss to

happen when connecting all the parts and some axeth

components will fail or degrade during the instiédla/test
phase. There are component level tests to chetkheu
parts, but quite often issues don’t appear untll doale is
reached.
demonstrating the contracted
application level benchmark. From experience dherlast
couple years, we have found that a properly instnted
user level application can quickly checkout compisend
also provide insight into full scale performancsuiss.

Il.  LUSTREBASICS
Fig. 1 shows the basic components of an externsirédile

Ultimately, customer acceptance depemds o
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Figure 1. External Lustre file system components

All data travels across several network interfacesveen
compute nodes and disk storage. Each layer hdemey
features, but few components are fully redundanthsoe
are many possible degraded states at these levels:

e Luster servers are connected to an Infiniband (IB)
network

e Compute nodes are connected to the Cray High
Speed Network (HSN)

e LNET router nodes provide a gateway between

compute nodes on the Cray HSN and the Lustre

servers on the IB network

Each Lustre Object Storage Server (OSS) controls

some number of disk arrays called Object Storage

Targets (OSTS)

Ill.  APPLICATION VSFILE SYSTEM PERFORMANCE

Measuring the 1/O rate seems fairly simple at firfake the
amount of data moved divided by the elapsed tingetdhe

system attached to a Cray XE or Cray XC30 mainframe rgte.

sufficient detail for this paper. Any component nanning

at designed speed can keep the whole file systemm fr

meeting its 1/O benchmark performance target.
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User applications usually have a certain amoundaté to
read or write so they naturally measure how lortgkes to
move the fixed amount of data. However, large teufite
systems have thousands of moving parts (literaflg!there
is always a period of time between when the firsd &ast
stream of I/O completes where not all of the fijstem

Summary:

api =POSIX

test filename = testdir/lIOR_POSIX
access = file-per-process
pattern = segmented (1 segment)

ordering in a file = sequential offsets
ordering inter file=constant task offsets=1

hardware is being used. From a file system petsgedt  clients =100 (4 per node)
makes more sense to keep all the parts busy mabategfor  repetitions =1

a certain period and then measure how much data waéersize =4 MiB

moved in that fixed amount of time. blocksize =4GiB

Since the “fixed data” rate is determined by thewsst
component and always includes time when part, csthud
the file system is idle, it will always be slowdrah the
sustained bandwidth of the file system measured ave
“fixed time”. Therefore, even if the customer sifies a
fixed data measurement technique for acceptanceaftea
use fixed time measurements while debugging anthgun
since that gives us a better idea if the file gysts
approaching its theoretical bandwidth.

IV. 10ORBAsICS

aggregate filesize = 400 GiB

Max Write: 6015.63 MiB/sec (6307.84 MB/sec)
Max Read: 3046.21 MiB/sec (3194.19 MB/sec)

The Lustre file system was based on 3 NetApp E5400
controllers. There were 6 OSSs with 3 OSTs eadle
expected higher rates, so added the verbose=3)(eption

to get per MPI task (file) timings like:

Task=0, Time=1365558598.489247, write open start
Task=0, Time=1365558598.489978, write open stop
Task=0, Time=1365558598.496538, write start

IOR[1] is a commonly used benchmark program. I¢ ha Task=0, Time=1365558641.157996, write stop

over 50 options to allow it to produce a wide virief 1/0
workloads. IOR is an MPI program that can scald,\aed
is easy to build. Many customers specify that lIGRused
to measure the 1/0 performance for acceptance. theme
reasons, it is important to get as much informatan of
IOR as possible.

Since we’re most interested in verifying that nevwnsgtalled
file systems behave as expected, we’ll concentratBosix
file-per-process (FPP) 1/0. Other more complicat&d
workloads (shared files, MPI-IO, HDF5, etc.) intuoce
more variables. In a basic FPP run, each rankeflOR
program opens a file, writes, closes, reopens, sreat
closes the file again. Each rank times each step.

By default, each MPI rank will write and read theme
amount of data to simulate a “fixed data” applicati IOR
can also measure the file system performance ovixeal
time” by use of the deadlineForStonewalling (-D)tiop.
After the specified number of seconds, each ramlpsst
issuing new I/O requests. The program then waitsafhy
outstanding I/O requests to complete and totalsthe
amount of data moved by all the ranks.

V. |IORFIXeED DATA EXAMPLE

This IOR command will write 4 GiB of data to eachl®0
files with direct 1/0O using a transfer size of 4BJi

aprun —n 100 IOR -a POSIX -C -B -F -t 4m -b 4g —k

When run with 100 ranks it produces this concisipatu

Task=0, Time=1365558666.575858, write close start
Task=0, Time=1365558666.576329, write close stop
Task=0, Time=1365558666.597461, read open start
Task=0, Time=1365558666.597855, read open stop
Task=0, Time=1365558666.599108, read start

Task=0, Time=1365558754.811135, read stop

Task=0, Time=1365558801.056288, read close start
Task=0, Time=1365558801.056823, read close stop

Additional scripts were developed to automaticaktract
the time to write and read each file and generattunes
with gnuplot to quickly display much more detailtbé run.
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Figure 2. Time to write and read individual files
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Figure 3. Write and read times sorted by OST index

Fig. 2 shows there is a wide variation in the tiinekes to
write and read the various files. Next we use ftlig
getstripe -i” command to find the OST index of eéitsh

Fig. 3 groups the times for all files on each & 8 OSTs.

The OSTs that took the longest (7 and 8) each Rafilek.
OSTs 3, 4, 5, 10 and 12 each had 8 files. Se@8dls (2,
11, 13) did not have any files and the rest hddl @, 7 files.
This distribution of files on OSTs is unusually pobut any
imbalance hurts fixed data IOR rates.

Fig. 4 shows the times from a later run after fogcLustre
round robin file allocation with qos_threshold_&098.
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Figure 4. A more balanced distribution

Since the maximum write and read times were reduited
average rates reported by IOR for moving the saiwex f
amount of data increased.

Max Write: 8029.20 MiB/sec (8419.23 MB/sec)
Max Read: 5335.16 MiB/sec (5594.32 MB/sec)

The number of files is still not a multiple of tinember of
OSTs so some OSTs had 5 files and some had 6 efTthey
best fixed data IOR performance it is critical tek every
I/0 path as balanced as possible to spread theloembk
evenly over all components.

VI. Disk PosITION

Even after ensuring files are evenly distributedd®ils and
running in a dedicated environment there can btian in
performance among the OSTs. A common source of
variability is the physical position of the filesidhe disk
drives. Typical server disks rotate at a constaté. The
data is stored at a constant linear density sarétos at the
outer edge hold more data than those near the adug.

Most OSTs are RAID6 (8+2) disk arrays. Each 1MiBck
of data is striped over the disks in the array.e Pphysical
addresses of the data blocks in the OST starteabther
(fastest) edge of the disks with the highest addadsthe
inner most (slowest) zone. We use the linux figfr
command to associate a physical address with &RHile.

Fig. 5 is the timing information from an IOR runing 1152

files on a file system with 144 OSTs. Similar toet
previous plots, but now time is on the horizontdsa The 8
(3 GiB) files written to each OST take up 24 GiBiethis

much less than 1% of the available space on thdynké

TB OSTs.
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Figure 5. OST performance variation
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Figure 6. OST performance relative to disk positia

Fig. 6 contains the same timing information as Eigbut
the files are sorted by their position within thegspective
OSTs rather than by their OST index. The 8 filegtem to
a particular OST are interleaved and tightly packiedt
when viewed across all OSTs, the allocation pasitbthe
groups of files appears random, even though teesfistem
was essentially empty. This is typical of prodomtiustre
file systems.

VIl. 1/O RATESOVER TIME

Since it takes more disk rotations to transfer 28 & data
near the inner edge than at the outer edge, it snak&ase
that it would take more time too. The IOR timing
information confirms that, but it is not clear y&the rates
are constant over time.

The next step was to instrument IOR to record dtsvidy

over time. At the end of the run, each rank prous how
much data it moved every 0.25 seconds.
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Figure 7. 1/O rates over time

Fig. 7 shows the aggregate I/O rates for the 1182 bver
the time it takes to write and read the files. The phases
do not actually overlap. The reading starts afterwriting

ends, but both results are plotted together forpayison.

The file system was a CRAY Sonexion 1300 Data §mra
System. It had 18 Scalable Storage Units (SSUSach
SSU has 2 OSSs and a total of 8 OSTs. The expected
sustained I/O rate is 3 GB/sec per SSU. Fig. Twshibat

the write and read rates are both greater than BAdg
while the full file system is in use. As the fasdtdiles
complete, the aggregate bandwidth drops until thst |
(slowest) file finishes.

Based on the final finish time, IOR reports:

Max Write:44386.53 MiB/sec (46542.65 MB/sec)
Max Read: 42745.48 MiB/sec (44821.89 MB/sec)

The average write and read rate lines in Fig. #esmt
what the rate profile would look like if all OSTenformed
at the average rate for a fixed time equal to tttea times
required to write (79.73 sec) and read (82.79 Hex)ixed

amount of data (3456 GiB) in the actual run. THfedence
in the sustained rate before any file finishes tnedaverage
rate of the fixed data job due to disk positioniafaitity is

often on the order of 15 to 30%.

Plotting the aggregate 1/O rate as seen from aticapipn
over a long period of time has helped identify siant
issues such as the Lustre ping effect[2] that waigsed
when only looking at the average rate. Separdtiegates
over time for individual OSTs or OSSs has beenulgef
identify failing disk drives or intermittent rateaps due to
error recovery from poorly seated IB cables. Thsibidea
of instrumenting 1/O calls in applications is quitiel[3].

VIII.

Resiliency is critical for the robustness of a &atgistre file
system. However, it can cause headaches for
benchmarker. Many components will automaticatiypdto
a lower speed if they encounter too many errorsheir
nominal speed. The degradation may be logged sberew
but that information might not be available to amal user.

FINDING DEGRADEDIB LINKS

the

A common example is IB links. There are many fussi
rated speeds (FDR, QDR, DDR, SDR). For a varidty o
reasons, such as a cable connection vibrating loosa
firmware mismatch between the devices on both eons,
or more of the links in a complex IB fabric may to@ning
at a speed lower than expected. The system \lllirsgh
correctly, and many jobs could still run at expdcte
performance, but a full file system benchmark wobll
affected. The performance impact of a degradediriB
may affect writes and reads differently due to phesence
of LNET routers.



Most Cray systems with external Lustre file systemse  which is close to the 1 GB/sec SDR speed. Theewitib all

some form of Fine Grained Routing (FGR) where ag¢es 3 OSSs in that FGR group are also limited to thats.

a small set of OSSs is through a small set of reut&’he

recommended FGR ratio for connecting a CRAY Somaxio\Fig. 8 also shows how job placement within the da@yay

1600 Data Storage System to a CRAY XE6 mainframk is XE Gemini 3D torus network can affect bandwidth to

routers to 3 OSSs. That means there are IB link f4  individual FGR groups. This job is trying to usk the

XIO nodes and from 3 servers going to the samechwit bandwidth of the file system from less than 5% loé t
compute nodes in the system. The default placement

When writing, the Lustre client on a compute nodand  clumps those nodes to maximize HSN communication

robins the data across the 4 routers which eachafor the
data to the OSS controlling the destination OST.hew
reading, the OSS round robins the requested datasathe
4 routers on its way to the compute node. A slowk |
between any of the LNET routers and the switch afiléct

both reads and writes for any of the OSTs contidtig the
3 OSSs. A slow link between an OSS and the switidh
only affect reads from OSTs owned by that OSS wauld

affect writes to all the OSTs on all 3 OSSs. Alfctiters
will be slowed down trying to get data through ghew link

impeding their ability to send data to the OSSe.als

Fig. 8 shows this affect. This individual file timg
information came from an IOR run on a 48 cabineayCr
XEG6 system with a 14 SSU Sonexion 1600 file systgth
7 SSUs in each of 2 cabinets. Each cabinet has4tu
FGR groups for the first 6 SSUS and two 2:1 grdigpshe
last SSU. At the time of this run, the link betwdbe first

odd numbered OSS and the top of rack (TOR) switek w

degraded to SDR speed. All other links were at Gp&ed.

The IOR job used 896 ranks on 224 nodes to writerand
8 (3 GiB) files on each of the 112 OSTs. Each ©&Srols
4 OSTs so there is 96 GiB of data sent to and fearh
OSS. The reads to the OSS with the slow link t&6k
seconds which equates to 96*(1.024)**3/105 = 0.®896C
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bandwidth between the nodes of the job. SincelMET
router nodes are scattered around the torus, thdable
number of paths (and therefore bandwidth) betwéden t
group of compute nodes and the router groups varies

If the same job was assigned a different set of prden
nodes or a smaller or larger number of nodes, viadadle
bandwidth to individual routers could change. Reade
affected more than writes since when reading, hedl data
from an FGR group of servers enter the torus atadoints
so the diversity of communication paths is limited.

IX. FAILED LNET ROUTER

Having 4 routers in an FGR group gives some reduryla
If one fails the clients will round robin their trsfers across
the remaining 3. The Cray XE router nodes have
bandwidth of about 2.6 GB/sec while the OSSs of
Sonexion 1600 can write up to about 3 GB/sec. Adrenal
4:3 ratio has some router bandwidth to spare.né muter
is down, however, the bandwidth of the FGR groupy ina
limited by the routers instead of the OSSs.

Fig. 9 shows the write times for an IOR job thabter12 (3
GiB) files to each of the first 48 OSTs of a Crayn8xion
1600 file system. The OSSs that finished in ~58sds
wrote at about 2.7 GB/sec, but the FGR group innythe
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Figure 9. Write performance with a failed LNET router



failed router and the first 3 odd numbered OSSsTE%7,
12-15, 20-23) was a little slower (~2.5 GB/sec/O8& to
the bandwidth limit of the 3 remaining routers.

X.  FAILED OVER SERVER

Occasionally a Lustre server will crash and its ©Siiill
fail over to its partner server. Since the othemer now
has twice as many OSTs to manage, the performahce
both groups of OSTs will be reduced until the fhikerver
can be returned to service.

Plotting the time to write each of the files duriagfixed
data IOR job on a file system with a failed overvee
would show the files on OSTs involved in the faileo
would take roughly twice as long. Since the fitas any
particular OST always have a range of completiores, it
is hard to assign a rate to an OST or OSS basedrjubose
times. Now that we have instrumented IOR to redbed
rate of each file over time, we can calculate therage 1/0
rate for each OST or OSS based on the elapseduiirie
when the first file finishes.

Fig. 10 shows the rates of each of the OSSs oraSHRJ
(360 OSS) Cray Sonexion 1600 file system. At theetof
the run, the servers for OSSs 199 and 214 were dmwn
OSSs 198 and 215 were each controlling 8 OSTsadshé
the usual 4. The script that extracts the perfocea
information from the IOR output simply aggregates tates
for an OSS from a sequential group of 4 OSTs. &foee
the plot shows both OSSs in each pair as slow when
reality one server in each pair is not doing amghi
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Figure 10. Server write rates while failed over

There was also one FGR group of servers (OSSs 1183,
and 172) that were performing poorly that day, tmaist of
the OSSs were writing at the expected rate of al2out
GB/sec or 5.4 GB/sec per SSU.

Xl.  SUMMARY

Instrumenting IOR to provide rate information afuaction

of time makes it a very useful tool for diagnositi®

performance problems on large Lustre file systertshas
uncovered software scaling issues like the Luging pffect
and transient issues that turned out to be firmwlafects or
poor cable connections. Seeing how the 1/0 perdmoe
varies over time gives much more insight into tkelth of a
file system than usual single average rate outpl®RB.

Using IOR as a file system test and debugging tosd
some advantages over component level test toasdiikor
obdfilter-survey or LNET self test in that IOR:

e Scales from a single thread to thousands of nodes

« Can generate a wide variety of /O patterns

« |Is often specified as the official measurement
method for acceptance

e Can be run by unprivileged users

A single IOR job can gather performance informatonall
the OSTs and OSSs, or just a subset, under comglitieat
can be made to match almost any application wodkloa
Automatically turning the expanded information ii@phs
with gnuplot makes it easier to quickly identify iah parts
of the file system are operating nominally and whic
components are not.

Besides being a valuable debugging tool during the
installation of a complex Lustre file system, th®R
program can also help identify the impact that itable
component failures will have on user applicatiofsnally,
it can be useful to explore the potential benefitlmanging
the /0O pattern of an application through its dabilio
simulate so many types of 1/O.
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