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Abstract—Large Lustre file systems are made of 
thousands of individual components all of which have to 
perform nominally to deliver the designed I/O 
bandwidth.  Many disk drives and switch ports and any 
redundant components may operate in a degraded state 
at times to provide resiliency. When the measured 
performance of a file system does not meet expectations, 
it is important to identify the slow pieces of such a 
complex infrastructure quickly.  This paper will describe 
how Cray has instrumented IOR (a popular I/O 
benchmark program) to automatically generate pictures 
that show the relative performance of the many OSTs, 
servers, LNET routers and other components 
involved.  The plots have been used to diagnose many 
unique problems with Lustre installations and help 
understand how unavoidable variations in component 
level performance affects file system level I/O 
performance. 
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I.  INTRODUCTION 

A large external Lustre file system is a collection of 
thousands of semi-independant pieces of hardware, software 
and firmware.  There are many opportunities for mistakes to 
happen when connecting all the parts and some of those 
components will fail or degrade during the installation/test 
phase.  There are component level tests to check out the 
parts, but quite often issues don’t appear until full scale is 
reached.  Ultimately, customer acceptance depends on 
demonstrating the contracted  performance with an 
application level benchmark.  From experience over the last 
couple years, we have found that a properly instrumented 
user level application can quickly checkout components and 
also provide insight into full scale performance issues. 

II. LUSTRE BASICS 

Fig. 1 shows the basic components of an external Lustre file 
system attached to a Cray XE or Cray XC30 mainframe in 
sufficient detail for this paper.  Any component not running 
at designed speed can keep the whole file system from 
meeting its I/O benchmark performance target. 

 
 
 
All data travels across several network interfaces between 
compute nodes and disk storage.  Each layer has resiliency 
features, but few components are fully redundant so there 
are many possible degraded states at these levels: 
 

• Luster servers are connected to an Infiniband (IB) 
network 

• Compute nodes are connected to the Cray High 
Speed Network (HSN) 

• LNET router nodes provide a gateway between 
compute nodes on the Cray HSN and the Lustre 
servers on the IB network 

• Each Lustre Object Storage Server (OSS) controls 
some number of disk arrays called Object Storage 
Targets (OSTs) 

 

III.  APPLICATION VS FILE SYSTEM PERFORMANCE 

 
Measuring the I/O rate seems fairly simple at first.  Take the 
amount of data moved divided by the elapsed time to get the 
rate. 

                   DATA 
I/O RATE = -------------- 

                  TIME 
 

IB Switch

MGS, MDS, many OSSs (with many disks)

many XIO (LNET) router nodes

IB Switch IB Switch

many compute nodes

High Speed Network

 

Figure 1.  External Lustre file system components 



User applications usually have a certain amount of data to 
read or write so they naturally measure how long it takes to 
move the fixed amount of data.  However, large Lustre file 
systems have thousands of moving parts (literally!) so there 
is always a period of time between when the first and last 
stream of I/O completes where not all of the file system 
hardware is being used.  From a file system perspective, it 
makes more sense to keep all the parts busy moving data for 
a certain period and then measure how much data was 
moved in that fixed amount of time. 
 
Since the “fixed data” rate is determined by the slowest 
component and always includes time when part, or most, of 
the file system is idle, it will always be slower than the 
sustained bandwidth of the file system measured over a 
“fixed time”.  Therefore, even if the customer specifies a 
fixed data measurement technique for acceptance, we often 
use fixed time measurements while debugging and tuning 
since that gives us a better idea if the file system is 
approaching its theoretical bandwidth. 

IV.  IOR BASICS 

IOR[1] is a commonly used benchmark program.  It has 
over 50 options to allow it to produce a wide variety of I/O 
workloads.  IOR is an MPI program that can scale well, and 
is easy to build.  Many customers specify that IOR be used 
to measure the I/O performance for acceptance.  For these 
reasons, it is important to get as much information out of 
IOR as possible. 
 
Since we’re most interested in verifying that newly installed 
file systems behave as expected, we’ll concentrate on Posix 
file-per-process (FPP) I/O.  Other more complicated I/O 
workloads (shared files, MPI-IO, HDF5, etc.) introduce 
more variables.  In a basic FPP run, each rank of the IOR 
program opens a file, writes, closes, reopens, reads and 
closes the file again.  Each rank times each step. 
 
By default, each MPI rank will write and read the same 
amount of data to simulate a “fixed data” application.  IOR 
can also measure the file system performance over a “fixed  
time” by use of the deadlineForStonewalling (-D) option.  
After the specified number of seconds, each rank stops 
issuing new I/O requests.  The program then waits for any 
outstanding I/O requests to complete and totals up the 
amount of data moved by all the ranks. 
 

V. IOR FIXED DATA EXAMPLE 

 
This IOR command will write 4 GiB of data to each of 100 
files with direct I/O using a transfer size of 4 MiB. 
 
aprun –n 100 IOR -a POSIX -C -B -F -t 4m -b 4g –k 

 
When run with 100 ranks it produces this concise output: 

Summary: 
api                = POSIX 
test filename      = testdir/IOR_POSIX 
access             = file-per-process 
pattern            = segmented (1 segment) 
ordering in a file = sequential offsets 
ordering inter file=constant task offsets=1 
clients            = 100 (4 per node) 
repetitions        = 1 
xfersize           = 4 MiB 
blocksize          = 4 GiB 
aggregate filesize = 400 GiB 
 
Max Write: 6015.63 MiB/sec (6307.84 MB/sec) 
Max Read:  3046.21 MiB/sec (3194.19 MB/sec) 
 
The Lustre file system was based on 3 NetApp E5400 
controllers.  There were 6 OSSs with 3 OSTs each.  We 
expected higher rates, so added the verbose=3 (-vvv) option 
to get per MPI task (file) timings like: 
 
Task=0, Time=1365558598.489247, write open start 
Task=0, Time=1365558598.489978, write open stop 
Task=0, Time=1365558598.496538, write start 
Task=0, Time=1365558641.157996, write stop 
Task=0, Time=1365558666.575858, write close start 
Task=0, Time=1365558666.576329, write close stop 
Task=0, Time=1365558666.597461, read open start 
Task=0, Time=1365558666.597855, read open stop 
Task=0, Time=1365558666.599108, read start 
Task=0, Time=1365558754.811135, read stop 
Task=0, Time=1365558801.056288, read close start 
Task=0, Time=1365558801.056823, read close stop 
 
Additional scripts were developed to automatically extract 
the time to write and read each file and generate pictures 
with gnuplot to quickly display much more detail of the run. 

 
 

Figure 2. Time to write and read individual files 



 
Figure 3. Write and read times sorted by OST index 

 
Fig. 2 shows there is a wide variation in the time it takes to 
write and read the various files.  Next we use the “lfs 
getstripe -i” command to find the OST index of each file. 
 
Fig. 3 groups the times for all files on each of the 18 OSTs.     
The OSTs that took the longest (7 and 8) each had 12 files.  
OSTs 3, 4, 5, 10 and 12 each had 8 files.  Several OSTs (2, 
11, 13) did not have any files and the rest had 4, 5 or 7 files.  
This distribution of files on OSTs is unusually poor, but any 
imbalance hurts fixed data IOR rates. 
 
Fig. 4 shows the times from a later run after forcing Lustre 
round robin file allocation with qos_threshold_rr =100. 
 

 
Figure 4.  A more balanced distribution 

 
Since the maximum write and read times were reduced, the 
average rates reported by IOR for moving the same fixed 
amount of data increased. 
 
Max Write: 8029.20 MiB/sec (8419.23 MB/sec) 
Max Read:  5335.16 MiB/sec (5594.32 MB/sec) 
 
The number of files is still not a multiple of the number of 
OSTs so some OSTs had 5 files and some had 6.  To get the 
best fixed data IOR performance it is critical to keep every 
I/O path as balanced as possible to spread the workload 
evenly over all components. 

VI.  DISK POSITION 

Even after ensuring files are evenly distributed on OSTs and 
running in a dedicated environment there can be variation in 
performance among the OSTs.  A common source of 
variability is the physical position of the files on the disk 
drives.  Typical server disks rotate at a constant rate.  The 
data is stored at a constant linear density so the tracks at the 
outer edge hold more data than those near the inner edge. 
 
Most OSTs are RAID6 (8+2) disk arrays.  Each 1MiB block 
of data is striped over the disks in the array.  The physical 
addresses of the data blocks in the OST start at the outer 
(fastest) edge of the disks with the highest address at the 
inner most (slowest) zone.  We use the linux filefrag 
command to associate a physical address with each IOR file. 
 
Fig. 5 is the timing information from an IOR run using 1152 
files on a file system with 144 OSTs.  Similar to the 
previous plots, but now time is on the horizontal axis.  The 8 
(3 GiB) files written to each OST take up 24 GiB which is 
much less than 1% of the available space on the nearly 16 
TB OSTs.   
 

 
Figure 5.  OST performance variation 



 
 
Fig. 6 contains the same timing information as Fig. 5, but 
the files are sorted by their position within their respective 
OSTs rather than by their OST index. The 8 files written to 
a particular OST are interleaved and tightly packed, but 
when viewed across all OSTs, the allocation position of the 
groups of files appears random, even though the file system 
was essentially empty.  This is typical of production Lustre 
file systems. 

VII.  I/O RATES OVER TIME 

Since it takes more disk rotations to transfer 24 GiB of data 
near the inner edge than at the outer edge, it makes sense 
that it would take more time too.  The IOR timing 
information confirms that, but it is not clear yet if the rates 
are constant over time. 
 
The next step was to instrument IOR to record its activity 
over time.  At the end of the run, each rank prints out how 
much data it moved every 0.25 seconds.  
 

 

Fig. 7 shows the aggregate I/O rates for the 1152 files over 
the time it takes to write and read the files.  The two phases 
do not actually overlap.  The reading starts after the writing 
ends, but both results are plotted together for comparison. 
 
The file system was a CRAY Sonexion 1300 Data Storage 
System.  It had 18 Scalable Storage Units (SSUs).  Each 
SSU has 2 OSSs and a total of 8 OSTs.  The expected 
sustained I/O rate is 3 GB/sec per SSU.  Fig. 7 shows that 
the write and read rates are both greater than 54 GB/sec 
while the full file system is in use.  As the fastest files 
complete, the aggregate bandwidth drops until the last 
(slowest) file finishes. 
 
Based on the final finish time, IOR reports: 
 
Max Write:44386.53 MiB/sec (46542.65 MB/sec) 
Max Read: 42745.48 MiB/sec (44821.89 MB/sec) 
 
The average write and read rate lines in Fig. 7 represent 
what the rate profile would look like if all OSTs performed 
at the average rate for a fixed time equal to the actual times 
required to write (79.73 sec) and read (82.79 sec) the fixed 
amount of data (3456 GiB) in the actual run.  The difference 
in the sustained rate before any file finishes and the average 
rate of the fixed data job due to disk position variability is 
often on the order of 15 to 30%. 
 
Plotting the aggregate I/O rate as seen from an application 
over a long period of time has helped identify transient 
issues such as the Lustre ping effect[2] that were missed 
when only looking at the average rate.  Separating the rates 
over time for individual OSTs or OSSs has been useful to 
identify failing disk drives or intermittent rate drops due to 
error recovery from poorly seated IB cables.  The basic idea 
of instrumenting I/O calls in applications is quite old[3].  

VIII.  FINDING DEGRADED IB LINKS 

Resiliency is critical for the robustness of a large Lustre file 
system.  However, it can cause headaches for the 
benchmarker.   Many components will automatically drop to 
a lower speed if they encounter too many errors at their 
nominal speed.  The degradation may be logged somewhere, 
but that information might not be available to a normal user. 
 
A common example is IB links.  There are many possible 
rated speeds (FDR, QDR, DDR, SDR).  For a variety of 
reasons, such as a cable connection vibrating loose or a 
firmware mismatch between the devices on both ends, one 
or more of the links in a complex IB fabric may be running 
at a speed lower than expected.  The system will still run 
correctly, and many jobs could still run at expected 
performance, but a full file system benchmark would be 
affected.  The performance impact of a degraded IB link 
may affect writes and reads differently due to the presence 
of LNET routers.   

Figure 6.  OST performance relative to disk position 

Figure 7.  I/O rates over time 



Most Cray systems with external Lustre file systems use 
some form of Fine Grained Routing (FGR) where access to 
a small set of OSSs is through a small set of routers.  The 
recommended FGR ratio for connecting a CRAY Sonexion 
1600 Data Storage System to a CRAY XE6 mainframe is 4 
routers to 3 OSSs.  That means there are IB links from 4 
XIO nodes and from 3 servers going to the same switch.   
 
When writing, the Lustre client on a compute node round 
robins the data across the 4 routers which each forward the 
data to the OSS controlling the destination OST.  When 
reading, the OSS round robins the requested data across the 
4 routers on its way to the compute node.  A slow link 
between any of the LNET routers and the switch will affect 
both reads and writes for any of the OSTs controlled by the 
3 OSSs.  A slow link between an OSS and the switch will 
only affect reads from OSTs owned by that OSS, but would 
affect writes to all the OSTs on all 3 OSSs.  All 4 routers 
will be slowed down trying to get data through the slow link 
impeding their ability to send data to the OSSs also. 
 
Fig. 8 shows this affect.  This individual file timing 
information came from an IOR run on a 48 cabinet Cray 
XE6 system with a 14 SSU Sonexion 1600 file system with 
7 SSUs in each of 2 cabinets.  Each cabinet has four 4:3 
FGR groups for the first 6 SSUS and two 2:1 groups for the 
last SSU.  At the time of this run, the link between the first 
odd numbered OSS and the top of rack (TOR) switch was 
degraded to SDR speed.  All other links were at QDR speed. 
 

The IOR job used 896 ranks on 224 nodes to write and read 
8 (3 GiB) files on each of the 112 OSTs.  Each OSS controls 
4 OSTs so there is 96 GiB of data sent to and from each 
OSS.  The reads to the OSS with the slow link took 105 
seconds which equates to 96*(1.024)**3/105 = 0.98 GB/sec 

which is close to the 1 GB/sec SDR speed.  The writes to all 
3 OSSs in that FGR group are also limited to that speed. 
 
 Fig. 8 also shows how job placement within the large Cray 
XE Gemini 3D torus network can affect bandwidth to 
individual FGR groups.  This job is trying to use all the 
bandwidth of the file system from less than 5% of the 
compute nodes in the system.  The default placement 
clumps those nodes to maximize HSN communication 
bandwidth between the nodes of the job.  Since the LNET 
router nodes are scattered around the torus, the available 
number of paths (and therefore bandwidth) between the 
group of compute nodes and the router groups varies. 
 
If the same job was assigned a different set of compute 
nodes or a smaller or larger number of nodes, the available 
bandwidth to individual routers could change.  Reads are 
affected more than writes since when reading, all the data 
from an FGR group of servers enter the torus at a few points 
so the diversity of communication paths is limited. 

IX.  FAILED LNET ROUTER 

Having 4 routers in an FGR group gives some redundancy.  
If one fails the clients will round robin their transfers across 
the remaining 3.  The Cray XE router nodes have a 
bandwidth of about 2.6 GB/sec while the OSSs of a 
Sonexion 1600 can write up to about 3 GB/sec.  The normal 
4:3 ratio has some router bandwidth to spare.  If one router 
is down, however, the bandwidth of the FGR group may be 
limited by the routers instead of the OSSs. 
 
Fig. 9 shows the write times for an IOR job that wrote 12 (3 
GiB) files to each of the first 48 OSTs of a Cray Sonexion 
1600 file system.  The OSSs that finished in ~58 seconds 
wrote at about 2.7 GB/sec, but the FGR group including the 

Figure 8.  Degraded IB link Figure 9.  Write performance with a failed LNET router 



failed router and the first 3 odd numbered OSSs (OSTs 4-7, 
12-15, 20-23) was a little slower (~2.5 GB/sec/OSS) due to 
the bandwidth limit of the 3 remaining routers. 

X. FAILED OVER SERVER 

Occasionally a Lustre server will crash and its OSTs will 
fail over to its partner server.  Since the other server now 
has twice as many OSTs to manage, the performance of 
both groups of OSTs will be reduced until the failed server 
can be returned to service. 
 
Plotting the time to write each of the files during a fixed 
data IOR job on a file system with a failed over server 
would show the files on OSTs involved in the fail over 
would take roughly twice as long.  Since the files on any 
particular OST always have a range of completion times, it 
is hard to assign a rate to an OST or OSS based just on those 
times.  Now that we have instrumented IOR to record the 
rate of each file over time, we can calculate the average I/O 
rate for each OST or OSS based on the elapsed time up to 
when the first file finishes. 
 
Fig. 10 shows the rates of each of the OSSs on a 180 SSU 
(360 OSS) Cray Sonexion 1600 file system.  At the time of 
the run, the servers for OSSs 199 and 214 were down so 
OSSs 198 and 215 were each controlling 8 OSTs instead of 
the usual 4.  The script that extracts the performance 
information from the IOR output simply aggregates the rates 
for an OSS from a sequential group of 4 OSTs.  Therefore 
the plot shows both OSSs in each pair as slow when in 
reality one server in each pair is not doing anything. 
 
 

 
Figure 10.  Server write rates while failed over 

There was also one FGR group of servers (OSSs 168, 170 
and 172) that were performing poorly that day, but most of 
the OSSs were writing at the expected rate of about 2.7 
GB/sec or 5.4 GB/sec per SSU. 

XI.  SUMMARY  

Instrumenting IOR to provide rate information as a function 
of time makes it a very useful tool for diagnosing I/O 
performance problems on large Lustre file systems.  It has 
uncovered software scaling issues like the Lustre ping effect 
and transient issues that turned out to be firmware defects or 
poor cable connections.  Seeing how the I/O performance 
varies over time gives much more insight into the health of a 
file system than usual single average rate output of IOR. 
 
Using IOR as a file system test and debugging tool has 
some advantages over component level test tools like dd or 
obdfilter-survey or LNET self test in that IOR: 
 

• Scales from a single thread to thousands of nodes 
• Can generate a wide variety of I/O patterns 
• Is often specified as the official measurement 

method for acceptance 
• Can be run by unprivileged users 

 
A single IOR job can gather performance information on all 
the OSTs and OSSs, or just a subset, under conditions that 
can be made to match almost any application workload.  
Automatically turning the expanded information into graphs 
with gnuplot makes it easier to quickly identify which parts 
of the file system are operating nominally and which 
components are not.   
 
Besides being a valuable debugging tool during the 
installation of a complex Lustre file system, the IOR 
program can also help identify the impact that inevitable 
component failures will have on user applications.  Finally, 
it can be useful to explore the potential benefit of changing 
the I/O pattern of an application through its ability to 
simulate so many types of I/O. 
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