
Effect of Rank Placement on Cray XC30 Communication Cost

Reuben D. Budiardja, Lonnie Crosby, Haihang You
National Institute for Computational Sciences

The University of Tennessee, Knoxville, TN 37996
{reubendb,lcrosby1,hyou}@utk.edu

Abstract—The newly released Cray XC30 supercomputer
boasts the new Aries interconnect that incorporates a Drag-
onfly network topology. This hierarchical network topology
has obvious advantages with respect to local communication.
However, as communication patterns extend further down the
hierarchy and grow more separated the overall impact of
particular bottlenecks and trade-offs between bandwidth and
latency become less apparent. In particular, applications may
be more or less latency sensitive based on their communica-
tion pattern. The dynamic routing options, as a result, may
affect some applications more severely than others. In this
paper, we investigate the effect of process placement on the
communication costs associated with typical communication
patterns shared by many scientific applications. Observations
concerning the communication performance of benchmarks
and selected applications are presented and discussed.

Keywords-Performance; Benchmarking; Computer architec-
ture

I. INTRODUCTION

The National Institute for Computational Sciences (NICS)
at the University of Tennessee, Knoxville recently acquired a
Cray XC30 system, which boasts the new Aries interconnect
that incorporates a Dragonfly [1] network topology. In this
paper, we investigate the effect of process placement on the
communication costs associated with typical communication
patterns shared by many scientific applications. Selected
trends are tested with respect to benchmarks and selected
scientific applications which utilize these communication
patterns. Observations concerning the performance implica-
tions of process placement and/or communication patterns
are discussed.

This paper is organized as follows. In Section II we very
briefly describe the configuration of the Cray XC30 system.
A more thorough description of the XC30 architecture can
be found in [2]. Section III details the setup of our bench-
marking experiments. In section IV we present the results
of these experiments, followed by concluding remarks in
Section V.

II. SYSTEM OVERVIEW

The Cray XC30 is a distributed memory supercomputer
equipped with a Dragonfly [1] network topology. The basic
building block that is unique to an XC30 system is the
compute blade that contains four compute nodes connected

to an Aries interconnect ASIC (Application-specific inte-
grated circuit). Aries is a system-on-chip that integrates
four Network Interface Controllers (NIC) based on Gemini
interconnect [3] with a 48-port high radix router. Thus
the Aries NICs on a compute blade provides the network
connectivity for all four compute nodes on the blade via
independent PCI-Express Gen3 x16 host interfaces.

Sixteen of these compute blades are combined to form a
chassis. Each Aries on a blade is connected via a backplane
to form an all-to-all connectivity between the blades in the
chassis. This connection is referred to as the green links,
and is the first dimension of the network topology.

A group is formed by connecting two cabinets, consisting
of three chassis each, with electrical links from each Aries
in a chassis to its peers on each chassis in the two cabinets.
There are six total chassis in this group that require the
five electrical connectors available on each Aries to form
the inter-chassis connections. Another all-to-all network is
formed between these Aries ASICs across chassis in the
group and is referred to as the black links. This is the second
dimension of the Dragonfly topology.

Groups are connected with each other via optical links
to form a system. These connections, referred as blue links,
are also all-to-all and provided by each Aries in the system.
More information about the possible configuration of this
dimension of the Dragonfly topology can be found in a
related paper [2]. The optical links may be configured to
provide additional bandwidth or to scalably increase the
number of groups that may be connected. Figure 1 illustrates
the network structures of an XC30 system.

Darter, the Cray XC30 at NICS, is a system consists of
two groups with a total of 748 compute nodes and 10 service
nodes. Each compute node is dual-socket utilizing 2.6 GHz
octa-core Intel Sandy Bridge processors with 32 Gigabytes
DDR3 1.6 GHz memory. The system theoretical peak perfor-
mance is 248.9 TeraFLOPS with. A lustre Sonexion parallel
file system is attached to the system providing 360 Terabytes
usable disk space at 10.7 Gigabytes/second peak bandwidth.

III. EXPERIMENT SETUP

In this section the setup for the benchmark experiments is
discussed. A custome code was written in order to provide
the most flexible rank placement for these benchmarks. This
code creates MPI communicators whose members are nodes

1



Figure 1: Overview of XC30 network in a group. Each box
represents a blade with four compute nodes connected to an
Aries ASIC. Thick solid line indicates an all-to-all connec-
tions between compute blades. Green links, represented by
green lines, are connected via chassis backplane, while black
links (black lines) are inter-chassis electrical connections.

on which the benchmarks run. To avoid on-node, SMP
specific contributions to the results, only one MPI rank per
node (via “-N 1” flag to aprun) is utilized since off-node
network performance is of interest.

The code that creates the MPI communicators utilizes the
compute node’s canonical name (cname) to first determine
the location of the node in the system. This cname is read
from the file /proc/cray_xt/cname that exists on ev-
ery compute node. The name has the format ci-jckslnx
where bold letters are literal and i, j, k, l, x are numbers to
indicate the cabinet coordinate (i, j), chassis number (k) in
a cabinet, slot number (l) in a chassis, and node number (x)
in a slot. The slot number (l) can be either one digit or two
digits (0 - 15) to indicate the slot (i.e. blade) location in the
chassis. By parsing this cname, one can determine the exact
position of a node in the system configuration.

To run the benchmarks, jobs are submitted that require a
large number of nodes in order to ensure all nodes needed to
form the required communicators are available. By knowing
the positions of the nodes in the system, the following
sub-communicators from MPI_COMM_WORLD are created to
represent different hierarchies of the XC30 network:
• green communicators that consist of nodes attached to

Aries in the same chassis. These Aries are connected
by the chassis backplane (the so-called green links),
which is the first dimension of the all-to-all network
For example, the nodes of a communicator such as this
have the cname: c3-0c1s[0-15]n[0-3], where
the square brackets ([]) indicate range of numbers.
For this type of communicator, we have the option
of using all four nodes attached to each Aries or one
node per Aries in a communicator. For the former, we
have 64 ranks in a green communicator. For the latter
option, the same node number (e.g. node 0) attached

to each Aries forms a green communicator with 16
ranks, creating a total of four green communicators per
chassis whose members are, for example, nodes with
cname: s[0-15]n0, s[0-15]n1, s[0-15]n2,
s[0-15]n3, where here the cabinet and chassis num-
ber are denoted by since they vary depending on the
exact identity of the chassis. The benchmarks can then
be run simultaneously with the four green communica-
tors per chassis, creating an ensemble runs, or with only
one green communicator per chassis called the single
runs.

• black communicators that consist of nodes attached
to the same Aries number in the two-cabinet group.
These Aries are connected by the inter-chassis electrical
connection (the so-called black links), which is the
second dimension of the all-to-all network. Each black
communicator has Aries that reside in a column of
the two-dimension all-to-all network. For example, the
nodes of a communicator such as this have the cname:
{c0-0c[0-2]s2n[0-3],c1-0c[0-2]s2n[0-3]},
where the curly brackets ({}) here indicate union. This
makes sure that there is only a single hop between
ranks in this type of communicator due to the all-to-all
network. As with the green communicators, these may
be defined using four nodes per Aries (single) or one
node per Aries, which allows ensemble runs.

• red communicators that consist of nodes attached to
Aries that are in the diagonal of the two-dimensional
all-to-all network in a group. In this configuration none
of the Aries included are within the same intra-chassis
(row) or inter-chassis networks (column) within the
same group. This ensures that there is at least two hops
of routing between any two Aries in the communica-
tors. For the experiments using this communicator we
used all four nodes attached to each Aries to form a
24-rank MPI communicator.

• blue communicators that are red communicators split
across two different groups of the XC30 network. That
is, three of the Aries of these communicators are in
group 0, while the other three are in group 1.

The routine MPI_Comm_split is used to create the
communicators. The combination of the job submission and
creation of these communicators allow us to run benchmarks
with specific nodes independent of scheduler placement such
as ALPS [4] of our benchmarks jobs.

The Intel MPI Benchmarks (IMB) version 3.2.4 [5] are
utilized to measure the performance of these different net-
work hierarchies. IMB was modified to accept custom MPI
communicators to run benchmarks by replacing all refer-
ences to MPI_COMM_WORLD with the new communicator.
IMB originally writes its output to either STDOUT or to
a single output file by rank 0. Since multiple different
communicators (with different sets of nodes as members)

2



were passed to IMB with our modification, in a sense mul-
tiple instances of IMB ran simultaneously. This necessitated
a slight modification to IMB output routine. Rather than
a static filename, the IMB output routine was modified
such that the output filename is based on the rank from
MPI_COMM_WORLD of that IMB instance. The many output
files from many IMB instances are then reduced using
a home-grown PHP script to get the global minimum,
maximum, and average of each experiment.

IV. RESULTS

A. Default Rank Placement

The 758 compute and service nodes on the Cray XC30
system are identified with node identification (NID) num-
bers. These are defined in such a way as to ensure that
subsequent NIDs reside close to each other in the Dragonfly
network topology. Specifically, nodes (0-3) attached to a
single Aries ASIC are numbered sequentially, followed by
the Aries ASICs (0-15) in a single chassis, followed by the
chassis (0-5) in a single group, and cycling through groups
(0-1). Service nodes also follow this numbering scheme
even though there are only two nodes attached to these
Aries ASICs (1 and 2). The NIDs corresponding to the
missing nodes (0 and 3) are not utilized within the system,
which makes the scheme general and not dependent on
the service/compute node breakdown of the system. Each
node also has a cname designation described previously that
identifies the physical location of nodes within the system.
Due to the relation between physical and network location,
NIDs are analytically calculable from the physical location
of nodes.

NID = x+Nl +NSk +NSC(i+Xj), (1)

where N is the maximum number of nodes on a blade (4),
S is the maximum number of slots within a cage (16), C is
the maximum number of cages within a cabinet (3), and X
is the maximum number of cabinets in a row.

The Application Level Placement Service (ALPS) [4]
reorders the nodes within a batch jobs reservation according
to NID number, which ensures that processes on subsequent
nodes reside close to one another in the Dragonfly topology
as described above. However, the scheduler is the entity
which obtains the original list of nodes for any specific
job, which does not necessary have topology information
available.

B. Point-to-point Benchmark Results

Two benchmarks from IMB are used to measure the costs
of typical point-to-point MPI communications: Sendrecv and
Exchange. The Sendrecv benchmark in IMB is based on
the MPI routine MPI_Sendrecv. In this benchmark, each
process (i.e. MPI rank r) sends message to the next (i.e.
rank r+ 1) process and receives message from the previous
(i.e. rank r − 1) one. The Exchange benchmark in IMB

simulates typical communication pattern that often occurs
in domain-decomposed application. In this benchmark, each
process sends two messages to the next and previous rank
each. IMB uses MPI_Isend (non-blocking send) to send
the messages. Each process also receives one message from
each of the neighboring processes using MPI_Recv. The
data type MPI_BYTE is used for both benchmarks.

These benchmarks were run on each hierarchy of the
Cray XC30 network on a otherwise quiescent system. In
particular, for each benchmark we use the MPI communica-
tors as described in Section III. The green communicators
represent the first hierarchy of the XC30 network. The
benchmark results for this first hierarchy in our figures are
indicated by green curves and points. The second hierarchy
of the network is represented by the black communicators.
Because of the way these communicators are set up, the
only difference between the first (green communicators) and
the second (black communicators) hierarchy of the network
reflected in these benchmarks is the chassis backplane versus
the electrical connection between chassis. The benchmark
results for the black communicators in our figures are
indicated by black curves and points.

Figures 2 and 3 show the results of these benchmarks.
On both figures, the two different point types represent
the two benchmarks: square for Sendrecv and circle for
Exchange. The different colors represent the first (green)
and second (black) network hierarchy as described above.
Figure 2 shows the results using one node per Aries in both
single and ensemble runs while Figure 3 uses all four nodes
per Aries. Since IMB runs benchmarks with the number
of processes as [2, 4, 8, . . . , 2x < p, p] where p is the rank
of the communicator, only 4 processes can be used in
both the green and black communicators in Figure 2. For
Figure 3 16 processes are used in both the green and black
communicators.

From Figure 2 it can be seen that for these benchmarks
on a system with more traffic (i.e. in ensemble runs), the
intra-chassis latency (green link) is slightly lower. This trend
persists for all message sizes. This advantage disappears for
the single runs and when all the four nodes per Aries is
used(Figure 3).

These same benchmarks were run using the red and blue
communicators as described in Section III. The results of
these benchmarks are shown on Figure 4 as red and blue
curves, respectively. The results of green communicator
benchmarks from Figure 3 are re-plotted here for reference.
There is virtually no detectable differences in term of the
latency of these benchmarks on the green, red, and blue
communicators. This is not surprising since router-to-router
hops in XC30 only adds approximately 100 ns of latency,
well below measurable differences in these benchmarks.

The bandwidth as a function of message size is plotted for
these point-to-point benchmarks in Figure 5 for the different
hierarchies of the network. Except for the differences at

3



Figure 2: Latency as a function of message size on Darter for
Sendrecv (square point) and Exchange (circle) benchmarks
with four MPI ranks. The different colors indicate results
on first (green) and second (black) dimension on the all-
to-all network in two-cabinet group. The solid lines are for
ensemble runs and the dashed lines are for single runs. The
upper panel is the result for message size up to 4 Kilobytes
and the lower panel is the result for message size up to 1
Megabytes.

message size 2KB and 4KB, the bandwidths on the green,
black, red, and blue communicators for these benchmarks
are virtually the same, and increasing with the size of the
messages. This tells us that even at the largest message size
of these benchmarks, we have not saturated the available
bandwidth on any of the network links in the system.

One noticeable trend in these benchmarks is the steep
increase in latency for messages size greater than 1024
bytes. A possible explanation for this is that 1024 bytes
is the default cut-off point for short message facility
for these point-to-point communications. To try to un-
derstand this behavior, the Sendrecv benchmarks were
run with the same configuration as in Figure 3, ex-

Figure 3: The same benchmarks as Figure 2 except all
nodes attached to each Aries are member of the same MPI
communicator. The results for 16 MPI rank benchmarks are
plotted.

cept the following environmental variable setting change:
MPICH_GNI_MAX_VSHORT_MSG_SIZE=8192. Figure 6
shows the results of this change. For large messages, we also
see a change on the latency curve steepness at around 128
Kilobytes for these benchmarks. Therefore it is advisable
for application developers to keep point-to-point messages
below these two cut-off points on this system.

C. Collective Benchmark Results

For the collective operation benchmarks, we used Allre-
duce, Allgather, and Alltoall from IMB. As can be inferred
from their names, these benchmarks are based on the
MPI routine MPI_Allreduce, MPI_Allgather, and
MPI_Alltoall, respectively. These benchmarks are or-
dered in increasing complexity in term of the communication
patterns and are commonly used in many applications. For
Allreduce benchmark, the reduction operation is MPI_SUM
for MPI_FLOAT data type. The other two benchmarks uses

4



Figure 4: The same benchmarks as Figure 3 except across
diagonal Aries in a group is shown in red curves instead of
black link results.

MPI_BYTE data type.
Figures 7 and 8 show the results of these benchmarks. As

with the point-to-point benchmarks, we ran these on each
hierarchy of the XC30 network. The results for these hierar-
chies are indicated by the different colors in the figures, as
previously described. On these figures, three different point
types represent the three benchmarks: square for Allreduce,
circle for Allgather, and triangle for Alltoall.

Figure 7 shows the latency of these benchmarks as a
function of message size with 4 MPI ranks per communica-
tor. The solid lines indicate the result of the ensemble runs
while the dashed lines indicate the single runs. From Figure
7, we notice that for Allreduce and Allgather benchmarks
the latency of intra-chassis processes (green link with green
communicators) is slightly worse than the latency on the
inter-chassis processes (black link with black communica-
tors) until the cut-off point at 1 Kilobytes message size. For
messages larger than 1 Kilobyes, the reverse is true: green
communicators (intra-chassis) has slightly lower latency

Figure 5: Bandwidth as a function of message size for
Sendrecv (square point) and Exchange (circle) across green,
black, red, and blue communicators.

than the black communicators (inter-chassis). If the results
for these two benchmarks for small messages are slightly
surprising, the results for the Alltoall benchmark are even
more so. For all message sizes, the Alltoall benchmark
on the green link has anywhere from 30 - 200 percent
higher latency than on the black link. For the small-size
messages, the latency trend is more erratic than the trend
for larger messages. The same trend and erraticism did
not occur for the single runs (dashed lines) where only a
single node per Aries were used. In this case, the latency
on green-link and black-link are nearly the identical. These
results seem to indicate that the inter-chassis backplane
connection performance is more sensitive to the busy traffics
for complicated communication pattern such as Alltoall.

On Figure 8 we show the results of the same benchmarks
when all nodes attached to the Aries form the same commu-
nicator in each network hierarchy. On this figure, we show
the the benchmarks results of 16 MPI ranks communicators.
The latency for the Allreduce and Allgather benchmarks are

5



Figure 6: Sendrecv benchmark on green and
black communicators as in Figure 3 but with
MPICH_GNI_MAX_VSHORT_MSG_SIZE set to 8192.
Data from Figure 3 is re-plotted as dashed line for
reference.

nearly identical for all four colors of the communicators
up to 128 bytes message size. However for the Alltoall
benchmark, here we again see something rather puzzling.
As in the result shown in Figure 7, the latency for the inter-
chassis results (green curve) are higher than expected. For
message size 128, 256, 512 bytes, the values are especially
higher than the latency on the black communicators. The
red and blue communicators latency fall in between of the
green and black communicators latency for 128, 256, 512
bytes message sizes for the Alltoall benchmarks, and follow
the green communicators latency for the other collective
benchmarks.

On Figure 7 we notice the large changes in latency curve
after certain message size. For the Allreduce benchmark, this
cut-off point is at 1024 bytes message size. This cut-off
point seems to happen at smaller message size for the more
complicated communication patterns. When more ranks are
involved, such as in Figure 8, the cut-off points is at even
smaller message sizes. For large messages, the slope of the
latency curve is increasing for all benchmarks for message
size above 64 Kilobytes on both Figure 7 and 8.

The solid lines on Figure 9 shows Alltoall benchmark
results with the following environment variable setting:
MPICH_ALLTOALL_SHORT_MSG=8192 to adjust the cut-
off points at which algorithm for short messages is used.
However, with this setting, the latency on green communi-
cators is even more erratic than before. The latency on black
communicators is also slightly worse on all message sizes.
Overall, increasing the value of this environmental variable
from the default seems to produce worse latency on both
green (intra-chassis) and black (inter-chassis) hierarchy of

Figure 7: Latency as a function of message size on Darter
for IMB collective benchmarks with four MPI ranks. The
different point types indicate different benchmarks: square
for Allreduce, circle for Allgather, and triangle for Alltoall.
The different colors indicate results on first (green) and
second (black) dimension on the all-to-all network in two-
cabinet group. The solid lines are for ensemble runs and the
dashed lines are for single runs. The upper panel is the result
for message size up to 4 Kilobytes and the lower panel is
the result for message size up to 1 Megabytes.

the XC30 network.

D. Applications Benchmark

The last set of tests we ran to investigate the effect
of process placement on communication costs utilized two
scientific applications with typical communication patterns
shared by many other applications. For these tests, we ran the
applications on system when it was both busy and quiescent
and measure the performance differences due to different
process placement. Major causes of performance variance
over multiple number of runs on shared resources are the
availability of communication bandwidth, communication

6



Figure 8: The same benchmarks as Figure 2 except all
nodes attached to each Aries are member of the same MPI
communicator. The results for 16 MPI rank benchmarks are
plotted. Additionally red and blue curves showing the results
of these benchmarks with red and blue communicators are
also displayed.

latency, I/O bandwidth and latency, and the load on compute
resources. Since on Cray system allocated compute nodes
are dedicated only for the submitted job, and operating
system jitters are minimized by the used of Compute Node
Linux [6], these factors can be safely assumed to contribute
only minimally to application performance variance. To
avoid contribution from the I/O subsystem, other than the
minimal informational output to STDOUT and parameters
file reading at application start-up, on these tests I/O was
completely turned off. Therefore it may be assumed that the
biggest contribution for the performance variance are from
communication subsystem.

A simplified way to quantify the process placement of a
job is by a measure of how spread-out the nodes used to run
the job are. We use the average distance between node as
defined by their NIDs as this measure. This average node-

Figure 9: Alltoall benchmark on green and
black communicators as in Figure 8 but with
MPICH_ALLTOALL_SHORT_MSG set to 8192. Data
from Figure 8 is re-plotted as dashed lines for reference.

distance Dn is simply

Dn =

n−1∑
i=1

NIDi+1 −NIDi

n− 1
, (2)

where n is number of nodes allocated to the job. For a
job whose nodes are right next to each other, we have
Dn = 1. Dn increases as nodes are further apart in physical
location as indicated by its NID (as described in Subsection
IV-A). There are however two caveats to this simple scheme.
The first one is that it ignores any information on network
topology and therefore assumes that distance varies linearly
with NID. The net effect of this is that Dn is independent
of network distance and therefore can not be used to infer
information regarding network performance such as latency.
The second caveat, which is related to the first one, is that
Dn is not unique. Two completely different arrangement of
process placement on the nodes may yield the same Dn and
yet has different communication characteristic due to the
network topology. Despite these limitations, a measure of
performance versus the average node-distance number plot
may give us insight into the effect of process placement to
performance variance of an application if any.

The first application we used is GenASiS (General As-
trophysical Simulation System). GenASiS is a multiphysics
code primarily developed for large-scale simulations of
astrophysical phenomena, with initial emphasis on the sim-
ulations of core-collapse supernovae [7][8]. It has been run
at-scale on the largest Cray supercomputers such as Jaguar
and Titan at Oak Ridge Leadership Computing Facility to
produce some of the first three-dimensional results on the
effect of turbulent to magnetic fields generation in supernova
environment [9][10]. For its compressible hydrodynamics

7



Figure 10: A snapshot of the pressure gradient of Sedov-
Taylor blast wave after it evolves for some time.

solver, GenASiS implements finite-volume methods based
on approximate Riemann solvers with second-order accu-
racy using the so-called HLL-type Riemann solver. Second-
order temporal accuracy is achieved with Total Variation
Diminishing Runge-Kutta method. In GenASiS, the meshes
are domain-decomposed for parallel processing. The hy-
drodynamics solver requires several ghost exchange com-
munication every time step with a global reduction via
MPI_Allreduce to determine the largest time step that
can be taken.

We used two-dimensional Sedov-Taylor blast-wave prob-
lem [11][12] to benchmark the effects of different process
placement to the performance of GenASiS. Sedov-Taylor
blast-wave is a classic test in computational astrophysics
in which the self-similar evolution of a strong shock wave
expanding into uniform medium (see figure 10). We ran this
test problem at two different resolution: 8192 × 8192 cells
distributed evenly on 4096 processes with 256 nodes, and
2048 × 2048 cells with 256 processes with 16 nodes. For
both resolutions, we let the the simulations evolve for 5000
time step and used the total elapse time of the application
as a measure of performance.

Figure 11 shows the results of our tests with Sedov-Taylor
blast wave problem. For both problem size, the minimum
total elapsed time from multiple runs was picked as a
reference point t0. A relative time difference δtr can then
be computed using t0 as reference as

δtr =
ti − t0
t0

(3)

where ti is the total elapsed time for run i. The values t0 =
578.109 seconds and t0 = 571.908 seconds were used for
the 4096-processes and 256-processes run, respectively.

From Figure 11 we notice that for this application, for

Figure 11: Relative time differences versus average node-
distance for Sedov-Taylor blast wave test problem with 4096
processes (upper panel) and 256 processes (lower panel).

job with relatively small number of nodes (upper panel),
there is essentially no significant performance differences
due to job placement. This is consistent with the advocated
attribute of the XC30 system with the Dragonfly topology
[2]. However, for jobs with relatively large number of nodes
on busy system (lower panel on Figure 11), there seems to
be some performance benefits when the job occupies nodes
with some physical distance between them. This is somewhat
counter-intuitive. One may speculates a reasoning for this
observation that by using nodes that are less packed together,
network traffics have possibilities to take different routes
on this topology and thus better able to avoid congestion.
Since on this topology the node-to-node network distance is
independent of physical distance, the sparseness of the job
placement does not contribute very much to the increase of
latency.

The second application we used is PSPFFT. PSPFFT is
an implementation of FFT-based Poisson’s equation solver
for isolated three-dimensional system on unigrid mesh using

8



Figure 12: A 2D slice of 3D mesh showing the gravitational
potential of a unit sphere with uniform mass density ρ = 1.
with radius R = 1 as indicated by the solid black line.

FFT on a distributed memory parallel computer [13]. The
mesh with the source distribution of the Poisson’s equation
is domain-decomposed and distributed across multiple pro-
cesses as mesh blocks to be solved in parallel. For multi-
dimensional FFT to be performed efficiently, data movement
is required to transpose the mesh and its data to arrange-
ments more natural to highly optimized serial FFT libraries
such as FFTW. In this application, this is accomplished via
MPI_Alltoall routine involving different number of pro-
cesses as members of MPI sub-communicators. Therefore,
all-to-all is the major communication pattern used by this
application.

For the tests, we ran PSPFFT to solve the gravitational
potential of a three-dimensional homogenous sphere at two
different resolutions: 768 × 768 × 768 and 384 × 384 ×
384 with 4096 processes (256 nodes) and 512 processes (32
nodes), respectively. We measured the total elapsed time for
the application to solve the problem 3000 times and 4000
times at the high and low resolution, respectively, and plot
it as a function of the average node-distance.

Figure 13 shows the results of our tests with PSPFFT.
For these tests, t0 = 1508.94 seconds and t0 = 1413.81
seconds were used as the performance reference points for
the 4096-processes and 256-processes run, respectively. As
in the case with the Sedov-Taylor test problem, for the
small-size job we do not observe performance differences
due to job placement. For larger-size job, unfortunately we

Figure 13: Relative time differences versus average node-
distance for PSPFFT application with 4096 processes (upper
panel) and 512 processes (lower panel). On the lower panel,
blue squares indicate data from runs when the system is
completely empty.

do not have enough data points for cases with Dn < 2,
although from what is available the data seems consistent
with Figure 11. For this test problem we also show results
with a dedicated system, indicated by blue squares. The jobs
were then placed using aprun -l <nodelist> feature
where nodelist file was created in a way such that Dn varies
from 1 to 3. Here we see a trend that increasing Dn gives
better performance.

V. CONCLUSION

In this paper we have performed benchmarks on the dif-
ferent dimensions and hierarchy of the newly released Cray
XC30 with Dragonfly network topology. The motivation for
this endeavor was to investigate the effect of rank placement
on communication costs of typical communication patterns,
if any, since this effect is not immediately apparent across
the different dimensions of the all-to-all network. We have

9



found that in most cases this effect is minimal and below
the measurable level from user perspective on many common
communication patterns. Although different dimensions and
hierarchy of the network topology do in fact performs as
well as expected, we have also noticed small peculiarity
with regards to the Alltoall benchmark performance on the
green links of the intra-chassis connection. We do not have
enough knowledge at this point to draw any conclusion from
the results of that particular benchmark.

We have also measured the performance differences due
to job placement on two scientific applications with typical
communication patterns shared by many other applications.
We observed that for relatively large job size, our results
show some performance benefits from the increase of aver-
age distance between nodes when the system is busy (i.e.
more than 80 percent utilized). This results is in contrast
to the conventional wisdom that usually advocates to pack
the placement of a job as close as possible. Although
we speculated a possible explanation for this observation,
further work is warranted to corroborate and understand this
observation.

The Aries interconnect has the capability of dynamically
routing packets via minimal and non-minimal paths [2].
For the experiments using communicators which attempt to
solely utilize the inter-chassis links, both intra- and inter-
chassis network links, or all three all-to-all network links,
non-minimal routing paths would result in higher latencies,
improved bandwidth, and reduced impact from contention,
if present. This type of routing would have the potential to
equalize the performance differences due to rank placement.
There may be mechanisms to control this behavior for more
rigorous experimentation; however, only the default behavior
of the system was measured. There is a future need to
identify a mechanism to identify if messages are routed
minimally or non-minimally in order to understand this
behavior.

ACKNOWLEDGMENT

This research used resources at the National Institute for
Computational Sciences, funded by the National Science
Foundation (NSF).

REFERENCES

[1] John Kim, Wiliam J. Dally, Steve Scott, and Dennis Abts.
Technology-Driven, Highly-Scalable Dragonfly Topology.
2008 International Symposium on Computer Architecture,
pages 77–88, June 2008.

[2] Greg Faanes, Abdulla Bataineh, Duncan Roweth, Tom Court,
Edwin Froese, Bob Alverson, Tim Johnson, Joe Kopnick,
Mike Higgins, and James Reinhard. Cray Cascade: A scal-
able HPC system based on a Dragonfly network. In 2012
International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–9. IEEE, Novem-
ber 2012.

[3] Robert Alverson, Duncan Roweth, and Larry Kaplan. The
Gemini System Interconnect. 2010 18th IEEE Symposium on
High Performance Interconnects, pages 83–87, August 2010.

[4] Michael Karo, Richard Lagerstrom, Marlys Kohnke, and Carl
Albing. The application level placement scheduler. Cray User
Group, pages 1–7, 2006.

[5] Intel. Intel MPI Benchmarks 3.2.4 User Guide.

[6] David Wallace. Compute Node Linux: Overview, progress
to date, and roadmap. Proceedings of the 2007 Cray User
Group Annual . . . , pages 1–8, 2007.

[7] RD Budiardja. Towards Simulations of Binary Neutron Star
Mergers and Core-Collapse Supernovae with GenASiS. PhD
thesis, University of Tennessee, 2010.

[8] Christian Y. Cardall, Reuben D. Budiardja, Eirik Endeve, and
Anthony Mezzacappa. GenASiS: General Astrophysical Sim-
ulation System. II. Nonrelativistic Hydrodynamics. Submitted
to the Astrophysical Journal, July 2012.

[9] Eirik Endeve, Christian Y. Cardall, Reuben D. Budiardja, and
Anthony Mezzacappa. Generation of Magnetic Fields by The
Stationary Accretion Shock Instability. The Astrophysical
Journal, 713(2):1219–1243, April 2010.

[10] E Endeve, C Y Cardall, R D Budiardja, and A Mezza-
cappa. Magnetic field generation by the stationary accretion
shock instability. Journal of Physics: Conference Series,
125:012006, July 2008.

[11] L. I. Sedov. Similarity and Dimensional Methods in Mechan-
ics, Tenth Edition. CRC Press, 1993.

[12] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale,
D. Q. Lamb, P. MacNeice, R. Rosner, J. W. Truran, and
H. Tufo. FLASH: An Adaptive Mesh Hydrodynamics Code
for Modeling Astrophysical Thermonuclear Flashes. The
Astrophysical Journal Supplement Series, 131(1):273–334,
2000.

[13] Reuben D. Budiardja and Christian Y. Cardall. Parallel FFT-
based Poisson solver for isolated three-dimensional systems.
Computer Physics Communications, 182(10):2265–2275, Oc-
tober 2011.

10


