
Preparing Slurm for use on the Cray XC30

Stephen Trofinoff and Colin McMurtrie

CSCS – Swiss National Supercomputing Centre

Lugano, Switzerland

Email: {trofinoff; colin}@cscs.ch

Abstract—In this paper we describe the technical details
associated with the preparation of Slurm for use on the 12
cabinet XC30 system installed at the Swiss National Super-
computing Centre (CSCS). The system comprises internal and
external login nodes and a new ALPS/BASIL version so a
number of technical challenges needed to be overcome in order
to have Slurm working on the system. Thanks to a Cray-
supplied emulator of the system interface, work was possible
ahead of delivery and this eased the installation when the
system arrived. However some problems were encountered and
their identification and resolution is described in detail. We
also provide detail of the work done to improve the Slurm
task affinity bindings on a general-purpose Linux cluster so
that they, as closely as possible, match the Cray bindings,
thereby providing our users with some degree of consistency
in application behaviour between these systems.

Keywords-Slurm; ALPS/BASIL 1.3; SPANK plugin; Task
Affinity; esLogin; nppcu; QUERY(SUMMARY)

I. INTRODUCTION

Slurm [1], a robust open-source resource manager, is

growing widely popular in the HPC sector to the extent

that some 30% of the Top500 systems now run Slurm

(including 5 of the top 15 systems). CSCS has a long history

in Slurm development, having written the very first port

to Cray systems back in 2010, for a new XE6 delivered

to the Centre in the the middle of that year [2]. Slurm

is now used site-wide at CSCS, across a wide selection

of systems including the flagship XE6 system and the

production MeteoCH machines. The release of the Cray

XC30 and CSCS’ intention to purchase such a system raised

the opportunity for further work on Slurm in order to port it

to this new architecture. First, there was the basic question

of if and how Slurm would work on the XC30. Then there

was the question of whether Slurm could make use of any

new features provided by Crays low-level system software.

Finally, we examined ways to improve the robustness and

functionality of Slurm, including on some of the smaller

non-Cray clusters.

II. PORT OF SLURM TO THE XC30

A. Basic BASIL v1.2 Interface

On Cray systems Slurm, as with all third-party resource

managers, is currently layered on top of Cray’s own prim-

itive resource management software, namely the Applica-

tion Level Placement Scheduler (ALPS). Communication

between ALPS and any third-party resource manager is

handled via the Batch Application Scheduler Interface Layer

(BASIL) which provides an XML-based interface for such.

In the past Slurm was written for use with earlier versions

of BASIL (e.g. version 1.2) on CSCS’ various Cray sys-

tems such as the XT5, XE6, XK6 and XK7. Beginning

with the XC30, BASIL had been enhanced to version 1.3.

Fortunately, due to the continued backwards compatibility

of BASIL, the existing v2.5 Slurm code base needed only

a very minor update (by the addition of the new version

number of ALPS/BASIL) in order to work.

At this point, Slurm was essentially working on the new

2256-node XC30 system. However a peculiar issue became

exposed, namely that jobs were somehow limited to a size

of 2047 nodes. The problem was discovered when running a

test job in which over 2100 nodes was allocated. Strangely it

was observed that from within the allocation a simple aprun

using only a few processes worked. However, when attempt-

ing to execute aprun using the full allocation, ALPS reported

that the request had exceeded the allocation. Checking the

Slurm job allocation and the ALPS reservation identified

that ALPS reported it had only a small subset of the nodes

originally requested while Slurm was erroneously reporting

that it had all of them. Further investigation revealed that the

number of nodes in the ALPS reservation was exactly N mod

2047, where N is the number of nodes requested. It should

be noted here that each node on the system in question

contains 32 processors. Knowing that and the limit at which

the problem occurs, it was observed that this problem was

appearing at a power-of-two boundary, notably 65,536. This,

of course, happens to be the limit on a 16-bit integer.

Given that ALPS/BASIL was able to allocate more than

2047 nodes per job when issuing the XML request directly

(without the resource manager), it was suspected that Slurm

had passed some faulty information in its request. Indeed,

our experience has shown that the first place to start when

debugging problems of this type on Cray systems is to

analyse the coherency of the XML passing between Slurm

and apbasil. In the past this was a tedious process so

we developed a convenient debugging feature, included in

all versions since v2.4.0-pre4, which prints all outgoing

XML messages from Slurm. Debugging can be turned on

by setting the environment variable XML_LOG to yes. With

this set, the output is written to the slurmctld.log but

this can be changed by using the XML_LOG_LOC variable

to specify a different file.

Hence, with XML debugging turned on, it was easy

to confirm our suspicions that Slurm was indeed passing

erroneous XML data to apbasil. For example, for a job

request of 2050 nodes, Slurm would specify the complete

list of nodes that it wanted correctly, but would state the

number of nodes to be only three.

Investigation of the code revealed that the value used by

Slurm for the count of the number of nodes was based

upon a value representing the sum of the processors on

each of the requested nodes and that this variable was

declared as a 16-bit type. Therefore, the problem can be

more correctly described as being a function of the number

of requested processors and, hence, if each node contained

only 16 processors, the node limit would have been reached

at a higher node count and conversely if each node contained

48 processors it would have been reached at a lower node

count. Apparently this was a throwback to when the Cray

systems using Slurm were smaller and this variable had

been sufficient to hold the maximum number of processors

available on those systems. With the simple change to a

larger type, the problem was resolved and this patch is

included in Slurm from v2.5.5.

B. New BASIL v1.3 Interface

With Slurm v2.5 successfully working on the XC30 using

the pre-existing BASIL 1.2 protocol, the next phase of the

work was to modify Slurm to utilize the new BASIL 1.3

protocol instead. This work involved essentially two types

of modifications. The first was to simply modify the parts

of the existing Slurm code-base necessary to communicate

with BASIL using the 1.3 protocol. The second, and more

involved set of modifications, is to enhance Slurm to take

advantage of any new BASIL features that could be of use.

This means first identifying which features are relevant to

Slurm.

The first major change to the BASIL interface, which

impacts the first phase of this work, was the restructuring of

the XML element hierarchy on the QUERY(INVENTORY)

response [3]. With version 1.3, two new components were

inserted, namely sockets and compute units. In turn each of

these has two element types, namely a basic element type

and then an array of that type: Socket, SocketArray,

ComputeUnit, and ComputeUnitArray. Essentially,

these changes provide extra, finer-grained detail on the hard-

ware layout. The ComputeUnit logically consists of pro-

cessors and there can be one or more ComputeUnits per

segment. Therefore, the ComputeUnitArray is now

the direct child of a segment and the ProcessorArray

element has been moved down the hierarchy to be a direct

child of the ComputeUnit.

The introduction of ComputeUnits to the hierarchy also

came with the addition of a new attribute to the RESERVE

method’s ReserveParam, nppcu, which represents the

number of processors per compute unit. The intuitive mean-

ing of this new attribute is that the selected compute units

must have at least this number of processors. A value of 0

means to ignore this and thus allow any compute unit to be

eligible, which is the default if no value is specified.

In the initial modification of Slurm for BASIL 1.3, this

new attribute was added but was always assigned the default

value of 0. Thus, Slurm had it as a placeholder for future use

and in fact we implemented it as part of the second phase

of work on BASIL 1.3 support (more on this below).

Furthermore, sockets consist of segments and there

can be one or more sockets per node. Therefore, the

SegmentArray has been moved down from the Node

element to the Socket element. The SocketArray is

now the child element of the Node element. The addition

of Socket elements also comes with the placement of

the architecture and clock_mhz attributes on this

level. The values provided here apply to all Processor

elements contained therein (thereby reducing the message

size somewhat). According to BASIL 1.3 documentation [3],

a consequence of there now being multiple segment arrays

per node is that with reservation requests we must compute

the segment’s absolute (per node) id, as it otherwise would

not necessarily be unique. This change, however, does not

affect Slurm as it never specifies segments in its reservation

requests.

C. New BASIL v1.3 Features

With the basic BASIL 1.3 support completed, it was

then time to explore the second phase, namely enhancing

Slurm to take advantage of new BASIL v1.3 features. There

appeared to be two further major changes to the BASIL

interface.

1) Introduction of nppcu: One of these features, as

previously described, was the introduction of the nppcu (i.e.

the number of processors per compute unit) attribute in the

QUERY(RESERVE) method. The basic idea is that through

the use of this option, the user, via the resource management

system, can specify how many of the processors on each

core that ALPS should consider when scheduling jobs. For

reasons of backwards compatibility, Cray made the default

0 which is a flag stating to use all processors. This option

corresponds to the -j0 option of aprun. Synchronisation

of the behaviour of Slurm and ALPS with respect to this new

feature was specifically seen as advantageous for the wider

user community and hence we were requested to implement

the new functionality.

A number of changes were made to fully realize

this feature. First, the do_basil_reserve function

in basil_interface.c (select/cray plugin) had to

be modified to check whether the slurm.conf option,

CR_ONE_TASK_PER_CORE was used. If it were, we would

now set the value of nppcu in the QUERY(RESERVE)

2

request to 1. In addition, do_basil_reserve was mod-

ified to check to see whether the user had used the job

submission option ntasks-per-core. If this value was

used, it was to take precedence over the potential use of

CR_ONE_TASK_PER_CORE in the slurm.conf. These

first two changes were relatively simple and straightforward,

the addition of a couple new variables and if-statements

along with the passing of the value down the function

call tree to the appropriate functions and making minor

adjustments to those functions to use this new value.

This was all fine for merely setting the XML tag of

nppcu=... to some specific value; however, this then

had ramifications and thus started a process of finding

and fixing collateral issues. The first such issue was that

Slurm must pass the mppwidth as part of the reservation

request to ALPS/BASIL. This value, corresponds to the

number of processors in the overall allocation. Since Slurm

computes this value by simply going through each node of

the allocation and summing up the number of CPU’s it has

and now that the number of processors available per node

had been reduced, two things had to change. First, in the

loop that performs the summation, a few lines of code had

to be added to adjust the value reported for the number of

processors available on the node to reflect what was “visible”

due to use of the the nppcu option. Second, the spot in the

Slurm code where the number of nodes, itself, is determined

had to be changed. In other words, both the correct number

of processors per node and the correct number of nodes,

itself, both had to be computed. If either of these items

were not corrected, one or more values would be incorrect.

Either the total width would be wrong and/or the number of

nodes. One such case would arise if the user had specified

some number of tasks, via the --ntasks option. Slurm

would compute the number of nodes based upon this and

its knowledge of the node layout. However, in this case it

would think it had more processors and would thus need

less nodes; thereby, creating a shorter list of nodes. Yet, the

nppcu option would now notify ALPS of the correct view

of the nodes and hence the two would not match.

Another problem that arose due to the use of the nppcu

value came to be known internally as the Malformed Job

Problem. This was the case where the user had submitted

a job that was requesting a number of processors per node

somewhere between the actual absolute maximum of the

node and what was actually visible due to the use of nppcu.

As its value wasn’t above the real maximum of the node,

it wasn’t considered an error by Slurm but because it was

greater than the value that could be seen (due to the nppcu

value), this job couldn’t run. When Slurm scheduled the

job to run and therefore submitted to ALPS, ALPS would

correctly report an error and then Slurm would get caught

in a perpetual cycle of trying to periodically schedule the

job. This in turn would cause the backfill scheduler to grind

to a halt and no jobs would be run.

The solution to this problem was to find the spots in the

code where Slurm had performed the basic “runnable” tests

and again, just as before, adjust some of the values being

used according to the nppcu value. It involved tracking

down in the code not only where Slurm computes what it

believes is the number of nodes required by the job but also

adding various utility functions to return the correct value to

use for several related items such as the number of hardware

threads or the number of tasks per core, etc.

The _job_test and _job_test_topo functions are

two of the key spots in Slurm where it computes some

of these values. These functions are specific to the node

selection plugin being used. As the Slurm plugin for Cray

systems is layered on top of the select/linear plugin, it

was the version of these functions in that plugin that

required modification. Here, wherever there were calls to

_get_total_cpus, these got expanded to include the

use of three other adjustment functions in order to correctly

compute the value required. Still, other changes were made.

For instance, the function slurm_get_avail_procs

was completely rewritten as it was found to apparently

contain almost completely unused code. What code was used

did not compute what was needed and thus it was greatly

simplified and new computations were added to it.

Yet another side-effect of the implementation of nppcu,

was that squeue would not report the correct value for the

number of nodes for pending jobs. Given that job priority

favours large jobs, there was some concern that, possibly,

this could mean that the job’s priority could be affected.

However, simple tests quickly proved that this was not the

case and rather it was just a “cosmetic” bug. The specific

symptom of the problem was that for pending jobs that were

using an nppcu value of 1 (on our system where there

are two processors per core), we would see exactly half the

number of nodes expected. As could be deduced from the

fact that this ratio is precisely the same as the number of

processors visible versus the total number on the node, this

was clearly a result of the new nppcu functionality.

When executed, the squeue command issues a request

to the Slurm controller for information on the job or set of

jobs that it was asked for. Amongst the information is the

number of processors of the job and the number of allocated

nodes. As no nodes are allocated yet for a pending job,

Slurm estimates what this should be based upon the number

of processors to be used (this value having already been

set). It then performs some basic arithmetic based upon this

value and the largest number of processors per node of any

node in the system (which for our purposes was always the

same). Obviously, this came down to the same problem as

before where the total value of processors per node needed

to be adjusted. Thus, another patch was made to fix this.

All the above functionality, including the various patches,

will be in Slurm v2.6.

3

2) Investigation of the new QUERY(SUMMARY) feature:

The second new feature in BASIL 1.3 we examined was

the new QUERY(SUMMARY) request. The purpose of this

new request is to try to reduce the amount of overhead

incurred by constantly calling QUERY(INVENTORY) when

only a few items within that query’s response may have

changed. As deadlines were rapidly approaching and there

were several other significant work items to handle, only a

cursory and very preliminary look was taken of this new

feature, with mixed results.

3) Implementation Details: First and foremost it had to

be decided how to implement the use of the new feature

within Slurm. Cray’s suggested use model is essentially

to only perform a full inventory when necessary, that is,

first perform the INVENTORY and thereafter only perform

SUMMARY requests unless some non-scheduler changes have

occurred. That is, there is a change in the difference between

the changecount and schedchangecount attributes.

However, this immediately raises some problems for its

use within the existing Slurm code base because when Slurm

calls the QUERY(INVENTORY) method, it uses not only the

node information (regarding which nodes are up and which

are down) but also the job reservation information. With the

latter information Slurm compares those jobs it has a record

of to those reported by ALPS. If Slurm detects that there are

ALPS job reservations for which there are no corresponding

records in Slurm, these are termed orphan jobs and Slurm

requests their release in order to free up their resources for

legitimate jobs to use. Although not a frequent occurrence,

orphan jobs do happen often enough to warrant some level

of synchronization between Slurm and ALPS and, without

this, there could certainly be situations where legitimate jobs

are held up from being scheduled due to resources being

erroneously marked as allocated by ALPS. Hence we felt

that a good resource manager should be able to detect this

situation and free the resources for reuse. At the same time,

we still wanted to make a “quick try” of this new feature.

Therefore, we opted for a hybrid approach where we would

still occasionally call the INVENTORY method but would

replace a subset of those calls with the SUMMARY method.

With the hybrid approach in mind, the first thing to do

was to analyze the existing code to see what is calling

the INVENTORY method and what sort of data Slurm is

extracting from it. The function that issues the INVENTORY

request in Slurm is get_full_inventory. The call

tree, mapping out all of the different paths to this func-

tion, is a bit complex. However, tracing showed that the

two most frequent paths to it were through the functions

_attempt_backfill and schedule. The former is

called during the process of scheduling a job and the latter

is a periodic check that Slurm performs to keep in sync with

the ALPS system.

It was concluded that the logical place then to try to

retrofit the QUERY(SUMMARY) would be in the schedule

call-path as Slurm should certainly continue to check the

state of the ALPS reservations before actually trying to back-

fill jobs. Here even, choices exist as to how it should be done.

For instance, one possibility was to call QUERY(SUMMARY)

for x number of times and then follow it with the next query,

namely the traditional INVENTORY, and then repeating x

number of SUMMARY calls. In this way, Slurm could still

check the state of the ALPS reservations versus that of its

own but simply would not perform it as often, thereby saving

time. In the end, for simplicity and since this was just a

quick proof-of-concept, the call path (from schedule) was

modified to always call the SUMMARY method and if, in

the rare event as Cray described, it found there was a state

change then it would call the INVENTORY method. This

seemed to be both the simpler approach and whatever gains

it would have should be more significant.

The slightly tricky part at this juncture was to have a

way to distinguish between the different callers. As men-

tioned, the call tree is a bit convoluted and between these

“callers” and the function of interest lay several layers of

functions including one “indirect” function call via a plugin

(Slurm plugins are implemented as calls to functions within

dynamically loaded libraries). There are various ways of

handling this and perhaps a preferred way. Indeed, if this

were to be implemented in production and had adequate

time for development and testing, it would probably be best

to split the schedule function call-tree completely out into

a separate tree so there would be no need to make any

distinction at all. However, in the interests of expediency

and simplicity, it was decided to retain the existing call-

tree. In order to do this and in order to not have to modify

numerous function interfaces, we used the crude and simple

technique of having a global variable that each “caller”

function would apply a particular mask to. When the target

function would be reached, it would be able to check this

variable to see which function (or functions) had called it.

Thus if the schedule function was determined to be the caller,

it would call the QUERY(SUMMARY) method instead of the

QUERY(INVENTORY).

Another tricky point for integrating this new query with

the existing Slurm code is the addition of a new XML

element with a tag of Accelerator in the response to the

QUERY(SUMMARY). A tag with an identical name already

exists in the response to the QUERY(INVENTORY) method

but at a different level of the XML tree. The current code

is designed to perform a simple lookup of a tag in a table;

thus, the first entry would be hit and not the second. Each

of these table entries has amongst its data, a field called

depth which corresponds to the depth, in the XML tree,

at which the given tag is expected. The code then uses

this to see if the tag has occurred at the correct level. If

not, it the XML response is considered faulty and an error

ensues. Thus, a basic hack had to be put into place to

circumvent this test for this given tag. This included having

4

a variable set (another static global) upon encountering of

the AcceleratorSummary tag. This would indicate that

upon encountering the next Accelerator tag, that it would be

the second type of accelerator.
4) Testing: Once the code was modified to use the new

query, we wanted to test it somehow. Again, due to time

constraints and workload, we did not create a comprehensive

nor thorough test suite. We simply timed how long each

of the BASIL queries took to obtain a very rough idea of

relative performance.

This implied adding timers to the code so that we could

obtain the required information. In this respect, the structure

of the existing code was very beneficial as there was a

single spot where all communication to/from BASIL occurs.

Hence, we could place timers in this location and receive

timing information for all BASIL methods. Furthermore, as

Slurm already takes timings for other purposes and in other

parts of the code we were able to use this existing code for

our purposes.

In Slurm, there are three preprocessor aliases defined that

one uses for timings:

• DEF_TIMER

• START_TIMER

• END_TIMER

The first simply defines the appropriate timeval vari-

ables, which is a structure from the standard sys/time.h

header, and a string. The START_TIMER just calls the stan-

dard gettimeofday function with the first variable. The

END_TIMER does the same with second variable but also

calls a Slurm-defined utility function that finds the difference

of the two time variables and creates the appropriate string

representing this. Thus, the usage model is simply to place

the DEF_TIMER where needed and in this case we placed

it at the top of the function handling all BASIL requests.

Then we placed the START_TIMER before any of the work

of the function was started and the END_TIMER at the end,

thereby timing the entire process of writing out the request

and receiving and parsing the response. The resultant timer

string along with the query type was then written to the

standard Slurm log-files for later retrieval and analysis.

The resultant data consisted of a set of times for each

method which was then averaged to find the method’s

average performance. Had there been more time available

it would have been beneficial to define more thorough test

suites and to work out a few peculiarities in the gathering

of the information, but even so we can obtain an idea of the

relative performance of each method in a few different situ-

ations. Specifically, we used basic tests included submitting

large numbers of jobs (from between ∼500 and ∼1500) of

various sizes (i.e. numbers of nodes) and wall-clock times

on both a small and large system. The small system consists

of a mere eight nodes whereas the large system consists of

2256 nodes. A simple script was used to help generate a set

of tests with sizes varying from a single node up through the

Figure 1. Method timings for 8-node TDS.

full size of the system with varied job wall-clock times. The

tests on the larger system took place while other users were

trying to run various application-level tests as well. Hence

we had to keep the wall-clock times of each job very short

(less than a minute) so one caveat is that this may not have

been the ideal way to test how backfilling in Slurm would

change with the use of the SUMMARY method; that itself

would be another future test to perform.

As can be seen from Figure 1, on the smaller sys-

tem performance gains seemed relatively negligible. The

INVENTORY method on average appears to take roughly 48

milliseconds whereas the SUMMARY took 44 milliseconds.

Thus, the SUMMARY was taking just over 90% of the time

that INVENTORY took. This is a respectable improvement

but then something interesting was observed.

It appears that as the system settled down to a idle state

Figure 2. Idle vs Busy timings for the SUMMARY and INVENTORY

methods on the 8-node TDS.

5

Figure 3. Method timings for the 2256-node system.

after the tests that the INVENTORY actually, on average,

began to improve dramatically against the SUMMARY (see

Figure 2). It is conceivable that this makes sense since, on

a system as small as this, the INVENTORY response is not

nearly as large to begin with. More importantly, regardless

of the system size, if there are no jobs running, there will

be no reservation information in the INVENTORY response

and much less work for Slurm to do in the processing of this

request. It should be noted that the RESERVE, CONFIRM

and RELEASE methods ranged from 185 to 242 milliseconds

and hence on a small system such as this, when the system is

heavily used, the minor improvements gained by using the

SUMMARY versus the INVENTORY will be overshadowed

by the long times spent reserving, confirming and releasing

jobs. More testing should be done to confirm this.

For the large system there was a significant difference in

the length of time spent by the SUMMARY method as opposed

to the INVENTORY (see Figure 3). Whereas the average

INVENTORY run took over 201 milliseconds, the SUMMARY

method on average was just under 29 milliseconds, an order

of magnitude improvement! This is indeed a tremendous

speed up but, as noted above, we are not receiving the

reservation information and hence are not performing any

sort of sync check between Slurm and ALPS jobs when

issuing the SUMMARY RPC. It is also important to note

that, as in the case of the smaller system, the RESERVE,

CONFIRM and RELEASE methods still take far longer than

the SUMMARY and although are not called as frequently

(they are not called periodically but only when reserving or

releasing a job) on a heavily job-laden production system,

their number of invocations will be dramatically higher and

hence consume a larger proportion of Slurm’s run-time.

Specifically the RESERVE and RELEASE methods each

took roughly 108 and 107 milliseconds, i.e. over 3.5 times

that of the SUMMARY so that it appears that, as on the small

system, the INVENTORY does not appear to be the real

bottleneck.

Furthermore, the times spent in the CONFIRM method

were also significantly longer still. However, between a run

where the Slurm code used only INVENTORY and another

where both INVENTORY and SUMMARY were used there

was a major discrepancy. In the former, CONFIRM took

on average roughly 294 milliseconds but in the latter it

took roughly 497 milliseconds. Therefore it would be useful

to rerun these tests several more times to gather more

data. Regardless, these results again illustrate that overall

this method takes significantly longer than INVENTORY

and hence will dominate it in terms of being a potential

bottleneck.

Another test we conducted on the large system was to

measure the times of the various methods when the Slurm

controller was being run on an external login node of the

system (see Figure 4). Implementation details of how we

managed to run the slurmctld remotely can be found

in the next section and involved some minor middleware

between the remote slurmctld and apbasil. For now

let us consider the results of these tests. As one may expect,

the performance of all methods dramatically slowed, taking

in the region of hundreds of milliseconds, most likely due to

network latency and the added communication through the

intermediary middleware.

Specifically the RESERVE and RELEASE took on aver-

age around 650 milliseconds and the INVENTORY roughly

785 milliseconds. The SUMMARY, with an average of

roughly 592 milliseconds, was approximately 25% faster

than INVENTORY. Still a significant improvement but far

less than the order-of-magnitude improvement seen when

the slurmctld was running on the main system.

In summary, the results of this exploratory work on the

use of the SUMMARY method are somewhat mixed. On

the one hand, it does demonstrate that the new method

Figure 4. Method timings for the 2256-node system using a remote
slurmctld.

6

provides significant improvements over INVENTORY for

certain types of tests (albeit these tests were by no means

exhaustive). There could be other metrics to use to compare

these methods including the total number of jobs able to

be backfilled in one version versus the other or their effect

on the responsiveness of Slurm. Furthermore, the actual

functionality of the SUMMARY method, as both stated in

the documentation and observed in use, shows that it does

not provide all, but only some, of the same information as

INVENTORY in a compact form. Of course, as previously

stated, this raises the question of whether Slurm really

needs to check the full system INVENTORY as often as

it does. However, that would be the subject of a different

investigation and for now Slurm does need the additional

information and so the new SUMMARY method has inherent

limitations in its use. Perhaps it would be more useful if there

were a corresponding QUERY(RESVSUMMARY) or similar

method that would provide a compact summary of the job

allocations. The original motivation for the new SUMMARY

method, namely the burgeoning size of the INVENTORY as

systems continue to grow in size, and the associated potential

speedup mean that it does merit further testing.

III. DECOUPLING SLURM FROM THE MAIN XC30

SYSTEM

Although not necessary for Slurm to function and not nec-

essarily particular to the XC30, one sub-project was to ex-

plore the use of running the Slurm controller (slurmctld)

on an external login (esLogin) node of the system. This

would serve to free up some resources on the service nodes

of the system and more importantly, result in increasing the

resiliency of the Slurm environment. That is, should the main

system go down, Slurm’s controller could remain up and

present the user with a consistent experience. Although users

would obviously not be able to run jobs, they would be at

least able to submit them and see the state of the system

through Slurm.

The current state of the this work is ongoing but sig-

nificant progress has been made. The slurmctld can be

started and will remain up both as a secondary and even as a

primary controller on the external login node. It can schedule

jobs and function just as if it were running on the primary

system. However, more testing and possible enhancements

need to be made for the case when the real system goes

down.

In order to enable the slurmctld to execute remotely,

various minor adjustments had to be made, from a system

administration perspective, such as specifying fully qualified

DNS names of the nodes that will be the front-ends. More

importantly, any configuration option that involved a specific

path needed to be checked to see if it would still make

sense. This meant that the location of such things as the log

file or the pid file could be different but more importantly

that the state file directory must be mounted on both the

external logins and the front-end nodes so that there would

be a consistent state between the controller and the Slurm

daemons.

Once all of these relatively minor tweaks were made

the next major hurdle was to enable the Slurm controller

to call the apbasil command on the main system, in

order to communicate with ALPS. Since the command is

not present on the external login nodes, we considered

a number of solutions but in the end we opted to write

a small, relatively simple C-program of a few hundred

lines of code that acts as a conduit for communication

between the remote Slurm controller and apbasil on the

main system. Initially a script was used but there were

difficulties in being able to read the resultant response and so

a compiled program seemed the better approach. For some

parts of the intermediary apbasil, we were even able to

use pieces of existing Slurm code, notably the popen2 and

supporting functions that Slurm uses to create its own pipe

with apbasil.

Once finished, this apbasil was placed on the external

login node and since Slurm has a configuration file called

cray.conf, which is used to specify any settings for various

Cray programs that may be in non-default locations (usually

used for emulated systems but proves very useful in this

case as well), we were able to specify the the location of

the new apbasil command on the esLogin node. Thus,

this intermediary is specified and Slurm communicates with

it as if it were the normal apbasil. For its part, the

intermediary apbasil simply reads in an XML request

from the slurmctld and then opens an ssh connection,

via a pipe, to the real system and runs the apbasil from

the real system, in the process writing the XML request that

it had received to the pipe. Then it reads the XML response

from the pipe and writes it as output which is then read by

the Slurm controller itself on its pipe.

Now that we have the remote functionality working, we

can now experiment to see what, if anything, needs to be

modified to handle the case when the main system goes

down. Also, a similar work item is to enable salloc to always

function from the external login nodes. This already appears

to sometimes work so it may be more of a matter of setting

up the environment in just the right way.

IV. NEW TASK AFFINITY SPANK MODULE

In an attempt to prepare users for the XC30 system in the

months leading up to its delivery, a small non-Cray Cluster

was set up. Although it was not a Cray system and had a

different interconnect (InfiniBand with a fully on-blocking

fat tree topology rather than the Cray Aries with Dragonfly

topology) the nodes had the same 2.60GHz Intel Xeon E5-

2670 processors. As with the eventual real XC30, the test

system’s nodes contained a 2×8×2 configuration where 2

is the number of sockets and 8 is the number of cores per

7

socket and the final 2 is the number of hardware threads per

core.

Being a non-Cray system there were two general differ-

ences with regard to jobs and scheduling that had to be

addressed in order to make this system a viable testbed for

the XC30. First, resources could be consumed on a sub-node

basis and secondly, the order and nature in which software

threads were bound was different from the XC30.

The limiting of one job per node was straightforwardly

achieved by simply setting the Shared partition attribute

to EXCLUSIVE. However, in order to get the task bindings

to be set in a similar fashion to the Cray systems without

necessitating that the user compute and specify a specific

bit mask, it was decided that a new SPANK module would

be needed. SPANK, or Slurm Plugin Architecture for Node

and Job (K)Control, modules are yet another example of the

extensibility of Slurm. This mechanism allows the Slurm

administrator to stack one or more such modules and its

architecture provides a number of function interfaces that

the programmer/administrator can then provide an imple-

mentation for. These functions, if defined, are called at

various points in the Slurm logic during such tasks as job

launch, thereby allowing for modification of normal Slurm

behaviour. A typical use is to add some additional launch

options to a job which is precisely what our SPANK module

would be used for.

The idea was that all the user would need to do is add an

option to their srun command line requesting the special

binding and Slurm would handle all of the details. The

binding pattern itself was to be as follows:

• A unique fat mask is created for each task of each node

of the job;

• Each fat mask will have one processor per software

thread of the task;

• Each processor assigned to a given task will be “next”

to each other (i.e. in numerical order);

• No more than one processor per core will be used;

thereby effectively binding at the core level;

• Each task will be confined to one socket but there

can be more than one task per socket if they all can

completely fit;

• Any violation of this policy will cause the job to be

rejected and if arbitrary and eclectic bindings are re-

quired such as having some tasks spread across sockets

or others using multiple processors per core or over-

committing certain resources then the user must specify

this explicitly using the normal task/affinity masks.

As an example, given hardware that is 2×8×2 (2 sockets

× 8 cores-per-socket × 2 processors-per-core) and a job

with, say, 4 tasks and 3 threads-per-task then the binding

should be such that two tasks are placed on each socket

and there will be two unused cores on each socket. In other

words, binding always starts at the beginning of a socket,

filling that socket in terms of whole tasks without splitting

the task.

As a starting point for the work, the old auto-affinity

SPANK module written at LLNL was tested to see what sort

of binding it provided. Our testing showed that it did not use

the same pattern as we wished to have and included several

options that were unnecessary for our purposes. However,

it contained the general framework of how to write this

type of SPANK module. Therefore, we took this module

and stripped out all the options except for off, help and

(v)erbose and added on. Also we changed the default

behaviour, slightly, so that now it is off unless the user

specifies to use it. Then, finally most of the CPU mapping

logic was rewritten to match our desired functionality.

Building and installing the SPANK module is straight-

forward. The developer need only compile against the

spank.h, slurm.h and slurm_error.h header files

provided by Slurm. Note that the Slurm documentation

states that only spank.h is needed but because the original

SPANK module used several Slurm types and various Slurm

functions and we continue to use these, we also needed the

other two header files. Once compiled, the *.so is placed

in the .../lib directory of the Slurm installation and a

plugstack.conf file goes into the same directory as the

slurm.conf file. The contents of the plugstack.conf

file is simply a list of the SPANK modules to be used,

one per line, with each line stating whether the module is

required or not1.

From the user perspective, it is easy to use this default

binding pattern. All that need be included on their job-step

submission line (i.e. as part of the srun command line) is

the option --reduced-auto-affinity=on. Note that

here we see that this option appears to be merely another

native Slurm option for srun but, in fact, is processed by

the SPANK module. As an example, consider the following

example batch job-file (called job.sh):

#!/usr/bin/ksh

#SBATCH -n 4

#SBATCH -N 1

#SBATCH --cpus-per-task=4

#SBATCH --time=00:05:00

#SBATCH --output=autoaff-%J.out

#SBATCH --error=autoaff-%J.err

#SBATCH --partition=normal

export MV2_ENABLE_AFFINITY=0

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

srun --reduced-auto-affinity=on,v \

--cpu_bind=no ./myapp.exe

The command line for this would appear as follows:

1e.g. “required /slurm/2.5.4-pam/lib/reduced-auto-affinity.so”

8

$ sbatch job.sh

The above example would produce a job of a single node

with four tasks running on it. Given a 2×8×2 node layout

and the fact that each of our tasks is to have four threads,

we would have two tasks placed across the first socket and

the next two on the second socket. Each software thread, of

course, would be using only one processor per core.

This new task affinity SPANK plugin will likely be

included as part of the Slurm 2.6 release.

V. CONCLUSION

All in all, our experience with preparing Slurm for use

on the XC30 was a positive one. With the backwards

compatibility of BASIL, the core Slurm code needed little

modification to run on the new architecture. Through a

variety of sub-projects we were able to provide additional

functionality, such as the use of the new BASIL 1.3 feature

nppcu. We were also able to lay the groundwork for de-

coupling the Slurm controller from the main system and

provided XC30-like binding patterns, at relatively low-cost,

to some of our users of general-purpose clusters. Finally, we

had the opportunity to briefly explore the use of the new

QUERY(SUMMARY) method and so familiarize ourselves

with some potential difficulties and also benefits of its use.

ACKNOWLEDGMENT

Thanks to Moe Jette, Danny Auble and the rest of the

team at SchedMD for their continued support and feedback

on Slurm-related issues.

REFERENCES

[1] [Online]. Available: http://www.schedmd.com/

[2] G. Renker, N. Stringfellow, K. Howard, S. Alam, and S. Trofi-
noff, “Deploying SLURM on XT, XE, and Future Cray Sys-
tems,” Cray User Group Meeting, 2011.

[3] B. Landsteiner and C. Albing, “Cray BASIL 1.3 Specification,”
Unpublished Cray Proprietary Information, 2012.

9

