
Preparing Slurm for use on the Cray XC30
CUG 2013
Napa Valley, California
Stephen Trofinoff and Colin McMurtrie
Swiss National Supercomputing Centre (CSCS)

Agenda

 Port of Slurm to XC30 architecture
 New BASIL v1.3 Interface
 New BASIL v1.3 Features

•  nppcu
•  QUERY(SUMMARY)

 Decoupling Slurm from the XC30
 New Task Affinity SPANK plugin

2 © CSCS 2013 - Preparing Slurm for use on the Cray XC30

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 3

Slurm

A relatively “simple” open-source resource management system

Three primary SLURM objectives
1.  Allocate exclusive/non-exclusive access to resources to users
2.  Provide framework for starting, executing and monitoring of

work on these allocations
3.  Use queues to manage contention

We wrote the Cray port so that
  Slurm sits on top of Cray’s ALPS
  Uses the BASIL interface to communicate with ALPS
  BASIL is backwards compatible

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 4

Slurm on the XC30 – Initial Port

XC30 came with a new version of ALPS
  BASIL updated to v1.3

However out initial port was easy
  Took advantage of the backward compatibility
  Used the BASIL 1.2 interface
  Slurm only need modification to a couple of lines

Exposed a bug on the new 2256-node XC30
  Jobs limited to 2047 nodes in size
  Used Slurm XML debugging to help investigate

•  Created by CSCS in 2012 specifically to debug problems of
this type

  Result – simply too small a type for a variable
  Fixed – use 32-bit instead of 16-bit integer
  Patch included in Slurm v2.5.5

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 5

Slurm on the XC30 – New BASIL v1.3 Interface

New and restructured XML
  XML hierarchy in QUERY(INVENTORY)response reordered
  Two new components

•  Sockets!
•  Compute Units!

  Four new elements
•  SocketArray!
•  Socket!
•  ComputeUnitArray!
•  ComputeUnit!

  ProcessorArray moved down one level
•  Now below ComputeUnit!

  SegmentArray moved down one level
•  Now below Socket!

  Some attributes moved to different elements
  New nppcu (number of processors per compute unit) argument

to QUERY(RESERVE)!

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 6

New BASIL v1.3 Features – nppcu

Implementation of new nppcu feature
  nppcu = Number of Processors Per Compute Unit
  Argument to QUERY(RESERVE) request
  Corresponds to “-j” option to aprun!
  Controls a job’s “view” of the available processors
  CR_ONE_TASK_PER_CORE in slurm.conf !

•  Implies nppcu = 1
  --ntasks-per-core job option overrides any default
  Default of 0 (if not using above slurm.conf setting)

•  0 indicates to ignore and use all processors
  Code changes

•  Added CR_ONE_TASK_PER_CORE check
•  Added ntasks-per-core check
•  Adjustment of calculation of number of nodes
•  Adjusted mppwidth!

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 7

New BASIL v1.3 Features – nppcu (cont.)

Malformed Job Problem
  Required number of processors per node between nppcu and

actual node limit
  Job would “slip through the cracks”

•  ALPS can’t run the job
•  Slurm doesn’t flag them as illegal
•  Slurm backfiller would grind to a halt

  Fix
•  Rewrote one internal Slurm function
•  Adjusted values used for error check
•  Problem solved!

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 8

New BASIL v1.3 Features – nppcu (cont.)

squeue reports wrong number of nodes for pending jobs
  Also due to new nppcu functionality
  Testing showed this to be a cosmetic bug
  slurmctld returns

•  number of allocated nodes
•  total number of CPUs (npcus)

  Pending jobs have no “allocated” nodes yet
  Code estimated number of nodes by computing

•  ncpus/(max CPUs per node)
  Fix

•  Added similar nppcu-based adjustments
•  Problem solved!

  nppcu functionality (including bug fixes) will be in Slurm v2.6

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 9

New BASIL v1.3 Features – QUERY(SUMMARY) !

New QUERY(SUMMARY) method
  Attempts to reduce overhead of ever-larger inventory responses
  Provides compact listing of

•  Up/down nodes
•  Up/down accelerators

  Cray’s suggested use model
•  Call Inventory at startup
•  Subsequently only call Summary unless state changes
•  If a state change is detected, call full Inventory!

  Problem: Does NOT provide job reservation information
•  Slurm uses reservation info from Inventory as well
•  Any job found in ALPS and NOT in Slurm is “orphan”
•  Slurm requests release of “orphan” jobs
•  No check => potential waste of resources

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 10

New BASIL v1.3 Features – QUERY(SUMMARY)(cont.) !

Despite limitations we decided to explore possible use anyhow
  Suggested use

1.  Could simply ignore potential “orphans” = bad idea
2.  Could call: Inventory 1x, Summary Nx, Inventory 1x, …
3.  Could replace a certain subset of Inventory calls with

Summary !
  Decided to try Option 3

•  Simplicity
•  Time constraints

  Searched code for call paths to Inventory invocation
  Multiple callers identified
  However tracing showed two most common paths

1.  _attempt_backfill – Called when scheduling a job
2.  schedule – Periodically called

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 11

New BASIL v1.3 Features – QUERY(SUMMARY)(cont.) !

Resource manager should synchronise before placing new job
  Therefore, we chose the schedule path
  Had to distinguish between callers at Inventory invocation

•  Due to time constraints, crude hack performed
  Apply a mask to a global variable

  Use of new XML Accelerator element tag caused some minor
issues
•  Another crude hack used

  Set static global variable

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 12

New BASIL v1.3 Features – QUERY(SUMMARY)(cont.) !

Only had time for simple tests
  Used Slurm timing macros to time each BASIL request
  Provided a very rough idea of relative performance
  Timers use standard gettimeofday system functions
  Ran between 500 and 1500 jobs

•  Various sizes
•  Various wall-clock times

  Ran on both small 8-node and larger 2256-node systems

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 13

New BASIL v1.3 Features – QUERY(SUMMARY)(cont.) !
Results for 8-node system
  If system idle, Inventory time approached Summary!
  Could be simply on small system, less info in Inventory!
  Could be that no reservations means less work for Inventory!

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 14

New BASIL v1.3 Features – QUERY(SUMMARY)(cont.) !
Results for 2256-node system
  slurmctld on-system
  Summary takes much less time than Inventory!
  Confirm takes much longer than Inventory!
  Reserve and Release take much longer than Summary !

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 15

New BASIL v1.3 Features – QUERY(SUMMARY)(cont.) !
Results for 2256-node system
  Slurmctld off-system
  All requests now take hundreds of milliseconds

•  Network latency and middleware apbasil!

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 16

New BASIL v1.3 Features – QUERY(SUMMARY)(cont.) !
QUERY(SUMMARY) conclusions
  Results a bit mixed
  Does not provide all the functionality of Inventory!
  Appears to dramatically reduce time consumed by Inventory!

•  Needs more in-depth analysis
•  Potential speed up would warrant some further exploration

  Tricky to implement
  Would be nice to have a complimentary method such as

QUERY(RESVSUMMARY)!

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 17

Decoupling Slurm from the XC30!
Goals
  Attempt to free up frontend resources

•  On-system these are selected Service Nodes
  Slurm stays up when the main system is down

•  Presents persistent interface to users
•  Users will already be using esLogin nodes which are also

decoupled from the main system

Relatively easy to implement
  Fully qualify DNS names in the slurm.conf!
  Various paths in slurm.conf had to be checked to see if they

made sense
  Same state directory must be mounted

•  On the esLogin nodes
•  On XC30 service nodes where daemons run

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 18

Decoupling Slurm from the XC30 (cont.)!
Most significant change
  Needed to write intermediary apbasil to pass communication

between remote slurmctld and apbasil on main system
•  Relatively small
•  Currently a few hundred lines of C code
•  Able to reuse some of the Slurm pipe code (popen2)

  Work is on-going
•  Need to confirm persistence of interface when main system

goes down

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 19

New Task Affinity SPANK plugin!
Slurm provides an elegant interface to enhance functionality
  Slurm Plugin Architecture for Node and Job (K)control or SPANK
  Plugins are stackable and easy to administer
  Easy API

Internal request from User Support
  Wanted similar task affinity mappings as ALPS provides
  Slurm can use affinity masks but these deemed unsuitable
  Created new affinity module

•  Based on an older one from LLNL

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 20

New Task Affinity SPANK plugin (cont.)!
New reduced-auto-affinity module has the following binding
pattern
  Unique fat mask for each task of each node of a job
  Each fat mask has one processor per software thread of the task
  Each processor assigned to a task will be adjacent to each other
  Only one processor per core used

•  Effectively binding at core level
  Each task confined to one socket
  Multiple tasks can share a socket if all of them completely fit
  Any violation of this policy causes job to be rejected

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 21

New Task Affinity SPANK plugin (cont.)!
Example of use:
  Given a 2x8x2 node layout
  Create a batch job file (job.sh) as follows:

#!/usr/bin/ksh!
#SBATCH --n 4!
#SBATCH --N 1!
#SBATCH --cpus-per-task=4!

srun --reduced-auto-affinity=on,v --cpu_bind=no my.exe !

  To run the command line would simply be:
$ sbatch job.sh!

Q&A

© CSCS 2013 22

E-mail: trofinoff@cscs.ch
 colin@cscs.ch

