
Preparing Slurm for use on the Cray XC30
CUG 2013
Napa Valley, California
Stephen Trofinoff and Colin McMurtrie
Swiss National Supercomputing Centre (CSCS)

Agenda

 Port of Slurm to XC30 architecture
 New BASIL v1.3 Interface
 New BASIL v1.3 Features

•  nppcu
•  QUERY(SUMMARY)

 Decoupling Slurm from the XC30
 New Task Affinity SPANK plugin

2 © CSCS 2013 - Preparing Slurm for use on the Cray XC30

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 3

Slurm

A relatively “simple” open-source resource management system

Three primary SLURM objectives
1.  Allocate exclusive/non-exclusive access to resources to users
2.  Provide framework for starting, executing and monitoring of

work on these allocations
3.  Use queues to manage contention

We wrote the Cray port so that
  Slurm sits on top of Cray’s ALPS
  Uses the BASIL interface to communicate with ALPS
  BASIL is backwards compatible

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 4

Slurm on the XC30 – Initial Port

XC30 came with a new version of ALPS
  BASIL updated to v1.3

However out initial port was easy
  Took advantage of the backward compatibility
  Used the BASIL 1.2 interface
  Slurm only need modification to a couple of lines

Exposed a bug on the new 2256-node XC30
  Jobs limited to 2047 nodes in size
  Used Slurm XML debugging to help investigate

•  Created by CSCS in 2012 specifically to debug problems of
this type

  Result – simply too small a type for a variable
  Fixed – use 32-bit instead of 16-bit integer
  Patch included in Slurm v2.5.5

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 5

Slurm on the XC30 – New BASIL v1.3 Interface

New and restructured XML
  XML hierarchy in QUERY(INVENTORY)response reordered
  Two new components

•  Sockets!
•  Compute Units!

  Four new elements
•  SocketArray!
•  Socket!
•  ComputeUnitArray!
•  ComputeUnit!

  ProcessorArray moved down one level
•  Now below ComputeUnit!

  SegmentArray moved down one level
•  Now below Socket!

  Some attributes moved to different elements
  New nppcu (number of processors per compute unit) argument

to QUERY(RESERVE)!

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 6

New BASIL v1.3 Features – nppcu

Implementation of new nppcu feature
  nppcu = Number of Processors Per Compute Unit
  Argument to QUERY(RESERVE) request
  Corresponds to “-j” option to aprun!
  Controls a job’s “view” of the available processors
  CR_ONE_TASK_PER_CORE in slurm.conf !

•  Implies nppcu = 1
  --ntasks-per-core job option overrides any default
  Default of 0 (if not using above slurm.conf setting)

•  0 indicates to ignore and use all processors
  Code changes

•  Added CR_ONE_TASK_PER_CORE check
•  Added ntasks-per-core check
•  Adjustment of calculation of number of nodes
•  Adjusted mppwidth!

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 7

New BASIL v1.3 Features – nppcu (cont.)

Malformed Job Problem
  Required number of processors per node between nppcu and

actual node limit
  Job would “slip through the cracks”

•  ALPS can’t run the job
•  Slurm doesn’t flag them as illegal
•  Slurm backfiller would grind to a halt

  Fix
•  Rewrote one internal Slurm function
•  Adjusted values used for error check
•  Problem solved!

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 8

New BASIL v1.3 Features – nppcu (cont.)

squeue reports wrong number of nodes for pending jobs
  Also due to new nppcu functionality
  Testing showed this to be a cosmetic bug
  slurmctld returns

•  number of allocated nodes
•  total number of CPUs (npcus)

  Pending jobs have no “allocated” nodes yet
  Code estimated number of nodes by computing

•  ncpus/(max CPUs per node)
  Fix

•  Added similar nppcu-based adjustments
•  Problem solved!

  nppcu functionality (including bug fixes) will be in Slurm v2.6

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 9

New BASIL v1.3 Features – QUERY(SUMMARY) !

New QUERY(SUMMARY) method
  Attempts to reduce overhead of ever-larger inventory responses
  Provides compact listing of

•  Up/down nodes
•  Up/down accelerators

  Cray’s suggested use model
•  Call Inventory at startup
•  Subsequently only call Summary unless state changes
•  If a state change is detected, call full Inventory!

  Problem: Does NOT provide job reservation information
•  Slurm uses reservation info from Inventory as well
•  Any job found in ALPS and NOT in Slurm is “orphan”
•  Slurm requests release of “orphan” jobs
•  No check => potential waste of resources

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 10

New BASIL v1.3 Features – QUERY(SUMMARY)(cont.) !

Despite limitations we decided to explore possible use anyhow
  Suggested use

1.  Could simply ignore potential “orphans” = bad idea
2.  Could call: Inventory 1x, Summary Nx, Inventory 1x, …
3.  Could replace a certain subset of Inventory calls with

Summary !
  Decided to try Option 3

•  Simplicity
•  Time constraints

  Searched code for call paths to Inventory invocation
  Multiple callers identified
  However tracing showed two most common paths

1.  _attempt_backfill – Called when scheduling a job
2.  schedule – Periodically called

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 11

New BASIL v1.3 Features – QUERY(SUMMARY)(cont.) !

Resource manager should synchronise before placing new job
  Therefore, we chose the schedule path
  Had to distinguish between callers at Inventory invocation

•  Due to time constraints, crude hack performed
  Apply a mask to a global variable

  Use of new XML Accelerator element tag caused some minor
issues
•  Another crude hack used

  Set static global variable

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 12

New BASIL v1.3 Features – QUERY(SUMMARY)(cont.) !

Only had time for simple tests
  Used Slurm timing macros to time each BASIL request
  Provided a very rough idea of relative performance
  Timers use standard gettimeofday system functions
  Ran between 500 and 1500 jobs

•  Various sizes
•  Various wall-clock times

  Ran on both small 8-node and larger 2256-node systems

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 13

New BASIL v1.3 Features – QUERY(SUMMARY)(cont.) !
Results for 8-node system
  If system idle, Inventory time approached Summary!
  Could be simply on small system, less info in Inventory!
  Could be that no reservations means less work for Inventory!

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 14

New BASIL v1.3 Features – QUERY(SUMMARY)(cont.) !
Results for 2256-node system
  slurmctld on-system
  Summary takes much less time than Inventory!
  Confirm takes much longer than Inventory!
  Reserve and Release take much longer than Summary !

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 15

New BASIL v1.3 Features – QUERY(SUMMARY)(cont.) !
Results for 2256-node system
  Slurmctld off-system
  All requests now take hundreds of milliseconds

•  Network latency and middleware apbasil!

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 16

New BASIL v1.3 Features – QUERY(SUMMARY)(cont.) !
QUERY(SUMMARY) conclusions
  Results a bit mixed
  Does not provide all the functionality of Inventory!
  Appears to dramatically reduce time consumed by Inventory!

•  Needs more in-depth analysis
•  Potential speed up would warrant some further exploration

  Tricky to implement
  Would be nice to have a complimentary method such as

QUERY(RESVSUMMARY)!

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 17

Decoupling Slurm from the XC30!
Goals
  Attempt to free up frontend resources

•  On-system these are selected Service Nodes
  Slurm stays up when the main system is down

•  Presents persistent interface to users
•  Users will already be using esLogin nodes which are also

decoupled from the main system

Relatively easy to implement
  Fully qualify DNS names in the slurm.conf!
  Various paths in slurm.conf had to be checked to see if they

made sense
  Same state directory must be mounted

•  On the esLogin nodes
•  On XC30 service nodes where daemons run

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 18

Decoupling Slurm from the XC30 (cont.)!
Most significant change
  Needed to write intermediary apbasil to pass communication

between remote slurmctld and apbasil on main system
•  Relatively small
•  Currently a few hundred lines of C code
•  Able to reuse some of the Slurm pipe code (popen2)

  Work is on-going
•  Need to confirm persistence of interface when main system

goes down

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 19

New Task Affinity SPANK plugin!
Slurm provides an elegant interface to enhance functionality
  Slurm Plugin Architecture for Node and Job (K)control or SPANK
  Plugins are stackable and easy to administer
  Easy API

Internal request from User Support
  Wanted similar task affinity mappings as ALPS provides
  Slurm can use affinity masks but these deemed unsuitable
  Created new affinity module

•  Based on an older one from LLNL

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 20

New Task Affinity SPANK plugin (cont.)!
New reduced-auto-affinity module has the following binding
pattern
  Unique fat mask for each task of each node of a job
  Each fat mask has one processor per software thread of the task
  Each processor assigned to a task will be adjacent to each other
  Only one processor per core used

•  Effectively binding at core level
  Each task confined to one socket
  Multiple tasks can share a socket if all of them completely fit
  Any violation of this policy causes job to be rejected

© CSCS 2013 - Preparing Slurm for use on the Cray XC30 21

New Task Affinity SPANK plugin (cont.)!
Example of use:
  Given a 2x8x2 node layout
  Create a batch job file (job.sh) as follows:

#!/usr/bin/ksh!
#SBATCH --n 4!
#SBATCH --N 1!
#SBATCH --cpus-per-task=4!

srun --reduced-auto-affinity=on,v --cpu_bind=no my.exe !

  To run the command line would simply be:
$ sbatch job.sh!

Q&A

© CSCS 2013 22

E-mail: trofinoff@cscs.ch
 colin@cscs.ch

