Cray XC30 –
A System Level Overview

CUG 2013

Nicola Bianchi
Colin McMurtrie
Sadaf Alam
Swiss National Supercomputing Centre (CSCS)
Agenda

• CSCS XC 30 Platform
• Configuration details
• System design and installation
• XC30 vs. XE6
• Early functionality and performance results
• Conclusions

What system did we receive?
XC30 Platform at CSCS

• Currently largest XC30 worldwide

• 12 cabinets
 – 2256 compute nodes
 – 24 service nodes

• 5 esLogin servers

• Sonexion1600 Lustre Appliance

• SLURM workload manager

Configuration details?
Service Nodes

• 1 service blade per cabinet

• 24 service nodes
 – Boot + SDB
 – 4 login/Slurm frontend
 – 4 DVS
 – /users and /apps NFS projection
 – 14 LNET router

• 2x PCI Gen3 slots per service node

How is the Lustre environment configured?
Lustre

- **10 SSU Sonexion 1600**
 - 1.1 PB
 - 50 GB/s write
 - 20 OSSs
 - 80 OSTs

- **Dedicated FDR Fabric**
 - 2X 108 ports switch
 - 4x 36 ports top-of-rack switch

- **14 router nodes**
 - 12 OSS router nodes
 - 2 MDS router nodes

© CSCS 2013

HW installation
HW Installation

• **New rack Design**
 – Bigger than XE
 – Flat bottom, no pedestal, no high point loads
 – Easy and quick placement

• **Directly water cooled**
 – No XDP, less installation time
 – Easy pips attachment

• **Horizontal air flow**

• **Interconnect cabling simple snap-in connectors**

• **Planned time to power up the system: 4 days > real time 2 days**

Comparison: XC30 vs. XE6
XC30 vs. XE6

• Most of the administrative commands are the same
 – xtbounce, xtcli, xtalive …

• Smooth transition to the new architecture for sysadmins

• New HW, new names
 – Cabinet controller, CC
 – Blade controller, BC

• Main difference due to the new CLE5 + SMW7 environment
 – we were used to CLE4.0 on XE6

... and moreover
XC30 vs. XE6

• **CLES vs. CLE4 on XE6**
 – SMW logs location, new log aggregator
 – Controller logs (/var/opt/cray/log/controller)

• **Commands**
 – *xtzap* instead of *xtflash*
 – *cdump* instead of *ldump*
 – *hssclone, hssbootlink, hsspackage*
 – *xtccreboot*

• **CDT (Cray Developer Toolkit)**
 – craype-installer: easy to use
 – Automatically keep is sync main system & EsLogins

Early impressions
Impressions & issues

• **Minor post installation problems**
 – Faulty IB cable
 – PCI Gen3 bus at 8x (not 16x)
 – HSN cable not correctly seated

• **SONEXION instability**
 – MDS crash (Adios I/O library), fixed
 – OSS failover problem, fixed

• **Lustre performance**
 – IOR write performance, now near 49 GB/sec
 – IOR read performance -40% less than write
 – Read performance still a problem, client related
Impressions & issues

• **GPFS implementation**
 – Weird problem with aprun (#794091)

```
[nbianchi @ santis01]-[03:12:04]-[~]:-)
salloc -N1
salloc: Granted job allocation 1250
[nbianchi @ santis01]-[03:12:10]-[~]:-)
aprun -n1 date
Fri Feb  8 15:12:15 CET 2013
Application 19021 resources: utime ~0s, stime ~0s
[nbianchi @ santis01]-[03:12:15]-[~]:-)
aprun -n1 date
aprun: getcwd: No such file or directory
aprun: Exiting due to errors. Application aborted
[nbianchi @ santis01]-[03:12:16]-[~]:-( exit

  – Unexpectedly disappeared, probably after a not directly related CLE patch
```

Performance
Performance

• **IO performance**
 - User application with HDF5 library up to 28GiB/s write
 - Metadata benchmark (mdtest) better than any other Lustre FS at CSCS

• **Job placement / MPI / network**
 - I/O and MPI performance not affected by job placement
 - System default placement algorithm work well
 - Real jobs seem not to suffer any ill effects from the nominal difference in performance of the Dragonfly HSN
 - Unlike the XE/XK line there is no degradation in certain dimensions (i.e. y links half as slow as x and z)

Conclusions
Conclusion

• Piz Daint entered production on 1st of April 2013

• Less than 4 month to achieve this target

• The system, despite the youth, is stable and reliable