

Cray XC30 – A System Level Overview

CUG 2013

Nicola Bianchi Colin McMurtrie Sadaf Alam Swiss National Supercomputing Centre (CSCS)

Agenda

- CSCS XC 30 Platform
- Configuration details
- System design and installation
- XC30 vs. XE6
- Early functionality and performance results
- Conclusions

What system did we receive?

XC30 Platform at CSCS

- Currently largest XC30 worldwide
- 12 cabinets
 - 2256 compute nodes
 - 24 service nodes
- 5 esLogin servers
- Sonexion1600 Lustre Appliance
- SLURM workload manager

Configuration details?

Service Nodes

- 1 service blade per cabinet
- 24 service nodes
 - Boot + SDB
 - 4 login/Slurm frontend
 - 4 DVS
 - /users and /apps NFS projection
 - 14 LNET router
- 2x PCI Gen3 slots per service node

How is the Lustre environment configured?

Lustre

• 10 SSU Sonexion 1600

- 1.1 PB
- 50 GB/s write
- 20 OSSs
- 80 OSTs

Dedicated FDR Fabric

- 2X 108 ports switch
- 4x 36 ports top-of-rack switch

14 router nodes

- 12 OSS router nodes
- 2 MDS router nodes

HW installation

HW Installation

New rack Design

- Bigger than XE
- Flat bottom, no pedestal, no high point loads
- Easy and quick placement

Directly water cooled

- No XDP, less installation time
- Easy pips attachment
- Horizontal air flow

- Interconnect cabling simple snap-in connectors
- Planned time to power up the system: 4 days > real time 2 days

Comparison: XC30 vs. XE6

XC30 vs. XE6

Most of the administrative commands are the same

- xtbounce, xtcli, xtalive ...

Smooth transition to the new architecture for sysadmins

- New HW, new names
 - Cabinet controller, CC
 - Blade controller, BC

Main difference due to the new CLE5 + SMW7 environment

- we were used to CLE4.0 on XE6

... and moreover

XC30 vs. XE6

• CLES vs. CLE4 on XE6

- SMW logs location, new log aggregator
- Controller logs (/var/opt/cray/log/controller)

• Commands

- **xtzap** instead of xtflash
- cdump instead of ldump
- hssclone, hssbootlink, hsspackage
- xtccreboot

• CDT (Cray Developper Toolkit)

- craype-installer: easy to use
- Automatically keep is sync main system & EsLogins

Early impressions

Impressions & issues

Minor post installation problems

- Faulty IB cable
- PCI Gen3 bus at 8x (not 16x)
- HSN cable not correctly seated

• SONEXION instability

- MDS crash (Adios I/O library), fixed
- OSS failover problem, fixed

• Lustre performace

- IOR write performance, now near 49 GB/sec
- IOR read performance -40% less than write
- Read performance still a problem, client related

Impressions & issues

GPFS implementation

```
- Weird problem with aprun (#794091)
```

```
[nbianchi @ santis01]-[03:12:04]-[~]:-) salloc -N1
salloc: Granted job allocation 1250
[nbianchi @ santis01]-[03:12:10]-[~]:-) aprun -n1 date
Fri Feb 8 15:12:15 CET 2013
Application 19021 resources: utime ~0s, stime ~0s
[nbianchi @ santis01]-[03:12:15]-[~]:-) aprun -n1 date
aprun: getcwd: No such file or directory
aprun: Exiting due to errors. Application aborted
[nbianchi @ santis01]-[03:12:16]-[~]:-( exit]
```

 Unexpectedly disappeared, probably after a not directly related CLE patch

Performance

Performance

• IO performance

- User application with HDF5 library up to 28GiB/s write
- Metadata benchmark (mdtest) better than any other Lustre FS at CSCS

• Job placement / MPI / network

- I/O and MPI performance not affected by job placement
- System default placement algorithm work well
- Real jobs seem not to suffer any ill effects from the nominal difference in performance of the Dragonfly HSN
- Unlike the XE/XK line there is no degradation in certain dimensions (i.e. y links half as slow as x and z)

Conclusions

Conclusion

- Piz Daint entered production on 1st of April 2013
- Less than 4 month to achieve this target
- The system, despite the youth, is stable and reliable

Questions?

Q&A