Cray XC30 Installation — A System Level Overview

Colin McMurtrie, Nicola Bianchi, Sadaf Alam
CSCS — Swiss National Supercomputing Centre
Lugano, Switzerland
Email: {colin; nbianchi; alam}@cscs.ch

Abstract—In this paper we detail the installation of the
12-cabinet Cray XC30 system at the Swiss National Super-
computing Centre (CSCS). At the time of writing this is the
largest such system worldwide and hence the system-level
challenges of this latest generation Cray platform will be of
interest to other sites. The intent is to present a systems and
facilities point of view regarding the Cray XC30 installation,
operational setup and identify key differences between the
Cray XC30 and previous generation Cray systems such as
the Cray XE6. We identify key system configuration options
and challenges when integrating the entire machine ecosys-
tem into a complex operational environment: Sonexion1600
Lustre storage appliance management and tuning, Lustre fine
grained routing, esLogin cluster installation and management
using Bright Cluster Manager, IBM GPFS integration, Slurm
installation, facility management and network considerations.

Keywords-XC30; Sonexion1600; MPI; HFD5;
Slurm; GPFS; facility integration

esLogin;

I. INTRODUCTION TO THE CSCS CRAY XC30
PLATFORM

A. Architectural Overview

In early December 2012, the Swiss National Supercom-
puting Center (CSCS) took delivery of a 12-cabinet Cray
XC30 system (christened Piz Daint, after a beautiful moun-
tain in the Swiss Canton of Grigioni, the eastern-most region
of Switzerland). The machine came complete with 1.1PB
of Sonexion1600 storage and 5 external login (esLogin)
nodes, as well as a stand-alone partially populated single
cabinet XC30 Test and Development System (TDS) with
its own Sonexion1600 storage and esLogin node. Both the
main system and the TDS contain Cray’s latest Cascade
motherboard and Quad-Processor Daughter Cards (QPDCs)
hosting 2.60 GHz Intel Xeon ES5-2670 processors. The
system has 12 service blades for a total of 24 Service Nodes
(SNs) and 2256 Compute Nodes (CNs).

These 12 cabinets are subdivided, as per XC30 design, in
6 sections called ”(Electrical) Groups”. These Groups are
part of the concept behind the Dragonfly network topology
that characterizes the design, code-named Cascade whilst
under development. The system is built around the concept
of optimizing interconnect bandwidth while at the same time
keeping the interconnect cost to an acceptable level. As
such the High Speed Network (HSN) interconnect is based
on Cray’s Aries ASIC, the successor to the Gemini ASIC
used in their XE/XK product line. The network interface to

rrrE] =[]

Compute blade

A6 | ammasss A4 as | —»
ully

connected
Rank 1 network (Chassis)
| Cco | | c1 | | Cc2 |

Fully connected chassis I:>
Rank 2 network (Electrical group)

l Optical connections

EGO EG1 EG2 EG3 EG4 EGS

Figure 1: The 12-cabinet system comprises 6 electrical
groups. Each electrical group (EG) is connected to every
other electrical group with a set of optical links such that the
available bandwidth between any two groups are identical
throughout the system.

processor is provided through PCIe Gen3.0, 16x interface
having a maximum network injection of 10.2 GB/s. The peak
injection bandwidth from a node is 16 GB/s per direction.
We will not attempt to describe in intricate detail the HSN
(this has been done elsewhere, e.g. [1]). However, from a
systems point of view it is important to understand at least
the overall network schema which can be summarised as
being comprising of the following building block elements
(see Figure 1):
o Compute blade: 4 dual-socket nodes connected to the
same Aries chip
e Chassis, Rank 1 Network: 16 blades, 64 nodes; No
cables only the chassis backplane
e Group, Rank 2 Network: 2 cabinet, 6 chassis, 376
compute nodes; Passive Electrical Network
o System, Rank 3 Network: 12 cabinets, 6 groups; Optical
Cables
As can be seen from Figure 1 the basic building block of
a Cray XC30 system, from an interconnect point of view,
is a blade containing 4 dual-socket nodes connected to a
single Aries chip. There are 16 such chips connected within

a chassis forming a fully connected, all-to-all, electrical
network. The second electrical group is composed of 6
chassis (i.e. 2 cabinets). Within this second group, each Aries
chip is connected to every other Aries chip in the same slot
position. For example, an Aries 0 is connected to the five
other Aries O chips within a group, an Aries 1 to all other
Aries 1 chips within a group and so on. Each electrical group
(i.e. 6 chassis or 2 cabinets) is connected to another electrical
group (6 chassis) using optical links. The number of optical
links can be customized for a given site’s needs but in total
there are 240 open optical ports per group.

The performance characteristics of electrical and optical
groups are slightly different. Each electrical link provides a
bandwidth of 5.25 GB/s per direction while an optical link
provides 4.7 GB/s per direction. Low level Cray communi-
cation APIs called uGNI and DMAPP support a range of
programming approaches including MPI and PGAS.

B. Machine Ecosystem

As the scratch file system we installed a Sonexion1600
storage appliance comprised of 10 Scalable Storage Units
(SSUs) and one Metadata Management Unit (MMU). This
file system appliance is built around Lustre v2.1 server and is
connected to the XC30 service nodes via a dedicated FDR
InfiniBand fabric to 12 Service Blades within the XC30.
Each Sonexion1600 SSU is nominally capable of 5GB/s
in sustained IOR benchmark write throughput performance,
giving the file system an aggregate sustained throughput
performance of 50GB/s (more on this later).

The esLogin infrastructure is managed using Bright Clus-
ter Manager (BCM) from a single External System Man-
agement Server (esMS) which also manages other esLogin
nodes for our 16-cabinet XE6 and its TDS system. The
XC30 esLogin nodes mount the Sonexion1600 scratch stor-
age natively via the devoted FDR InfiniBand fabric as well
as the site-wide GPFS file systems which host users’ home
directories and permanent data storage. Internally within the
XC30 system itself we also have 4 SNs configured as login
nodes and here we mount the site-wide GPFS file systems,
as on the esLogin nodes. However, whilst the esLogin nodes
can mount the GPFS file systems natively using IBM’s GPFS
client daemons, this is not possible on the internal login
nodes and therefore there the files systems are mounted via
NFS (more on this later). The users’ home directories and
a small file system hosting site-wide applications are shared
to the XC30 Compute Nodes (CNs) via DVS; no other site-
wide file systems are available on the CNs.

As with all the systems at CSCS, Slurm [2] is the
scheduler and workload manager on the XC30. Our own in-
house development team adapted Slurm v2.5.4 to run on the
system using the new ALPS/BASIL v1.3 XML API, adding
new features for the new architecture and enhancements
to cope with the increased size of the system (which has
50% more nodes and cores compared to our current flagship

system which is the 16 cabinet Cray XE6). More details
regarding the port of Slurm to the XC30 can be found in
our other paper [3].

Completing the XC30 ecosystem at CSCS is the TDS
(christened Sdntis after the mountain in northeastern
Switzerland). As noted above, the XC30 TDS comprises a
stand-alone cabinet and is populated with 3 service blades
and 2 compute blades. To complete the TDS environment,
and in order to reflect as close as possible the main system,
a 1 SSU Sonexion1600 Lustre storage appliance provides
a small scratch file system and there is a single esLogin
node. In this way the functionality of OS patches, file
system patches, new programming environments etc. can be
fully tested before being deployed to the production system.
Furthermore the TDS will be a valuable part of any future
upgrade of the system because new compute blades can be
added to the cabinet for pre-installation testing.

II. CONFIGURATION DETAILS
A. Service Blade Layout

The XT/XE/XK system architecture requires a somewhat
counterintuitive layout of the service blades across the
system in order to have optimal placement of I/O nodes
within the 3D torus HSN topology. In contrast, the XC30
system architecture is somewhat more forgiving, thanks to
the Dragonfly HSN topology. Hence, on the XC30, service
blades can be placed anywhere within the bottom chassis of
the cabinet resulting in a more intuitive and simple blade
layout. Consequently, although not originally specified this
way by Cray (who kindly tried to maximise the number of
compute blades) we requested each cabinet have a service
blade in the bottom chassis. In this way we were able to
evenly distribute the I/O nodes (i.e. Lustre LNET routers)
across the system, in an attempt to minimize HSN conges-
tion due to I/O traffic. The motivation for this change was
that there was some concern expressed in-house that the new
HSN topology would somehow suffer from I/O congestion
if the I/O nodes were not evenly distributed across the
system and consequently we were prepared to sacrifice some
compute blades in order to allay this plausible, but as yet
unproven, concern.

Hence the 12 service blades, which comprise 24 service
nodes, are purposed as follows:

« 4 DVS/DSL servers

« 4 internal login nodes which also function as Slurm

frontend nodes (similar to PBS MOM nodes)

e 12 Lustre LNET routers for data

e 2 Lustre LNET routers for metadata

« 1 SDB

« 1 boot node

B. Lustre and Sonexion1600 Configuration

In the design of the Lustre LNET router layout, Cray
recommended the use of Fine Grained Routing (FGR). The

concept is to force the Lustre I/O packets going to and from
a specific OSS/OST combination to always pass through
the same LNET router on the XC30 service blades. Hence,
as indicated above, we use a total of 14 LNET routers on
the XC30: 12 to route traffic to and from the OSSs/OSTs
and 2 dedicated to metadata operations. In order to achieve
this configuration the various Lustre modprobe configuration
files on the clients, routers, OSSs and MDS/MGS must be
modified accordingly.

As mentioned above the Sonexion1600 ecosystem com-
prises 10 SSUs. Each SSU has a 5U form factor and contains
2 hot-swappable Lustre OSSs and 82 3.5” 2TB 7200rpm NL-
SAS drives in RAID6 configuration (eight 8+2PQ RAID6
arrays plus 2 global host spares) plus 2 100GB SSDs for
ldiskfs journaling. The MMU comprises a 2U form
factor disk enclosure with 22 2.5” 450GB 10K rpm SAS
drives (14 for MDS metadata storage, two for mirrored
MGT data, four for management server data and logs, and
two global hot spares) and two 100GB SSDs (for mirrored
MDT journaling). There is also a 2U quad-server chassis
containing the MDS, MGS and primary and secondary
management servers (CSMS).

In total the formatted capacity of the resultant scratch file
system is 1.1 PB spread across 80 OSTs. To connect the
file system to the XC30 and the esLogin nodes there is a
dedicated FDR InfiniBand fabric composed of two 108 ports
switches and four 36-port top-of-rack switches. This fabric is
completely decoupled from the CSCS InfiniBand backbone
so the scratch file system is not mountable outside the Piz
Daint environment.

C. External Login Cluster

The five esLogin nodes form the main access point for
users, and are managed collectively as a cluster from a man-
agement server via Bright Cluster Manager (BCM). User
access to the nodes is controlled by a load-balancing daemon
which enables access in a round-robin fashion, offering the
least loaded server to each new login session. The esLogin
nodes are Dell R720 servers configured with 256GB of
RAM and have the same Intel SandyBridge processor as
the main XC30 compute nodes (i.e. 2.60GHz Intel Xeon
E5-2670 CPUs) in order to aid application development
and compilation; since the processors are the same cross-
compilation is not necessary. As noted above the esLogin
nodes natively mount the Sonesion1600 scratch file system
using Lustre v2.2 clients and also natively mount the site-
wide GPFS file systems, this being achieved through two
different InfiniBand interfaces connected to the respective
networks. Furthermore the login network is hosted by a
10Gigabit Ethernet interface on each node and the esLogin
nodes, like the internal login nodes of the XC30, are
integrated in the LDAP/Kerberos mechanism that we use
at CSCS for the user authentication.

D. Workload Manager

Finally, as noted above, we use Slurm v2.5.4 as the
scheduler and workload manager. The main components of
Slurm are installed on the internal login nodes of the XC30
system itself, while on the esLogin nodes there is a stripped
down version that act as a “client” for job submission. The
four service nodes that also act as the Slurm Frontend Nodes
(FENs) interface directly with ALPS while the primary
Slurm control daemon (slurmctld) runs on the SDB
node.

III. SYSTEM DESIGN AND INSTALLATION DETAILS

A. Hardware Installation

The design of the XC30 cabinets is vastly different
from that of the XT/XE/XK product line. One significant
difference, from a facilities point of view, is that the main
cabinets containing the compute blades are bigger with a
much larger footprint (903mm x 1575mm), without support
pedestals, so that the cabinet sits directly on the floor with
the weight distributed over a much larger area, devoid of
high point loads. This distribution of the cabinet weight on
the floor is a significant design feature and a considerable
advantage over the older design. The XT/XE/XK cabinets
had support pedestals at each corner of the cabinet and this
resulted in very high point loads at the corners of the floor
tiles because the cabinets where aligned with tile boundaries
of 2°/600mm square floor tiles. Given that the XC30 cabinets
are a third heavier than XT/XE/XK cabinets (with a mass
of 1500kg) this distribution of weight is vitally important
and, furthermore, makes cabinet installation much easier and
quicker because there is no need to wind down 4 pedestals
per cabinet and no need to plumb each cabinet to ensure it
is not leaning to one side or the other. The compute cabinets
also do not have built-in rollers but the Cray installation team
provided lifting jacks with large wheels and this too led to
quick and easy installation because the large wheels for the
lifting equipment made it very easy to wheel the cabinets
into place.

One other nice aspect of the cabinet design is that the
floor cut-out area for the cooling pipes and power cables
is small compared to the overall base area of the cabinets.
This means that the integrity of the floor tiles is not adversely
compromised. However, because the cabinets now no longer
align with the floor-tile boundaries, the floor tile cut-out
pattern is different for every tile as the holes for each cabinet
in a row are in slightly different places, relative to the
tiles. This therefore necessitates the use of a large template
for each row. We recommend placing the template on the
floor and marking and numbering each tile in turn before
removing the template and taking the tiles for cutting. This
method worked very well at our site and as a consequence no
tile needed to be recut. One final consequence of the fact that
the floor cut-outs are in different places relative to the tiles

is that this inevitably leads to some floor cut-outs straddling
two tiles and therefore the tile boundary. This then means
that the underfloor stringer will encroach the cut-out area.
Thankfully this too was not a problem at our site because
the site planning engineers were able to place the rows in
such a way as to minimise the occurrence of such events
and, furthermore, when they did occur the stringer could
be left in place and the flexible cooling hoses or electrical
conductors could be safely and easily routed past the floor
stringers.

Another point to consider regarding the oversize XC30
cabinets is that they require large, full-height doorways and
lifts for easy ingress to the machine room. At our site this
was not a problem because the path from the loading bay to
the machine room was specifically designed to allow easy
access for large system racks, such as these. However some
sites may not be so lucky and this needs to be born in mind
when planning the installation.

As noted above the wheeled lifting equipment provided by
Cray and the oversize doors and large lift at our site made it
quick and easy to bring the cabinets into the machine room
and place them on the floor (Figure 2 shows this equipment
in action). Moreover, given that the compute cabinets sit
directly on the floor, it was very quick and easy to place them
and only occasionally was very minor shimming necessary
to get them plumb. Moreover the lightweight blower cabinets
were very easy to place but these do have pedestal supports
so some work was necessary to get them plumb and also
to mate them to the compute cabinets. However, all in all
the time taken to assemble the 12 cabinet system was much
quicker than a similarly sized XT/XE/XK system.

Other aspects of the system design also made the installa-
tion time pleasingly short. One significant advantage of the
XC30 cabinet design is that, unlike the XT/XE/XK product
lines, the cabinets are direct water cooled; each cabinet has
two 2” water connections, one for supply and one for return
water. Hence there is no need to fit overhead refrigerant
plumbing and, most especially, there is no need to evacuate
the gas pipework and fill it with refrigerant gas; a process

Figure 2: Placing the XC30 cabinets using the wheeled
lifting equipment.

that takes nearly 2 days per XDP on the older XT/XE/XK
design. On the XC30 design the process of attaching the
flexible hoses to the cabinets, bleeding the system and
checking for water leaks takes very little time. This process
is helped significantly by the high quality, industry standard,
stainless steel flange fittings used by Cray in their design.
We had these flanges shipped to site and welded directly to
the underfloor cooling pipework ahead of time which worked
very well. Cray were able to provide details of the position
of the underfloor flange connections on each cabinet and
the site planning engineers then positioned the underfloor
pipework accordingly. Moreover we were able to specify
the length of flexible hose we wanted and then, using this
length of hose, we were able to mark exactly where to put
the hose flanges on the under-floor cooling pipework. As a
result every one of the 24 underfloor flanges was correctly
positioned ahead of the installation and no problems were
encountered when the system arrived on site.

The same is true of the electrical supply connections.
Unlike the XT/XE/XK cabinets, XC30 cabinets require 2
separate 400VAC, 50Hz, 125 Ampere three-phase (WYE)
connections per cabinet (a total of 10 conductors per cab-
inet, including neutral and earth connectors). However our
electricians were able to prepare this mass of cabling ahead
of time and the easy access design of the in-rack power
supply made connection quick and easy.

The final feature of the new XC30 system design of
note in the context of system installation is the detail of
the interconnect design. Whereas on the XT/XE/XK line
the 3D torus interconnect cabling is comprised of bulky
copper cabling having large connectors held in place by
cap screws, the XC30 dragonfly interconnect cabling, by
contrast, comprises much less bulky copper cabling between
cabinet pairs (aka groups) having snap-in connectors and
small fibre-optic cables between the groups. The net result
of this new cabling design is that it is much easier to install
and takes a fraction of the time of the older-style cabling
which was arduous and labour intensive to install.

Cray’s original installation schedule for our 12-cabinet
XC30 system conservatively allowed 4 extended days from
the arrival of the packaged equipment to the initial power-
up and off-line testing, including 2 days for HSN cabling.
However, due to the above considerations relating to the
system design, the installation team was able to cut this time
in half, a significant achievement given the fact that this was
the largest such system to be installed at that time when,
up until then, only 4-cabinet systems had been installed.
Happily this trend of staying ahead of schedule continued,
and no major hurdles were encountered so that in end the
machine had been commissioned more than 3 days ahead of
schedule. Consequently we were able to straight into initial
system acceptance earlier than expected.

B. Operational Considerations

From an operational point of view, one major feature of
the new system design is the horizontal airflow; machine
room air is drawn in at one end of the row and is moved
down the row by in-row blowers placed at the start and
end of the row and after every second cabinet within the
row. This design is vastly different from the airflow in the
older XT/XE/XK product-line, which has the air flowing
vertically within each cabinet. From a facilities point of view
the new airflow is significant because in a large, multi-row
installation a large volume of air will be moved from one
side of the machine-room to the other and this will need
to be born in mind when planning the placement of the
system. Under most conditions within the Ashrae Class 1 &
2 Recommended Operating Environment the XC30 system
is room neutral; if necessary an optional preconditioning
coil can be installed at the start of each row (this was not
necessary at our site however).

IV. ADMINISTRATION OVERVIEW AND COMPARISON TO
THE XE6

The previous flagship system at CSCS is the 16 cabinet
Cray XE6 named Monte Rosa, after the highest mountain
in Switzerland. This system has 1496 compute nodes with
dual socket 2.1 GHz AMD Opteron 6272 Interlagos CPUs,
an internal Lustre v1.8 file system and runs CLE 4.0.46.
This system is an interesting counterpoint to the new XC30
system.

One point of difference is that the XC30 runs CLE
5, Cray’s latest generation in this long line of operating
systems, and this version contains a number of subtle
differences, from a system administration point of view. The
first such difference is that in CLE 5, which uses SMW v7.0,
the SDB node is no longer the syslog aggregator, this
function now being taken care of by the SMW. We found
it particularly useful to have, by default, all the logs in a
centralized place on the software management workstation
(SMW).

Most of the commands used on XE/XK systems match
with the new XC30, for example xtbounce, xtalive
and so on, and this makes acclimatisation with the new
system somewhat easier. Also the concept behind the system
behaviour is pretty much the same from a system admin-
istration point of view: the bootnode remains, as does the
SDB and the booting procedure for the system is unchanged.
However, on the XE6, for historical reasons, we were used to
putting the Service Node Linux (SNL) and Compute Node
Linux (CNL) images on a raw device but with the XC30
we switched to the CPIO approach and we found this to be
easier and more manageable.

There are a few administrative commands we were fa-
miliar with on the XE6 which have changed or been re-
placed, however. Specifically the 1dump command (used
for dumping an image of a node) has been replaced by

cdump, but the semantics are very similar. Furthermore
xtflash, the utility that automates the flash and reboot
sequence needed to update the flash images of the L1 and
LO controllers on the XE6, has been replaced by xt zap that
does the same work for the new architecture where the L1
and LO controllers have become the Blade Controller (BC)
and Cabinet Controller (CC), respectively.

The SMW v7.0 software environment sees the addition
of new and interesting commands to manage the Hardware
Supervisory System (HSS) images. This new approach gave
us more confidence when applying patches at the firmware
level of the system. In particular we found the following
commands useful:

e hssclone used to clone/backup the current HSS
image;

e hssbootlink used to show or define which HSS
image to use;

e« hsspackage used after patch application or image
modification in order to package it ready for deploy-
ment;

e« xtccreboot used to reboot the various controllers.

One of the most interesting differences has to be the
Cray Developer Toolkit (CDT), which is the new incarnation
of the Cray Application Developer’s Environment (CADE).
The new approach introduced by CDT makes the installation
and update procedure of the programming environment (PE)
much clearer and makes it much easier to keep the PE in
sync between the main system and the external login nodes.
Through the craype-installer packages and one configuration
file! on the SMW it is possible to update the CDT content
in one shot! The configuration file is simple, clean and
clear and little information is required to use it. The only
constraint to take advantage of is to configure password-less
ssh connections between the involved machines, namely the
SMW to the bootnode and the SMW to the BCM server. In
this way, once configured, it becomes practically impossible
to make mistakes or forget pieces of the PE when there are
many systems with related external services to keep updated
(as is the case at CSCS).

V. EARLY FUNCTIONALITY AND PERFORMANCE
RESULTS

Thanks to the modular and optimized nature of the cabinet
design, the physical installation of the XC30 proceeded
ahead of schedule. The same was also true of the sys-
tem installation and initial bring-up. Few problems were
encountered during the off-line diagnostic tests although it
was discovered that one of the electrical cables in the HSN
network of one electrical group was not seated correctly.
There was also very little component fall-out with a small
number of Xeon failures, some memory modules and one
Aries chip failure.

!/opt/cray/craype-installer/default/conf/install-cdt-DAINT.yaml

Integration of the system with the external peripherals,
including the esLogin nodes and the Sonexion1600 storage
also proceeded well. This too was particularly pleasing given
the fact that there had been no time for Cray to perform
system integration tests at their Chippewa Falls facility, prior
to delivery of the system to CSCS. Instead the Sonexion1600
storage came directly from the Xyratex factory in the United
Kingdom and was installed in the CSCS cooling islands
before it was connected and tested on the XC30 system.
While the file system was immediately functional some
problems were encountered with suboptimal performance
and these were finally traced to one PCI Gen3 bus running at
8x instead of 16x and a faulty FDR InfiniBand cable within
the Sonexion1600 environment. Once these problems were
fixed the file system performance increased to very close to
the expected levels (more on this below).

As a consequence of the above the system passed basic
functionality testing soon after the initial installation. This
is not to say that the system was completely devoid of
problems and we detail some of the non-trivial issues we
encountered below.

A. Sonexionl600 Lustre Stability, Functionality and Perfor-
mance

1) Stability: Given the tight installation schedule and
the fact that it was not possible for Cray to perform
full system integration tests at their manufacturing facility
we did encounter some initial stability problems with the
Sonexion1600. Specifically one application, which makes
use of the ADIOS I/O library [4], when run on a certain
number of nodes, would trigger the Metadata Server (MDS)
to crash and then, after the High Availability (HA) failover
mechanism switched to the backup MDS this too would
crash, thereby bringing the file system to its knees. We were
able to provide Cray with a test case and they were able to
reproduce the problem and very quickly provided a fix (in
the form of a hotfix for the Sonexion1600).

We also experienced some issues when one OSS would
crash and the paired failover OSS would not correctly mount
the OSTs of the failed OSS. Cray and Xyratex were quick
to provide a hotfix for this issue as well and since then this
problem has not reoccurred.

2) Purge Policy: One feature that is currently lacking
from the Sonexion1600 based Lustre file system is a fast and
efficient way to implement a purge policy. In the past we
have employed bespoke scripts (based on the 1fs find
utility) or the ne2scan tools from NERSC. Regrettably
the latter tool does not work with the Lustre v2.x code-base
and our in-house tool is somewhat crude in its operation;
for example, there is no easy way to define a whitelist of
directories to skip. More recently therefore we have taken to
using the RobinHood Policy Engine [5] but regrettably this
has not yet been deployed by Cray on the Sonexion1600
and we are reticent to attempt to do this ourselves. We are

told that an efficient and fast version of RobinHood will be
available for the Sonexion1600 in the coming months and
in the meantime we have little choice but to dust off our old
scripts and use them.

3) Throughput Performance: In order to measure the
throughput performance we first used the IOR v2.10.3
benchmark [6]. Given that the file system is used as scratch
for simulation output data we focused our attention on the
sustained write performance using the MPI-IO interface.
We obtained the best results using 160 nodes (without any
specific node placement), running 4 tasks per nodes for a
total of 640 IOR clients. In this case the maximum sustained
write performance reached was 47120 MiB/sec equivalent to
49409 MB/sec, where 1MB is taken as 1000x 1000 bytes
in the widely accepted parlance of the storage industry.
Increasing the number of the parallel processes did not
improve the results and neither did spreading the tasks across
more nodes. We also ran a single shared file test but in that
case the performance was approximately 20% less.

We also used the IOR benchmark to assess the sustained
read performance of the file system. Due to the fact that
we are primarily focused on the write throughput of the file
system we have not conducted exhaustive tests but we have
seen read rates of approximately 60% of the above measured
write rates. Cray tell us that with further tuning of the IOR
benchmark parameters it should be possible to see read rates
in the region of 95% of the above measured write rates.

The main purpose of these IOR benchmarks was to enable
us to run, in a reproducible way, tests to show the nominal
performance of the file system and we do not claim to define
any best practice guidelines in the optimal use of IOR (in fact
we relied heavily on guidelines from Cray and Xyratex in
this regard). However what these tests served to highlight is
the fact that the file system does not quite reach the expected
(and advertised) performance in combination with the XC30.
Cray tell us that the reason, especially with respect to
the read performance, relates to the Lustre client running
on the XC30 (currently at version 2.2). There are known
problems with the read performance of v2.2 Lustre clients
and Cray, along with the Lustre development community,
are working to improve this situation. Cray inform us that
they are currently engaged in testing v2.3 and v2.4 clients
but as yet it is unclear when this problem will be resolved.
Thankfully the write performance is 98.8% of the expected
figure (49.409 GB/sec instead of 50.0 GB/sec) and Cray
engineers are also working to optimize the file system to
get the final 1.2% of missing performance. In the meantime,
given that the file system is stable, we are happy to accept
these lower than expected performance figures.

4) Metadata Performance Comparison: On the metadata
performance front the situation is somewhat better. Over
the past 2 years we have been using the mdtest v1.8.3
benchmark [7] to collect metadata performance data for
various Lustre file systems we have in-house. These data

serve as a useful point of comparison for any new file system
we install and provide a means of tracking the historical
trend in metadata performance. As a result we have data for
the following 6 Lustre scratch file systems in combination
with our Cray XT5, XE6 and now the XC30 systems:

1) 20-cabinet Cray XT5 (CLE 2.2.48B) with an inter-
nal Lustre (iLustre) file system running v1.6.5 client
and server and having 5 LSI7900 controller couplets
connected to 50 disk enclosures containing 7200rpm
512GB SATA drives and with a DDN S2A3000 as the
Metadata Target (MDT);

2) 16-cabinet Cray XE6 (CLE4) using v1.8.6 Lustre
client and attached, via 12 LNET routers, to an ex-
ternal Lustre (eLustre) file system hosted by 12 Intel
SandyBridge servers running Lustre v2.2 server and
having 6 LSI7900 controller couplets connected to 48
disk enclosures containing 10K rpm 2TB SATA drives
and with an LSI5480 controller containing 186GB
SSDs as the MDT;

3) 16-cabinet Cray XE6 (CLE4) using v1.8.6 Lustre
client and attached, via 4 LNET routers, to an external
Lustre (eLustre) file system hosted by 4 AMD Opteron
servers running a DDN-patched version of Lustre
v1.8.4 server and having a single SFA10K controller
couplet connected to 5 enclosures containing 290
7200rpm 2TB SATA drives and with an EF3015
controller containing 300GB SAS drives as the MDT;

4) 16-cabinet Cray XE6 (CLE4) with an internal Lustre
(iLustre) file system running v1.8.6 client and server
and using 6 LSI7900 controller couplets connected to
48 enclosures containing 10K rpm 2TB SATA drives
and with an LSI5480 controller containing 186GB
SSDs as the MDT;

5) 1 cabinet Cray XE6 TDS (CLE4) using a Lustre
v1.8.6 client and attached, via 2 LNET routers, to an
external Lustre (eLustre) file system hosted by a 1
SSU Sonexion1300 storage appliance;

6) 12-cabinet Cray XC30 (CLES5) using a Lustre v2.2
client and attached, via 14 LNET routers, to an exter-
nal Lustre (eLustre) file system hosted by a 10 SSU
Sonexion1600 storage appliance.

The metadata performance data for directory and file cre-
ation and removal are shown in Figure 3 for the above 6 file
systems. In each case we quote the best figures achieved over
a range of nodes and task counts. As can be seen both the
Sonexion storage appliances perform well when compared
to the other file systems, especially the eLustre based on
Lustre v2.2 (Item 2 in the list above). One other interesting
point to note is that the XE6/Sonexionl1300 combination
performs better in file creation than the XC30/Sonexion1600
combination. It is not clear why this is the case but it could
also be related to the different Lustre client running on the
XC30; further investigations will continue in this regard.

Lustre Metadata Performance Comparision
40000

= XT5/LS17900/1.6.5CS iLustre
 XEG/LSI7900/1.8.6C/2.25 eLustre
35000 XE6/SFA10K/1.8.6C/1.8.4 elustre
 XE6/LSI7900/1.8.6CS iLustre
 XE6/1.8.6C/Sonexion1300
XC30/2.2C/Sonexion 1600

30000

25000 —

20000

Operations/second

15000

10000

wada

Directory Create

Directory Remove File Create File Remove

Figure 3: Lustre metadata performance comparison.

5) Application-Level Performance: Benchmarks aside,
what really matters in the world of HPC is real application
performance. As an early example of the application-level
performance of the Sonexion1600 we were able to capture
I/O performance data for an application using the HDFS 1/O
library. Specifically, each process (i.e. MPI rank) within the
application writes 128MiB of data, at each of 4 timesteps, to
the same single file so that the total aggregate amount of data
written to the file system increases linearly with the number
of processes. Hence in the case of 2048 nodes with 32 pro-
cesses per node, the application writes 2048 x32x 128MiB =
8TiB per timestep for a total of 32TiB of data written to the
same single file. Timing data is obtained by timing the period

Daint: cb_nodes=80, ch_buffer_size=16M, stripe=16M

W1 core/node
25000.00
m 2 core/node
4 core/node
20000.00 B core/node
W 16 core/node
m 32 core/node
15000.00
10000.00
5000.00 ‘ ‘| | ‘ ‘| |
000 _Nmmamm_wwmml_wmasml wm lI o I| mal | ull |I I| |
2 8 16 32 64 a8

1 2 128 256 512 1024 204

Bandwidth MB/s

Number of nodes used

Figure 4: Application-level Sonexionl1600 file system per-
formance using HDF5. (Image and results courtesy of J.
Biddiscombe, CSCS)

from file open to file close and hence includes all overhad
associated with these operations as well as the streaming of
the data to the file. The results of these tests, for various
numbers of MPI processes, are presented in Figure 4 and
show that good file system performance can also be achieved
at the application level. In fact, albeit that the performance
does not match that of the IOR benchmark, this application-
level performance of >28GiB/s is the best seen for any file
system at CSCS.

B. Native GPFS Support

While on the subject of file systems one additional item
that may be of interest to other sites is that we initially
experienced problems with the GPFS client on the XC30.
Specifically we serendipitously discovered an unusual in-
teraction between GPFS and aprun on the service/login
nodes of the system. When GPFS (v3.4.0) is used to mount
our site-wide GPFS file systems on the service nodes of the
XC30 all works well until users of the internal login nodes
invoke an interactive session (using the Slurm salloc
command) and attempt to use the aprun command. At this
point the Linux kernel enters a strange state whereby any
subsequent calls to getcwd () fail. This problem does not
occur on any CLE4-based system at our site and nor, for
that matter, on the esLogin nodes of the XC30 which also
natively mount the site-wide GPFS file systems. In this latter
case, of course, the fact that the problem does not manifest
itself is likely because aprun is not available/usable there).
It therefore seems that there is some strange interaction
between the v3.0 Linux kernel in CLES, the GPFS kernel
module and aprun.

After the application of a number of patch-sets and an
upgrade of the TDS to CLES5.0UPO2 we can no longer
reproduce this strange problem on that system. Cray tell
us they did nothing to specifically address this issue in the
updates or patches and hence it seems that the problem
has disappeared as serendipitously as it appeared. We will
continue to investigate this issue with Cray and, for now, we
have decided to continue using NFS to mount the site-wide
GPEFS file systems on the larger Piz Daint system.

C. Job Placement and the Impact on HSN MPI Performance

We measured the MPI latency and bandwidth of the HSN
using various test cases from the Ohio State University
(OSU) micro-benchmark suite version 3.7 [8]. Results for
point-to-point tests are shown in Table I for the various
building blocks of the system (i.e. at the level of the
Aries chip, within a chassis, between chassis and between
electrical groups). The latency results, in particular, confirm
the architectural and topological features that were described
earlier. For example, there are unique latencies on an Aries
chip, across electrical connections and over the optical links.
However, within two different electrical groups, i.e. within

Table I: Point-to-point MPI Latencies and Bandwidth Rates

Latency (us) | Bandwidth (GB/s)
Aries chip 1.28 9.89
Within Chassis 1.61 9.65
Between Chassis 1.58 9.82
Between Groups 2.53 9.63

a chassis and between chassis, the values are essentially
identical.

Furthermore, the bandwidth measurements are essentially
uniform across the various building blocks of the system
thanks to different optimization strategies employed by Cray
to overlap and pipeline large message transfers. For example,
the Block Transfer Engine (BTE) supports asynchronous
message transfers and is used for large messages while the
small messages are communicated via the Fast Memory
Access (FMA) engine by directly copying to the network
memory.

The point-to-point latency and bandwidth tests validate
the architectural features of the network adapters, cabling
technologies and the topology. However, these tests do not
provide any insight into how applications with complex MPI
communication patterns will perform on these interconnects.
Moreover, it is also unclear from point-to-point tests using
only two MPI tasks, if network congestion and resource
contentions can influence performance and scaling of dif-
ferent MPI communication patterns. In order to investigate
whether the dragonfly and non-blocking fat tree topologies
and their routing schemes are more resilient to mapping and
placements of MPI jobs in a production level environment,
we select the following synthetic benchmarks:

« Natural Ring (NR) Latency and Bandwidth Test: This
test, which is part of the HPC Challenge (HPCC)
benchmark suite [9], measures latencies and bandwidth
for small and large message sizes while messages are

Table II: Natural and Random-Ring MPI Latencies and
Bandwidth Rates

Within a group | Within a chassis | Multiple groups

NR Latency 1.345 ps 1.36 us 1.71 ps
(8 Bytes)
NR Latency 1224.22 ps 1262.24 ps 127.72 ps
(2000000 Bytes)
RR Latency 4.8 psec 4.88 psec 4.98 usec
(8 Bytes)
RR Latency 8659.56 s 8627.89 us 8804.48 s

(2000000 Bytes)

NR Bandwidth
(2000000 Bytes)

1633.69 MB/s 1584.47 MB/s 1572.67 MB/s

RR Bandwidth
(2000000 Bytes)

230.97 MB/s 231.8 MB/s 227.16 MB/s

exchanged between MPI tasks arranged in a 1D ring.
This communication pattern characterizes applications
with regular, nearest neighbor message exchanges;

« Random Ring (RR) Latency and Bandwidth Test: This
test, which is also part of the HPCC benchmark suite, is
similar to the natural ring test but the MPI ranking is
shuffled. Hence, this test represents applications with
rather random neighboring communication patterns.
This test can also be used to expose worst available
bandwidth of the system.

Table II shows results of alternate mapping and placement
experiments where jobs are mapped within a chassis, within
an electrical group and on more than one electrical group.
For these small-scale experiments, we observe no significant
differences between the best and the worst-case placement
regimes except for small message exchanges in regular,
point-to-point communication (natural ring latency with 8
bytes messages).

We also ran MPI micro-benchmarks (using the IMB
version 3.2.3 benchmark [10]), with different task placement
options, to understand the impact of the mapping of MPI
tasks onto the physical processors. Note that both SMP and
Aries localities have been preserved for all experiments, i.e.
the granularity of experiments is 64 MPI tasks, which are
placed onto 4 nodes that share a single Aries network con-
nection. We ran experiments with three placement schemes:

¢ X dimension: This is the default case, where an elec-
trical group or 6 chassis are filled first before tasks are
placed onto the second group;

« Y dimension: Here chassis per group are filled first, for
example, chassis 0 in group O is assigned, then chassis
0 in group 1 is assigned and chassis 1 in group O is
assigned only after filling up chassis 0 in group 5;

o Z dimension: The idea here is to fill all Aries chips in
a slot that are directly connected via the black network
within and across groups. For example, Aries chip in
slot 2 in chassis O is assigned first, then Aries chip in
slot 2 in chassis 1 is assigned and this goes on until all
Aries chips in slot 2 are filled in all groups.

Latency and bandwidth-sensitive experiments were per-
formed using MPI_Broadcast and MPI_Alltoall test
cases. All tests are performed on 2,048 nodes using 32,768
cores with core specialization enabled. The results of these
tests are shown in Figures 5 and 6. In both cases, the default
scheme showed higher performance and less variability as
compared to the other two mappings. In particular, the
results for the bandwidth sensitive alltoall test case show
significant divergence for large message sizes.

VI. CONCLUSION

Piz Daint entered the User Program on 1 April 2013 and is
performing well. The total elapsed time between the arrival
of the hardware and the production availability of the system

MPI Broadcast

w
&

g
o=
L 2 |

N
]
+o—15
{
(
o

~
5]

@ x_dimension

N
o)

Ey_dimension

Average latency (usec)

z_dimension

=
S5

«

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Payload (bytes)

Figure 5: Effect of job placement on MPI_Broadcast
latency.

MPI Alltoall

1.2E+07

1.0E+07

8.0E+06

6.0E+06 ox_

Ey_dimension

Average latency (usec)

4.0E+06 d z_dimension

2.0E406 Ty
-

oorro0 00000 0 = i
1 4 16 64 256 1024 4096

Payload (bytes)

Figure 6: Effect of job placement on MPI_Alltoall
latency.

was less than 4 months which is a significant achievement,
given the leading-edge nature of the hardware and the fact
that it is still, at the time of writing, the largest system of
its type worldwide. The speed with which we were able to
achieve this milestone is testament to Cray’s system design,
the robustness of the overall architecture, the flexibility of
the CSCS data-centre and the detailed forward planning of
the project at all levels.

ACKNOWLEDGMENT
The authors would like to thank Andreas Jocksch for his
assistance with the TEX formatting of this paper.

REFERENCES

[1] N. Stringfellow, S. Alam, T. Athanassiadou, G. Fourestey,
A. Jocksch, L. Marsella, J.-G. Piccinali, J. Poznanovic,
T. Robinson, and D. Ulmer, “First 12-cabinets Cray XC30
System at CSCS: Scaling and Performance Efficiencies of
Applications,” Cray User Group Meeting, 2013.

[2] “Slurm developers’ website,” http://www.schedmd.com.

(3]

(4]

(5]
(6]
(7]
(8]

(9]

(10]

S. Trofinoff and C. McMurtrie, “Preparing Slurm for use on
the Cray XC30,” Cray User Group Meeting, 2013.

“ADIOS website,” http://www.olcf.ornl.gov/center-
projects/adios/.

“RobinHood website,” http://sourceforge.net/apps/trac/robinhood.

“IOR website,” http://sourceforge.net/projects/ior-sio/.
“mdtest website,” http://sourceforge.net/projects/mdtest/.

“OSU website,”
state.edu/benchmarks/.

http://mvapich.cse.ohio-

“HPCC website,” http://icl.cs.utk.edu/hpcc/.

“IMB website,” http://software.intel.com/en-us/articles/intel-
mpi-benchmarks/.

10

