
Performance Measurements of the NERSC Cray
Cascade System

Brian Austin, Matthew J. Cordery, Harvey J. Wasserman and Nicholas J. Wright
National Energy Research Scientific Computing Center

Lawrence Berkeley National Laboratory
Berkeley, CA 94720

Abstract— Cray began delivery of their next generation XC30
supercomputer systems in late 2012. One of the first systems,
“Edison,” was delivered to NERSC and in this paper we present
preliminary performance results obtained on this machine. The
primary new feature of the XC30 architecture is the Cray
“Aries” interconnect that includes a 48-port high radix router
with a dragonfly topology. To demonstrate the Aries’ substantial
improvements in bandwidth, latency, message rate, and
scalability, we present measurements of the basic performance
characteristics of the system and examine the scalability of
several network-centric “microbenchmarks.” Although some
low-level microbenchmark results for Aries have been published
previously (using prototype hardware), the unique contribution
of this work consists of performance results for the NERSC
Sustained System Performance (SSP) application benchmarks.
The SSP benchmarks span a wide range of science domains,
algorithms and implementation choices, and provide a more
holistic performance metric. We examine the performance and
scalability of these benchmarks on the XC30 and compare
performance with other state-of-the-art HPC platforms. Edison
nodes are composed of two eight-core Intel "Sandy Bridge"
processors, which provide single-node performance to
complement the networking improvements afforded by the Aries
interconnect. Counting two hyperthreads per core, Edison has
32 hardware threads per node; thus, multi-threading is essential
for obtaining optimal performance. We report the OpenMP,
core-specialization and hyperthreading settings that maximize
SSP on the XC30.

Keywords—XC30; Aries; hyperthreading; core specialization;
sustained system performance

I. INTRODUCTION
 Twenty years ago, Cray launched its first massively

parallel supercomputer architecture, the T3D [1]. Both that
system and its immediate follow-on, the T3E [2], used what
became a common industry approach to building scalable
multiprocessor platforms, using commodity microprocessor
nodes surrounded by custom integrated interprocessor network
technology.

Recently Cray has unveiled its latest distributed memory
architecture, a system developed as part of Cray's DARPA

High Productivity Computing System program. This
architecture, known internally as the Cray Cascade system and
by the product name Cray XC30, includes Cray's newest
interconnect, Aries, which includes new technologies such as a
dragonfly topology and adaptive routing.

The National Energy Research Scientific Computing
(NERSC) Center has recently installed the first phase of an
XC30 system which will achieve about 2-PF theoretical peak
performance after its second phase upgrade is installed in late
2013. The first phase system is the subject of this report. The
system has been bestowed with the name Edison, in honor of
the American inventor Thomas Alva Edison.

In addition to characterizing Edison’s interconnect
performance, we are particularly interested in two system
features: hyperthreading (HT) and core specialization (CS).
HT is a feature of the Intel Xeon processor family that allows
multiple threads to be executed on a single hardware core.
Additional threads share the architectural state of the master
thread but not its instruction stream. One of the primary
benefits of HT is to keep the execution unit pipeline filled in
case the currently executing thread stalls. These stalls may
occur as a result of a cache miss or a branch misprediction, for
example. In the case of highly optimized code that avoids these
effects, the advantages of HT may be minimal. HT may also
permit the simultaneous use of the different execution ports for
floating-point and integer calculations [9].

Core Specialization [3] is a feature of the Cray operating
system that allows the user to reserve one (or more) cores per
node for handling system services and thus reduce the effects
of OS jitter, at the expense of possibly requiring more nodes to
run an application for a given number of compute tasks. These
cores may also be used in conjunction with Cray's MPI
Asynchronous Progress Engine [3] to improve the overlap of
communication and computation if non-blocking
communications are used by an application. In the absence of
CS, the compute cores themselves must service their own non-
blocking MPI requests.

Hyper-threading complicates questions about the most
effective use of processor resources. HT doubles the number of
streams that can schedule computation, but does not increase
other resources (e.g., floating-point units or cache). A key
question for users is whether these ‘virtual cores’ are best used
by allocating additional MPI processes to the nodes, by using
multiple threads per MPI task, or by devoting some to the

All authors were supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231. This
research used resources of the National Energy Research Scientific
Computing Center, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231.

operating system and others to the MPI progress engine via CS.
We address this question by comparing the performance of
several scientific applications analyzing the effects of HT and
CS features on their performance. We provide an estimate of
aggregate application performance for the three scenarios and
also compare with other HPC platforms.

II. COMPUTATIONAL SYSTEMS

A. Edison
This paper focuses on the performance characteristics of

the Edison Cray XC30 system at NERSC. The initial phase of
the system was delivered in Q4 2012 with full configuration
and user availability expected in Q2 2013. In its current
configuration, Edison has 664 compute nodes. The current
phase-1 system is comprised of four cabinets, each containing
42 blades. Each blade is comprised of four dual-socket nodes,
each containing two 8-core 2.6-GHz Intel Sandy Bridge
processors and 64 GB of 1,866-MHz DDR3 memory
(nominally 4 GB/core). Each of the two dies on a node is
connected to each other and to their own memory via Intel's
QPI interface, resulting in potential NUMA penalties for
crossing the NUMA domains. Using the new AVX SIMD
hardware, each compute core is capable of eight double-
precision floating-point operations per cycle, yielding a
theoretical performance of 332.8 Gflops/node.

The Cray XC30 system also incorporates the new Aries
interconnect, which, in addition to its its raw bandwidth
performance, is distinguished by a novel flattened dragonfly
topology and its adaptive routing capabilities. The four nodes
on an XC30 blade share a 48-port Aries router chip, which
controls traffic between the rank-1, rank-2 and rank-3
networks. The rank-1 network handles traffic within a 16-blade
chassis (up to 64 nodes); the rank-2 network handles traffic
between all chassis in a two-cabinet 'group' (up to 384 nodes);
and the rank-3 network handles all traffic between all groups.
There are only two groups in the Edison phase-1 system. The
rank-1 and rank-2 networks are connected through the
backplane (rank-1) or via inexpensive copper wires (rank-2)
and are capable of 14 Gbps transfer rates. The rank-3 network
is connected via more expensive optical cables and is capable
of transfer rates of up to 12.5 Gbps. The adaptive routing
capabilities of the interconnect become significant only when
messages traverse the rank-3 network. If the adaptive network
determines that its initial routing between groups is congested,
it will select a different less congested route, thus making use
of the full capabilities of the system and reducing network
contention. For more details see [5].

B. Hopper
For comparison purposes, some tests are also performed on

Hopper, which is a Cray XE6 system and has been described
previously [4]. Hopper has 6,384 compute nodes connected by
a Cray Gemini interconnect. Within a Hopper node, there are
two 2.1-GHz, 12-core AMD Magny-Cours processors, and 32
GB of 1,330-MHz RAM. The Magny-Cours processor is itself
made up of two multi-chip modules; thus, there are four 8-GB
NUMA domains connected by HyperTransport. Pairs of nodes
are connected by HyperTransport to a Gemini network chip,

that represents one point on a 3D torus network capable of
transferring 3–6 GB/s per direction; see [13] for details.

III. NETWORK PERFORMANCE
The distinctive feature of the Cray Cascade architecture is

the Aries network ASIC and the interconnection network based
upon it. Aries has been described in great detail previously [5].
In this section, we use several network microbenchmarks to
assess Aries’ performance, reproducing measurements from the
prototype system in [5] and confirm results from earlier
simulations. We use the OSU MPI benchmark suite [7]. For
point-to-point measurements, we ensure that sending and
receiving pairs are attached to different Aries ASICs.

Fig. 1 shows the measured Edison inter-processor MPI “ping-
pong” message latency as a function of message size,
measured by the OSU MPI multi-pair latency benchmark [7].
Although not shown, the values do not appear to vary
appreciably as a function of the location of the pair of
communicating nodes within the Edison interconnect topology;
the 8-byte latency remains at a value of about 1.5 µs for both
the nearest and furthest nodes in the network. This value may
be compared with approximately 1.8 µs for the (busy) XE6
Hopper system. Note that when a single pair of cores (on two
nodes) are communicating, the Edison MPI latency is only
slightly larger than that reported for the prototype system
in [5]. Fig. 1 also shows that the latency increases when more
pairs of cores are communicating; the 8-byte value is about
2.4 µs when all cores in both nodes are active. This value is
considerably smaller than that observed when all (24) cores are
communicating on the Hopper system (4.2 µs).

Fig. 2 shows the MPI “ping-pong” message bandwidth as a
function of message size. The asymptotic values observed on
Edison, i.e., 10 GB/s for unidirectional and about 15 GB/s for
bidirectional, agree with the point-to-point “put” bandwidths
reported in [5].

The Aries interconnect provides substantially more global
bandwidth than Gemini, thus providing more scalable
performance for nonlocal communication patterns. We
measure runtimes for MPI_Alltoall calls using the OSU
benchmark and one MPI process per node. Fig. 3 shows the
all-to-all injection bandwidth per node
(InjectionBandwitdhPerNode = MessageSize x (Nodes-1) /
AlltoallTime) for several message sizes and concurrencies.
Unlike the all-to-all data in [5], these data are measured (not
simulated) on a busy systems. Edison’s all-to-all performance
is remarkably better than Hopper’s, achieving up to three times
more injection bandwidth per node for 1-MB messages.
Furthermore, that this rate is nearly constant up to 256 nodes
indicates that Aries’ high global bandwidth within a group
provides excellent all-to-all scalability. Above 384 nodes, the
benchmark must span multiple two-cabinet groups and is
forced to use the slower rank-3 network link, which explains

Fig. 1. MPI multi-pair latency on Edison.

Fig. 2. MPI ping-pong bandwidth

Fig. 3. Alltoall injection bandwidth per node.

the drop in injection bandwidth observed for 512 nodes. The
dragonfly’s rank-3 network has an all-to-all topology, so the 3
GB/s injection bandwidth per node should be maintained as
the system expands to more groups.

Core Specialization (CS) reserves one (or more) cores per
node for the operating system. When the MPI asynchronous
progress feature is enabled, nonblocking MPI functions can be
offloaded to the specialized core. As noted in [10], the Gemini
interconnect has no special hardware to facilitate MPI
handshake protocols and many CPU cycles can be consumed
processing MPI requests. CS has the potential to process these

requests independent of the user’s process and enable better
overlap between communication and computation.

To assess the CS and asynchronous progress features, we
measure the fraction of computational work that can be
overlapped with communication, as described in [10]. Fig. 4
shows the overlap-fraction with and without CS. For messages
smaller than 8 KB, overlap-fractions of 50% are achieved with
and without CS. When only one pair communicates, CS
dramatically decreases overlap at the 8-KB threshold, where
Aries switches between the Fast Memory Access (FMA) and
Block Transfer Engine (BTE) mechanisms, and begins to use
the progress engine. CS gradually becomes more useful as the
message size increases, and is essential for obtaining overlap
for 2-MB messages. However, with 16 pairs, 85% overlap can
be observed for large messages without CS, and up to 98%
overlap is possible with CS.

The overlap fraction is a measure of a relative speedup
between blocking and non-blocking versions of a
communication-computation loop. It is also informative to
compare the change in runtime for the non-blocking loop with
and without CS, as shown in Fig. 5. For one or 16 pairs, CS
improves runtimes only for messages larger than about 1MB.
For 512 pairs, CS has a significant negative impact.

Fig. 4. Overlap fraction measured on Edison. The computation to
communication ratio is 1.0 for all message sizes.

Fig. 5. Speedup due to CS.

IV. APPLICATION BENCHMARKS
As the primary computing center for the U.S. DOE Office

of Science, the NERSC Center serves approximately 5,000
users working on some 700 projects that involve nearly 700
codes for a wide variety of scientific disciplines. The
application benchmarks used here have been selected from the
NERSC workload to survey a range of algorithms and domains
[8]. This section describes each of the benchmark codes and
covers the effects of HT and CS on their performance.

A. Code Descriptions
1) CAM
Climate simulations comprise a significant part of the

NERSC workload. Much of this work is performed using the
Community Earth System Model (CESM) developed by the
National Center for Atmospheric Research (NCAR). Within
CESM, the atmosphere model, CAM, represents a dominant
fraction of the total model computational burden. Because of
this, CAM has been an important component of the NERSC
benchmark suite for many years. Within CAM, the main
computational burdens are the dynamical core (which solves
the equations of fluid motion in the atmosphere) and the
physical core (which implements a number of sub-scale grid
processes that affect the dynamics, such as long- and short-
wave radiative transfer, precipitation, turbulent mixing, etc.).
The three-dimensional computational grid of CAM represents
variables described by latitude, longitude, and vertical height.
There are several dynamical cores available for CAM, each
using different methods to solve the same basic set of
equations. In this study, we use the finite volume (FV)
dynamical core. The FV core decomposes the grid in two
different ways: by latitude-longitude coordinates and by
latitude-vertical coordinates. In the physical core, which is
common to all dynamical cores, the MPI decomposition
follows the latitude-longitude decomposition of the dynamical
core. In general, interprocessor communications are dominated
by non-blocking sends and blocking receives, though the code
may be configured at run time to use different protocols. The
OpenMP implementation in the FV core is, in general, over
latitude or levels. The OpenMP implementation in the physical
core is different. All of the vertical cells at a particular latitude-
longitude point are referred to as a column. A 'chunk' is a
collection of columns and the physical core uses this chunking
strategy as a means of implementing a second level of
parallelism via OpenMP.

The benchmark used in this paper is the D resolution
(nominally 0.5 degrees) which translates to a 576 x 361 x 28
grid. The benchmark uses 240 MPI tasks with a 60x4 MPI
decomposition and either one or two OpenMP threads and runs
for five simulated days.

2) GAMESS
The General Atomic and Molecular Electronic Structure

System (GAMESS) is capable of a wide variety ab-initio,
density-functional and semiempirical quantum chemistry
calculations. Within GAMESS, molecular orbitals are
represented as linear combinations of Gaussian basis functions.
A large fraction of its calculations consist of linear transforms

between the Gaussian and molecular orbital basis sets, which
are characterized by stride-1 memory access.

GAMESS provides its own communication library, the
Distributed Data Interface (DDI), which allows each process to
access a global pool of memory. The DDI version used on
Edison is implemented with MPI. Within a NUMA-node, DDI
uses SHMEM, and one MPI task manages off-node
communication for the remaining compute tasks. GAMESS
communication pattern emphasizes collective functions.

The GAMESS benchmark performs a Hartree-Fock + MP2
energy and gradient calculation for a 43-atom molecule with
306 electrons and 1025 basis functions.

3) GTC
The Gyrokinetic Toroidal Code (GTC) simulates turbulent

transport in magnetically confined plasmas by solving the
gyro-averaged 3-D Vlassov equations describing the motion of
particles in a self-consistent electromagnetic field. The
electromagnetic field is determined by the Particle-In-Cell
(PIC) method using a grid that that follows the curved field
lines of the confining toroidal potential. A non-spectal solver is
used to evaluate Poisson's equation on the grid. The parallel
decomposition divides the spatial domain into 1-D segments
along the toroidal dimension, and additional parallelism is
achieved using a particle decomposition within the toroidal
domains.

The GTC benchmark simulates 6.6x109 particles in 2.1x106
cells for 248 timesteps. The 2048 MPI processes partition 64
toroidal domains and with a 32-way particle decomposition. At
this concurrency, three phases of the calculation dominate the
GTC walltime. Deposition of the particles' charge onto the grid
is both computationally demanding and, due to it's use of
indirect addressing, a challenge for random access memory
latency. The 'push' phase updates the position and momentum
of each particle (based on the grid's field data). The 'shift' phase
arises when particles move between toroidal domains and is
characterized by bandwidth-limited nearest-neighbor
communication.

4) IMPACT-T
IMPACT-T represents NERSC’s accelerator physics

workload. It simulates the relativistic motion of a beam of
charged particles as they travel through the electromagnetic
field generated by the accelerator structure. Coulomb forces
among the particles are evaluated using a Particle-In-Cell
algorithm. While there are fundamental similarities between
the PIC algorithms used in GTC and IMPACT-T, there are two
main reasons why these codes exercise the system differently.
The external fields in the accelerator intentionally manipulate
the particles into a nonuniform phase-space distribution, which
manifests in simulations as a nontrivial load balance problem
that is not present in GTC. Second, IMPACT-T uses an FFT-
based algorithm to evaluate the particles’ electric field, making
it sensitive to MPI collective performance. The IMPACT-T
benchmark uses 1024 MPI processes to simulate 400 million
particles on a 128 x 256 x 256 grid for 200 timesteps.

5) MILC
The MILC code is used to study quantum

chromodynamics, which is the theory of strong interactions

between quarks and gluons which comprise hadrons (e.g.,
protons, neutrons, etc.). The code uses lattice gauge methods to
implement the SU(3) Yang-Mills theory on a four-dimensional
grid (three spatial coordinates and a single time coordinate).
The variables stored on the sites and links are updated using
the result of a large, sparse, near-singular system of linear
equations. A Conjugate Gradient (CG) algorithm is used for
the linear solve, and as a result of this iterative scheme, MILC
performs many complex-valued matrix-vector operations and
is sensitive to memory bandwidth [11]. MILC is parallelized
using a 4-D domain decomposition designed to minimize the
surface-to-volume ratio of the subdomains. The MPI
communication pattern is a 4-D halo exchange implemented
with nonblocking sends and receives, and results in messages
between widely separated nodes on network topologies that do
not map well to the 4-D decomposition. Additional MPI traffic
is involved due to the all-reduce collectives required by the CG
solver. Additional OpenMP parallelism was implemented by
the authors following previous guidance by Gottlieb and
Tamhankar (2001). In general, the OpenMP directives are
aimed at exploiting parallelism inherent in loops over the
number of 'sites' in the local lattice of an MPI task (a site is a
data structure containing all variables at a point in the lattice).

The benchmark used in this paper is the 'extra large' MILC
problem from previous NERSC benchmark suites, with a total
lattice size of 643x144 (x,y,z,time), four trajectories, 15 steps
per trajectory, and a timestep of 0.02. The benchmark uses
8,192 MPI tasks yielding an 83x9 local lattice and either one or
two OpenMP threads.

6) MAESTRO
MAESTRO simulates low Mach number astrophysical

flows such as, in this benchmark, convection within a white
dwarf as it evolves toward a Type 1a supernova explosion.
MAESTRO uses the BoxLib adaptive mesh refinement
library [12] to integrate the relevant PDEs on a hierarchical
patchwork of non-overlapping grids of different sizes and
resolutions. A coarse-grained 3-D domain decomposition
balances both the computation and communication loads
among processors. MAESTRO’s communication pattern is
irregular, with a broad range of message sizes. MAESTRO has
low computational intensity, making it sensitive to memory
performance, especially latency. The MAESTRO benchmark
problem propagates a fixed-size, block-structured 10243 grid
(bypassing MAESTROs AMR capability) for ten timesteps,
using 2048 MPI tasks.

7) PARATEC and MiniDFT
PARATEC and MiniDFT are plane-wave density

functional theory codes for modeling materials. Given a set of
atomic coordinates and pseudopotentials, they compute self-
consistent solutions of the Kohn-Sham equations. For each
iteration of the self-consistent field cycle, the Fock matrix is
constructed and then diagonalized. To build the Fock matrix,
fast Fourier transforms are used to transform orbitals from the
plane wave basis (where the kinetic energy is most readily
evaluated) to real space (where the potential is evaluated) and
back. A CG (PARATEC) or Davidson diagonalization
(MiniDFT) algorithm is used to compute the orbital energies
and update the orbital coefficients.

PARATEC has been a component of past NERSC
benchmark suites, which permits comparison between current
and historical computational systems. More recently, the
Quantum ESPRESSO (QE) package has surpassed PARATEC
in popularity at NERSC. QE also implements ‘task-group’
parallelism for computing FFTs of multiple bands
simultaneously, extending its potential to use higher levels of
concurrency anticipated in future computational systems.
MiniDFT is a minimal DFT code or “mini-app”, developed by
extracting essential routines from the full-featured QE code.
Hybrid parallelism is implemented in MiniDFT using OpenMP
and threaded BLAS and FFT libraries.

The PARATEC benchmark calculation requires 1,024 MPI
processes and performs a single point SCF and force
calculation for a 7 x 7 x 7 supercell of silicon with a plane-
wave cutoff energy of 25 Ry. The MiniDFT benchmark
requires 10,000 MPI processes and performs one iteration of
the SCF cycle for a 10 x 10 x 10 supercell of magnesium oxide
with a plane wave cutoff energy of 130 Ry.

B. Application Performance Experiments
 We consider five possible use cases for HT and compare
their utility for the application benchmarks described above. In
the baseline scenario, 16 MPI tasks are assigned to each node,
one for each physical core. The second case investigates the
simplest approach to using HT - 32 MPI tasks are assigned to
each node, one for each virtual core. (Two per physical core.)
For a fixed total number of MPI tasks, this use of HT uses half
as many nodes, thus decreasing the charge to users, since
NERSC allocations are charged on a per-node basis. The
runtime will typically increase in this case, but if it increases by
less than a factor of two, then this scenario will be a net win.
This perfomance increase can usually be attributed to some
combination of HT’s latency-hiding effects or reducing the
amount of off-node communication. The third use case
combines HT and CS; 31 MPI tasks are assigned to each node,
and the remaining virtual core is reserved for OS functions. To
accommodate the MPI tasks that were displaced by CS,
slightly more nodes are required than the simple MPI+HT case.

For the four benchmark applications that include OpenMP
directives (CAM, GTC, MILC and MiniDFT), we also perform
hybrid MPI+OpenMP calculations with 16 tasks per node and
use HT by assigning two OpenMP threads per MPI task.
Contrasting these results to those of the MPI+HT test may
clarify whether performance enhancements associated with HT
(if any) are due to on-node latency-hiding or changes to the
communication topology. The fifth use case combines the
hybrid applications with HT and CS. Each node hosts 15 MPI
tasks with two threads apiece, and one core is set aside for CS.
TABLE I. lists the aprun options used to launch the executable
in each experiment. For experiments using CS, the following
environment variables were used to enable the MPI Progress
Engine: MPICH_NEMESIS_ASYNC_PROGRESS=1,
MPICH_MAX_THREAD_SAFTETY=multiple.

TABLE I. APPLICATION BENCHMARKING EXPERIMENTS.

Experiment aprun options
MPI-Only -N16
MPI+HT -N32 -j2
MPI+HT+CS -N31 -r1 -j2
Hybrid+HT -N16 -d2 -j2 -cc numa_node
Hybrid+HT+CS -N15 -r1 -d2 -j2 -cc numa_node

The Intel compiler and MKL libraries are the default
programming environment and were used to compile all
applications except PARATEC, for which the Cray compiler
and Libsci libraries were used.

C. Application performance results
Results of the application benchmark experiments are listed

in TABLE II. HT enables runs with twice as many processes
per node, but the added competition for CPU resources roughly
doubles their runtimes. If HT offers performance advantages,
then the runtime will increase by less than a factor of two.
Conversely, CS may decrease runtimes, but at the cost of slight
increases in the number of nodes required. To account for a
large range of absolute performance and resource allocations,
we use performance per node (i.e., FlopCount / Runtime /
NodeCount) as the basis for comparing multi-core use modes.

 Fig. 6 shows the performance per node for each
application code, relative to the MPI-Only performance. The
MPI+HT columns (red) are typically greater than one
indicating that HT improves performance per node for all
applications except MAESTRO and MILC, and minimally for
GAMESS. The Hybrid+HT mode outperforms the MPI+HT
mode for MILC, but is worse for all other codes. CS (green and
blue) impedes performance of all codes. The remainder of this
section analyzes the performance of individual codes in more
detail.

1) CAM
The CAM benchmark reports the time spent in the 'stepon'

region, which is CAM’s main time-stepping section over the
dynamical and physical cores. Communication in this
benchmark is dominated by vector gather/scatters in both the
physics and dynamics and waits associated with the point-to-
point communications in the dynamics. Besides the waits, non-
blocking communications contribute very little to the overall
run time. HT significantly increases the runtime, but uses half
as many nodes, resulting in a 20% net increase in performance
per node. This improvement is likely due to HT taking
advantage of instruction stream stalls. The total amount of time
spent in MPI communications also very nearly doubles
indicating there is little overlap in communication and
computation that the second thread can exploit. Indeed, the
increase in communication is largely dominated by the waitalls
associated with point-to-point communications. When CS is
added, the overall stepon time increases again, largely due to
increases in MPI communications time. In this case, even non-
blocking communication time increased so the overall increase
in communication time may result from more communications
having to go off-node (to processes that were displaced by CS)
even though there is less contention for the network on node.

TABLE II. BENCHMARK RESULTS

Code Runtime (s)
MPI MPI+HT MPI+HT+CS Hybrid+HT Hybrid+HT+CS

CAM 156 259 270 147 168

GAMESS 487 963 >1800 N/A N/A

GTC 515 833 829 665 687

IMPACT-T 280 483 491 N/A N/A

MAESTRO 885 1540a 1700a N/A N/A

MILC 544 1168 1129 538 >7200

PARATEC 201 356 353 N/A N/A

Mini-DFT 325 575 594 348 N/A
a. MAESTRO results with HT use 24 processes. See text.

Fig. 6. Application performance per node, relative to MPI-Only case. Values
greater than 1.0 indicate that HT increases in application throughput.

The Hybrid+HT case is interesting in that runs in nearly the
same time (slightly less) as the MPI only case, indicating that,
while each thread has one-half the work of an MPI-only task,
each thread is sharing the total number of cycles approximately
equally. These two effects balance each other so that the run
time is very close to that of the MPI-only case. Profiling with
IPM reveals that, while the run time decreased slightly relative
to the MPI only case, the total amount of MPI time hardly
changed, in agreement with the fact that no MPI calls occur
within OpenMP regions, so threading has no impact on the
number of MPI calls or the volume of data transferred by MPI.
When we add CS (Hybrid+HT+CS), we note that the run time
increases, as did adding CS to the MPI+HT case, even though
the overall amount of time spent in MPI routines increases,
possibly for the same reasons.

2) GAMESS
HT has no significant impact on GAMESS performance.

The majority of the GAMESS benchmark time is spent
transforming and contracting 4-index arrays- operations that
can be implemented with BLAS routines that do not benefit
from HT. The computational intensity of the transformations is
high, and the DDI data-servers ensure good overlap between
communication and computation, so doubling the
communication volume per node via HT does not influence
GAMESS performance. The GAMESS calculations using

DDI+HT+CS took more than twice as long as DDI+HT and
did not complete within the allocated runtime. This is difficult
to explain; it is possible that this DDI data-server
implementation is not compatible with the MPI asynchronous
progress feature.

3) GTC
GTC exhibits a 23% increase in performance per node

when switching from MPI-only to MPI+HT, with 13% coming
from HT’s latency hiding effects (during the charge deposition
and interpolation phases of the PIC algorithm), and 10% from
the increased locality of the MPI_Allreduce functions. (With
HT, all 32 particle domains within a toroidal domain are on the
same node.) The Hybrid+HT run is 15% slower than the MPI-
only run, suggesting that HT does not compensate for OpenMP
thread synchronization. This underscores the observation that
a large fraction of the MPI+HT performance improvement is
due to reduced MPI communication volume and improved
topology.

4) IMPACT-T
IMPACT-T’s performance per node increases by 15%

when HT is enabled. Roughly half of this improvement is due
directly to recouping processor resources that are underutilized
when running without HT. Interpolation of the electric field
from the grid to the particles requires many random memory
accesses, and HT can take advantage of these interruptions to
the instruction stream. The other half of IMPACT-T’s
performance improvement is due to MPI_Allreduce and
MPI_Barrier functions, which (for IMPACT-T) do not increase
when HT is used. IMPACT-T spends very little time in non-
blocking MPI functions, so CS has little potential to improve
its absolute performance and decreases its performance per
node.

5) MAESTRO
MAESTRO jobs that used more than 24 MPI processes per

node consistently fail. (We are continuing to investigate and
address these errors.) In TABLE II. and Fig. 6, the MPI+HT
and MPI+HT+CS results are for 24 processes per node. This
limitation makes MAESTRO’s performance per node node
anomalously low because one quarter of the node’s CPU
resources are not used.

To better understand MAESTRO’s performance with
respect to HT, we ran with 16 processes per node and pinned
all processes to cores on the first socket. The benchmark time
for the single-socket HT run was 1482.1 s, which corresponds
to a 19% increase in performance per socket used (but leaves
half of the allocated sockets unused). The network bandwidth,
data volume and topology are the same as the MPI-only case,
so this improvement is due entirely to HT’s latency hiding
effects, which is not surprising in light of MAESTRO’s
irregular memory access pattern.

6) MILC
The reported benchmark times for MILC are for the main

computational section and exclude any initialization or I/O
overhead. Communication in MILC is dominated by the
MPI_Allreduce required by its conjugate gradient solver and
waits associated with non-blocking communications. The
actual non-blocking calls (Isend/Irecv) take little time in

comparison. Furthermore, all of the MPI calls are serialized on
the master thread with no MPI communications occurring in
OpenMP regions. Adding HT to the MPI-only case more than
doubles the run time. Examining the ‘compute time’ (run time
– MPI time), we note that the compute time of the MPI+HT
case more than doubles, strongly implying that there is
contention for memory resources between the two tasks.
Adding CS slightly decreases the run time; however, while the
MPI time relative to the MPI+HT runs goes up, the 'compute
time' goes down relative to the the MPI+HT case. This result
may be a combination of MPI wait and collective times
increasing due to the greater off node communication and
compute times decreasing because CS is handling more system
services (e.g. I/O) on node.

As with CAM, when running with two OpenMP threads
per MPI task (where each thread has half the work of an MPI-
only task) the run time is nearly the same as the MPI only run
as each thread's instruction stream is nearly perfectly
interleaved. The amount of time spent in MPI calls is also
nearly the same since only one OpenMP thread is handling
MPI traffic. Adding CS presents an interesting problem as the
run did not finish after two hours, which was more than
sufficient time to complete based on previous runs and
experience. Indeed, similar runs (384 and 1536 MPI tasks) on
smaller models completed in the expected time.

7) PARATEC
HT improves PARATEC’s performance per node by 13%.

Closer examination of the profiling data collected with IPM
shows that when the MPI time is excluded, HT decreases
performance per node by 3%. This is expected because
PARATEC’s computation phases are dominated by extremely
efficient BLAS and FFT kernels. The MPI_Allreduce function
accounts for the largest fraction of PARATEC’s MPI time, and
increases by only 12% when HT is enabled. This is consistent
with a prefix-sum reduction that sends the same volume of data
off-node (or off-blade) regardless of the number of ranks per
node.

CS provides very little improvement for PARATEC’s
absolute performance and decreases its performance per node.
It is not surprising that PARATEC does not benefit from CS;
PARATEC uses non-blocking MPI calls only for the parallel
transpose phase of the 3D-FFTs, and very little computation is
available to overlap with communication.

8) MiniDFT
For MiniDFT, the MPI+HT runs have 13% higher

performance per node than MPI-only. This improvement is due
to a decrease in the fraction of time spent in MPI_Barrier calls.
MiniDFT uses only half of the available cores during the
diagonalization phase of the SCF cycle- the others wait in an
MPI_Barrier, creating a significant load imbalance. HT
provides a performance benefit during this because the
diagonalization processes can monopolize more processor
resources on cores that are shared with waiting processes.
Comparison of the MPI and Hybrid+HT times also indicates
that MPI behavior is responsible for the improved performance
of the MPI+HT run. MiniDFT does not use non-blocking
communication functions and does not benefit from CS. The

Hybrid+HT+CS run was not attempted because it requires
more nodes than are available on the current Edison system.

V. CROSS-PLATFORM PERFORMANCE COMPARISON
The “NERSC-6” SSP suite consists of all the codes in the

preceding sections excluding MiniDFT. To compare the XC30
and XE6 architectures we show, in Fig. 7, the performance per
core for the SSP benchmarks using the MPI-only settings from
TABLE I. Edison improves upon Hopper’s performance per
core by 1.7 – 3.0x. MILC’s improvement is somewhat less
dramatic than other codes, which is due in part to its high
concurrency, which forces use of the rank-3 network that has
significantly lower bandwidth than the intra-group networks.
MILC may also have lower performance gains because Edison
has fewer cores per node than Hopper, so a larger fraction of
the MPI calls used for its 4-D halo exchange require off-node
communication. Fig. 7 also shows the relative change in
performance per node for the MPI-Only case, which may be a
fairer basis for comparing the systems because electrical power
per node is the same on both systems. For the “optimized”
performance per node, we select the best performing HT and
CS use mode for each code. Core for core, Edison is 2.2x faster
than Hopper (based on geometric mean on SSP benchmarks).
On a node-for-node basis, Edison is 1.4x faster, and offers 1.6x
greater throughput if HT is used.

VI. CONCLUSION
We have evaluated the performance of Edison, the first

phase of the Cray XC30 system being installed at NERSC. Our
measurements of the point-to-point latency (1.5µs) and bi-
directional bandwidth (15GB/s) for the Aries interconnect
match earlier reports from a prototype system, and constitute
significant improvements over the Cray XE6. Dramatic
increases in global bandwidth are reflected in the performance
and scalability of all-to-all communication benchmarks. We
have measured the effects of HT and CS on the performance
of a suite of benchmark applications. HT increases
performance for six of the eight codes studied, and CS hurts
performance for all but one code. Based on the NERSC-6 SSP
benchmarks, Edison 2.2x faster per core than Hopper, and 1.4x
faster per node. Selective use of HT increases Edison’s
performance per node to 1.6x that of Hopper.

Fig. 7. Relative performance for SSP benchmarks on Edison and Hopper.

REFERENCES
[1] Kessler, R. E. and Schwarzmeier, J. L., “Cray T3D: A New Dimension

for Cray Research,” Proc. Papers, COMPCON Spring ‘93, San
Francisco (February): 176-182, 1993.

[2] Scott, S. L. and Thorson, G. M., “The T3E Network: Adaptive Routing
in a High Performance 3D Torus,” Proc. HOT Interconnects IV,
Stanford University, August 15-16, 1996.

[3] H. Pritchard, D. Roweth, D. Henseler, and P. Cassella, “Leveraging the
Cray Linux Environment Core Specialization Feature to Realize MPI
Asynchronous Progress on Cray XE Systems,” Proc. Cray User Group,
2012

[4] K. Antypas, T. Butler, J. Carter, “The Hopper System: How the Largest
XE6 in the World Went From Requirements to Reality”, Proceedings of
Cray User Group, 2011

[5] G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alverson, T.
Johnson, J. Kopnick, M. Higgins and J. Reinhar, “Cray Cascade: a
Scalable HPC System based on a Dragonfly Network,” SC12,
November 10-16, 2012, Salt Lake City, Utah, USA

[6] Gottlieb S, and S. Tamhankar, Benchmarking MILC code with OpenMP
and MPI. Nucl.Phys.Proc.Suppl. 94 (2001) 841-845

[7] D. Bureddy, H. Wang, A. Venkatesh, S. Potluri, and D.K. Panda,
“OMB-GPU: A Micro-Benchmark Suite for Evaluating MPI Libraries
on GPU Clusters, Recent Advances in the Message Passing Interface,
Lecture Notes in Computer Science, Treff, Jesper Larsson, Benkner,
Siegfried Dongarra, Jack J., Eds., Springer Berlin Heidelberg, 2012.
Available from http://mvapich.cse.ohio-state.edu/benchmarks/

[8] Antypas, K., Shalf, J., Wasserman, H., “NERSC-6 Workload Analysis
and Benchmark Selection Process”, LBNL Technical Report, August 13,
2008, LBNL 1014E

[9] Intel Corp., “Intel 64 and IA-32 Architetures Optimization Reference
Manual, Intel Order Number 248966-025”, June 2011

[10] H. Shan, N. J. Wright, J. Shalf, K. A. Yelick, M. Wagner, and N.
Wichmann, “A preliminary evaluation of the hardware acceleration of
Cray Gemini interconnect for PGAS languages and comparison with
MPI”, SIGMETRICS Performance Evaluation Review 40 (2012) 92-98

[11] J. Carter, Y. He, J. Shalf, H. Shan, E. Strohmaier, H. Wasserman, “The
Performance Effect of Multi-Core on Scientific Applications”, Proc.
Cray User Group, 2007, May 2007, LBNL 62662

[12] BoxLib http://ccse.lbl.gov/BoxLib/index.html
[13] Cray Inc. “The Gemini Network”, Rev 1.1, August 8, 2010

