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mlRho – A Biology Application 

•  mlRho software: a serial program that estimates mutation, recombination 
and sequencing error rates 

•  SciAPT assisting Biologists at IU 
•  Data-parallel, hundreds to thousands of iterations can be performed 

independently 
•  I/O is the limiting factor 
•  Open source, available here: https://github.com/CIPaGES/mlrho 
•  Biologists came up with a plan to do the analyses on tens of genomes 
•  A total need of ~6 millions compute hours 



XSEDE 

•  XSEDE is the place to go if you are looking for millions of compute hours 
•  Need a proposal, with performance and scalability numbers 
•  Did not have an easy way to do this on Kraken 
•  Did our experiments on Ranger and Stampede 

•  Using BigJob, and 
•  An MPI wrapper  

•  But found a couple of solutions on how to do this on a Cray 
•  Put some more effort into this given that IU has its own Cray  



What is an ensemble of serial jobs? 

•  A set of serial jobs that are ready to go 
•  The ensemble of serial jobs are not sequential 
•  They are all ready to go at the same time 

•  Usually independent, data-parallel, parameter-sweep type applications 
•  When do we need specific tools? 

•  Total workload: 100 serial jobs? 1000? 10,000? 
•  100,000 compute hours? 1 Million? 
•  Concurrency 
•  A few serial jobs at a time is a separate discussion 



Traditional v. Non-traditional 

•  Traditional fields: physics, math, astronomy, chemistry, etc. 
•  Highly parallel, MPI applications 

•  Non-traditional fields: biology, bioinformatics, finance, geology, psychology, 
etc.  

•  Serial, non-scalable, analytical, text-processing 
•  The diversity of users and applications is increasing as computing becomes 

cheaper 
 



Why do we want to run these jobs on a Cray? 

•  General Purpose machines 
•  Hopper 
•  Kraken 
•  Big Red II 

•  Users will have to use compute hours where they can find them 
•  Cray machines are becoming more and more common 

Image	  Sources:	  h/p://www.nics.tennessee.edu/compu8ng-‐resources/kraken,	  h/p://www.nersc.gov/users/computa8onal-‐systems/hopper/,	  
h/p://newsinfo.iu.edu/pub/libs/images/usr/15356_h.jpg	  
	  
	  



Why not let the users figure this out? 

•  Running serial jobs on a Cray is not a 
difficult task 

•  There is a good chance that users will 
just submit serial jobs 

•  Without shared node scheduling, 90% 
of a compute node is unutilized 

•  Processor parallelism has been 
growing 

•  So has cores per compute node 
•  Need tools and queue policies to avoid 

this 
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A survey of solutions 

•  Shared node computing using Cluster Compatibility mode (CCM) 
•  Service needs to be provided by the admins 

•  Using regular batch job submission 
•  with or without packing all the cores on a node 
•  aprun and back grounding the jobs 

•  PCP – parallel command processor 
•  BigJob – SAGA based pilot-job tool 
•  Swift – a parallel scripting language 



Adapt to Queue Policies 

•  Why don’t we stick to aprun?  
•  The users can be told to pack enough jobs per node 
•  Or the users will waste 90% of their allocation 

•  But, even with this solution, the user is required to submit many single node requests 
to the scheduler 

•  Many centers with large Cray machines prioritize or prefer large jobs  
•  Scheduler policies, discounts, etc. 

•  Need a tool that allows one to bundle as many serial jobs as needed in to one large 
job of a size that makes it appropriate for a particular machine  

•  Should make it possible to use multiple compute nodes and all the cores on an 
individual node  

•  Allows users to adapt to the available machines and their policies 



BigJob, PCP and aprun 

•  Out of all the tools we found, we chose these three 
•  Reason for that: 

•  Previous experience with BigJob, can be used as a container job 
•  PCP is easy to use, can be used to bundle jobs 
•  aprun is the default choice, used as a baseline 

•  PCP is a really simple tool, thank NICS user support group for referring PCP 
•  BigJob is more sophisticated 

•  Gives the users more options and control over workflow 
•  But adds complexity 



BigJob 

•  Developed	  and	  supported	  by	  the	  RADICAL	  Lab	  at	  
Rutgers	  University	  

•  Not	  necessary	  to	  understand	  the	  architecture	  
•  There’s	  an	  API.	  
•  A	  python	  script	  defines	  the	  workload	  
•  Asks	  the	  scheduler	  for	  nodes	  
•  Runs	  the	  jobs	  
•  Need	  to	  understand	  more	  if	  you	  are	  

running	  jobs	  across	  mul8ple	  machines	  
•  Can	  be	  used:	  

•  as	  a	  container	  job,	  	  
•  to	  distribute	  jobs	  to	  mul8ple	  resources	  	  
•  to	  coordinate	  the	  launch	  and	  interac8on	  of	  

jobs	  within	  the	  container	  
•  And	  to	  design	  lot	  of	  other	  exo8c	  workflows	  

•  We	  use	  it	  as	  a	  simple	  container	  job	  

Image	  source:	  h/ps://github.com/saga-‐project/BigJob/wiki/BigJob-‐Architecture	  



More about BigJob 

•  Available for download from the Python Package Index 
•  API preview: 

•  Job request submitted to the scheduler 

"service_url": "xt5torque+gsissh://kraken.nics.xsede.org",!
"number_of_processes": 960,!
"allocation": "TG-123456",!
"queue": "debug",!
"working_directory": "/work/user/",!
"walltime":120, #minutes!
 



Individual mlRho job descriptions: 
 

for i in range(0, NUMBER_JOBS):!
 compute_unit_description =!

!"executable": "/work/user/mlRho",!
!"arguments": ![" -m "+ str(start) +" -M "+ str(end)+ !" 

-n profileDb"],!
!"number_of_processes": 1,!
!"spmd_variation":"single”,!#MPI or serial!
!"working_directory":"/work/user/",!
!"output": "output"+str(i)+".out",!
!"error": "error"+str(i)+".err”,!

!



Need to know basis… 

•  The user only needs to know what the software can do for them and how to 
get the software to do it 

•  The only interaction the user has with the BigJob software is via the python 
job submission script 

•  which takes in the same details as a batch job submission script.  
•  A quick-start guide is available on the BigJob website

https://github.com/saga-project/BigJob/wiki/BigJob-Tutorial-Part-3:--
Simple-Ensemble-Example 

•  Good to be familiar with python 



Parallel Command Processor (PCP) 

•  Original implementation of the tool was produced by the Ohio 
Supercomputer Center (OSC)  

•  Ported by the NICS team to work on a Cray specific architecture 
•  The source code of PCP is available from NICS 
•  Tested this code on multiple Cray machines, works as expected. 
•  PCP expects a text file containing a list of commands to be run 
•  We have used PCP to run hundreds of mlRho jobs concurrently.  
•  Basic scripting knowledge useful in creating text files with the jobs that need 

to be executed 
•  The barrier to entry for using PCP is very low compared to other similar tools 



More about PCP 

•  Build as simple as: “cc pcp.c” 
•  “aprun -n 512 ./pcp list.txt”!
•  Where list.txt contains the 512 commands to run:  
 
mlRho -m 1000 -M 1005 diatom.pro > out_1!
mlRho -m 1006 -M 1010 diatom.pro > out_2!
.!
.!
.!
mlRho -m 2551 -M 2555 diatom.pro > out_511!
mlRho -m 2556 -M 2560 diatom.pro > out_512!
!



All the advantages of a container job… but 

•  No control over job management 
•  Job/load balancing not available 
•  For very similar jobs that are independent and have the same running time, 

both BigJob and PCP work.  

BigJob	   PCP	  

Container	  Job	   X	   X	  

Job	  Management	   X	  

Load	  Balancing	   X	  

Data	  Management	   X	  

API	   X	  



aprun 

•  The default choice 
•  Scripts that each contain as many binary commands as there are cores on a 

single node 
•  Cannot runs jobs across multiple nodes 
•  Without CCM, whether we can run more than one unique job on a single 

node is questionable 
•  If there are 1000,000 jobs to run, need to submit ~10,000 separate jobs 
•  Lot of scripting 

 



The usual batch script 

•  On Kraken: aprun -n 1 -d 12 -cc none -a xt run.sh!
•  -n 1 # run on a single node  
•  -d 12 # allows the script to access all the cores on a node  
•  -cc none # allows each serial process to run on its own core  
•  -a xt # required by aprun to run a script instead of a program 

•  Where run.sh contains:  
mlrho -m 1 -M 2500 input.pro > data1.out &!
mlrho -m 2501 -M 5000 input.pro > data2.out &!
.!
.!
.!
mlrho -m 27501 -M 30000 input.pro > data12.out &!
wait!



Experiments on Kraken 

•  A trial run to see if:  
•  The tools work 
•  check whether it is beneficial to bundle serial jobs in general into 

larger jobs to get better throughput. 
•  Metric of interest is total time to solution 
•  Disclaimer: not useful to make broad generalizations, either with respect to 

Kraken or other large machines, further studies are planned to support more 
general claims 



Workload 

•  Kraken is a 112,896 core Cray XT5 machine operated by NICS 
•  A variety of queues are supported 
•  Same workload with all three tools on Kraken 
•  We selected a job size of 960 cores, which is 80 compute nodes on Kraken  
•  One instance of mlRho was run on each core and, in the runs where actual 

computations were done, ran 250 iterations on a zebra genome.  
•  Yes, we just collected the queue wait time in all but one experiment 

•  Can’t waste those SUs! 



Experiments 

•  BigJob and PCP: 
•  Single set of experiments will work 

for both 
•  A single job is submitted to the 

queue in both cases, requesting 80 
nodes 

•  aprun: 
•  80 separate single node job 

requests submitted to the queue  
•  Experiments repeated 5 times 
•  Surprising result:  

•  BigJob/PCP type took 52 hours 
•  aprun type took 6 hours 
•  mlRho runtime is ~4 hours 

52#

6#

0#

10#

20#

30#

40#

50#

60#

BigJob/PCP# aprun#

Ti
m
e%
to
%C
om

pl
e+

on
%in
%h
ou

rs
%



Analysis 

•  It appears that aprun was faster than PCP/BigJob 
•  But need to consider many factors 
•  While this may be true at 80 nodes, it may not be true at 120 or 200 nodes 
•  Many machines have queued and run limits: 

•  the number of jobs from one user that can be queued at a time  
•  The number of jobs from one user that can be running at a time 

Kraken	   Hopper	  

Queued	  Limit	   100	   16	  

Run	  Limit	   25	   16	  

•  Hopper	  has	  a	  separate	  throughput	  queue,	  where	  the	  queued	  limit	  is	  500	  
and	  run	  limit	  is	  250,	  but	  a	  maximum	  of	  only	  2	  nodes	  can	  be	  requested	  per	  job	  
•  The	  run	  limit	  on	  Kraken	  is	  probably	  not	  being	  enforced	  



Other factors 

•  Backfilling: 
•  the backfilling algorithm attempts find any unused nodes or “holes” in the 

schedule and fill them with appropriately sized jobs 
•  While BigJob/PCP jobs were submitted with a gap of multiple days, all 80 of the aprun 

jobs were submitted simultaneously.  
•  It is possible that all 80 jobs re-used a single, since these jobs were only collecting 

waiting time 
•  We recorded all the node numbers of the compute nodes that our jobs ran on 

•  With the exception of one set of runs the number of unique nodes used for the 
80 jobs was in the 65-80 range.  

•  One set ran on the same five nodes, however this set of runs did not have the 
smallest overall wait time 

•  it had the third longest wait time in the set of five aprun submissions 



Conclusion 

•  Non-traditional applications on the Cray are one the rise 
•  Both Cray and non-traditional users are moving towards each other 

•  Parametric sweeps are not new to the supercomputing field, they are new to Cray 
supercomputers. 

•  Previous obstacles to running multiple binaries on the same compute node have now 
been overcome 

•  Submitting separate single node job requests to the scheduler is straightforward and 
easy to implement 

•  BigJob and PCP are more elegant, offer the ability to submit much larger job requests 
•  can be advantageous depending on site specific policies  

•  Factors specific to the application, machine, scheduler policies and ease of use 
determine best tool for the task 
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