Tools to Execute An Ensemble of
Serial Jobs on a Cray

Abhinav Thota*, Scott Michael*, Sen Xu*, Thomas G. Doak*, Robert Henschel*
*Indiana University, Bloomington, IN 47403
{athota, scamicha, henschel} @iu.edu, {senxu, tdoak} @indiana.edu

Abstract—Traditionally, Cray supercomputers have been lo-
cated at large supercomputing centers and were used to run
highly parallel applications. The user base consisted mostly of
researchers from the fields of physics, mathematics, astronomy
and chemistry. But in recent times, Cray supercomputers have
become available to a wider range of users from a variety
of disciplines. Examples include the Kraken machine at the
National Institute for Computational Sciences (NICS) [1], Hopper
at the National Energy Research Scientific Computing Center
(NERSC) [2], and Big Red II at Indiana University [3]. Pre-
dictably, as the diversity of end users has grown, the workload has
expanded to include a variety of workflows containing serial and
hybrid applications, as well as complex workflows involving pilot-
jobs. Projects that employ a massive number of serial jobs—in an
embarrassingly data-parallel manner-have not been targeted to
run on Cray supercomputers. To accomplish such projects, it is
usually necessary to bundle a large number of serial jobs into
a much larger parallel job, via either a pilot job framework,
an MPI wrapper, or custom scripting. In this article, we explore
several of the current offerings for bundling serial jobs on a Cray
supercomputer and discuss some of the benefits and shortcomings
of each of the approaches. The approaches we evaluate include
BigJob, PCP, and native aprun with scripts.

I. INTRODUCTION

Over the past decade, supercomputing resources have be-
come increasingly accessible to the individual researcher. As a
result, the number of researchers and the breadth of scientific
disciplines using supercomputers has steadily increased. As a
natural result, there is now a tremendous amount of diversity
in both the science domains and the workflows of the user
base of supercomputers. In tandem with the increase of user
numbers and diversity, the number of applications supported
on supercomputing resources has grown. Though it is still
primarily the case that the consumers of the largest amount
of supercomputing resources come from the core fields of
physics, mathematics, astronomy and chemistry, one can ob-
serve an increasing number of users from the fields of biology,
bioinformatics, finance, geology, and psychology.

With this influx of new users in a more diverse range of
scientific domains, the thinking on what kinds of applications
are considered appropriate to run on a supercomputer has
shifted. While parallel jobs are widely recognized as being
most suitable to be run on a supercomputer, a growing percent-
age of the total workload is now serial jobs. Many users have
hundreds to thousands of very similar jobs, sometimes referred
to as parametric sweeps or data-parallel applications. These
workloads are common in the fields of bioinformatics and
biology. Other non-traditional serial jobs include data analysis
applications with extremely large data volumes, which may
require large amounts of memory.

30
25 - 24
2
20 -
0]
o
§15 7 12
S10 -
5 —
0
Kraken Hopper Big Red Il
(2009) (2010) (2013)

Fig. 1: Over the years, processors have become more and more
parallel. The chart shows the number of cores per compute
node on Kraken, Hopper and Big Red II and the year the
machines were launched. Each of these machines have two
processors per computer node, but the number of cores per
node has been increasing.

Juxtaposed with the changing landscape of workloads is
the fact that processors are becoming more and more parallel.
For example, Kraken at NICS has 12 cores per node, Hopper
at NERSC has 24 cores per node and Big Red II at Indiana
University has 32 cores per node, as shown in Figure 1. The
only way to ensure high levels of core utilization on a large
machine, while welcoming a diverse set of users, is to put
in place helpful tools and policies to enable both traditional
users and massively serial users in making effective use of
supercomputing resources.

Over the past several months our research group has had
no small amount of experience with this very issue. For this
project we investigated genomic data using a software package
called mIRho. The mIRho software is a serial program that
estimates mutation, recombination, and sequencing error rates
from genome sequences [4]. To complete an analysis for a
variety of different species and individuals, we estimated that
the mlRho program would require ~6 million core hours.
mlRho jobs are extremely data parallel, in that the hundreds
of thousands of iterations needed per genome in the linkage
disequilbrium method used for analysis can all be performed
independently. To complete the planned analysis, we routinely

ran hundreds to thousands of mIRho jobs in parallel. Generally
speaking, there are two ways to run many serial jobs simulta-
neously: using the existing job submission scripts or using a
specialized tool. In both cases, we wanted to make sure that
we were fully utilizing all of the resources on a node.

The primary goal of this paper is to list the different tools
which help serial application users run their jobs efficiently.
Many of the tools that we will list here are not widely known
to the community. When selecting a tool for managing many
serial jobs, users must consider a variety of factors beyond
the efficacy of the tool and its ease of use. For example,
many computing centers limit the number of jobs that a user
can submit to the batch system and the number of jobs that
can be running concurrently, which can adversely impact the
throughput of the simplest script based methods. To deal with
this potential shortcoming, we present in this paper two tools
which can be used to redesign job submissions to more closely
suit a center’s policies. We also test a simple script based job
submission method and present the results.

To evaluate these different bundling options, we have
worked with a group of biologists at Indiana University,
who are using mlRho[4]. Given the non-trivial amount of
computational resources required, we assisted in preparing
an XSEDEJS5] allocation request and conducted a survey of
tools that could be used to bundle serial jobs on the Cray
supercomputer Kraken at NICS. We present these findings
for the mIRho code as a case study of the BigJob, PCP,
and aprun serial job bundling approaches, and will describe
ways in which users with hundreds of thousands of serial jobs
can efficiently bundle and run their projects on large Cray
machines.

Some of the other solutions that have been suggested
previously include enabling shared nodes using cluster compat-
ibility mode for serial jobs[6] and Swift[7], a parallel scripting
language. While end users can take advantage of the shared
node setup without making any significant changes to their
workflow, they would definitely need to make some changes
to take advantage of Swift and some of the tools we suggest
in this paper.

The rest of the paper is organized as follows: in section
II, we introduce the scientific problem we are working on. In
section III, we introduce the tools that can be used to run serial
jobs on a Cray. In section IV, we describe the experiments we
have conducted on an XSEDE machine Kraken, compare the
different tools and discuss the list of things to consider before
choosing a particular tool. We conclude the paper in section
V.

II. SCIENTIFIC BACKGROUND

The amazing biodiversity on our planet has fascinated hu-
mans for thousands of years. To understand how this diversity
arises and is maintained, it is critical to determine fundamen-
tal ecological and genetic parameters (e.g., population sizes,
recombination rates) for a range of species. These parameters
play important roles in creating opportunities for increasing
genetic diversity, population divergence, and speciation. The
mlRho software is a package which uses next-generation
genomic sequencing to generate a novel measure of linkage
disequilibrium. Deploying mlRho on XSEDE resources has

allowed us to study these important population-genetic param-
eters in a broad assembly of eukaryotic genomes.

Although there are several methods for determining recom-
bination rates, they can be both time and resource intensive.
The mlRho software employs a novel analytic approach that
uses a new metric called the zygosity correlation coefficient,
which is estimated using maximum likelihood (ML) meth-
ods. It only requires single individual genome sequences,
but is extremely data intensive. Using mlRho and XSEDE
computational resources, we have been able to examine the
recombination rates of a plethora of species with accuracy that
was previously unachievable.

A. Program Description

The underlying data consists of assembled sequencing
reads obtained from a single diploid individual. Such data are
collected, for example, for the 1000 human genome project.
mlRho reads a profile consisting of the number of each
nucleotide (A, C, G, and T) from a file at each sequenced
position. Given a mutation and error rate, mIRho computes two
probabilities for each profile: the probabilities of observing the
profile given that the position is either mutated (heterozygous),
or not (homozygous). These probabilities depend on the muta-
tion and error rates. By varying these, mlRho finds the values
that maximize the overall likelihood of the data.

While mutation and sequencing error affect individual
genome positions, recombination uncouples the evolutionary
history of pairs of positions. This is observable as a decor-
relation of the zygosity states between pairs of positions. To
estimate recombination, mlRho computes the probability of
observing profile pairs separated by, say, 1000 nucleotides.
This is a function of the recombination rate and the single
position likelihoods.

III. TOOLS TO RUN SERIAL JOBS ON A CRAY

Running serial jobs on a Cray is not a difficult task. The
difficulty lies in running serial jobs in such a way that we
are: (i) using all the cores on a node, and (ii) are not putting
ourselves at a disadvantage by submitting a lot of single node
requests when the scheduler is set up to prioritize large jobs
or vice versa. The administrators at a supercomputer center
usually configure the job scheduler in a way that best supports
the mission of that particular supercomputer . There can be
many types of queues that the users can submit to. Common
configurations include queues for serial jobs, and queues for
small, medium, and large jobs, where the specific size of small,
medium, and large depend heavily on the size of the system.

Cray supercomputers are usually designed to run highly
parallel applications on thousands of processors. The compute
nodes on a Cray cannot be shared by multiple users. Therefore,
it is highly inefficient to submit single core jobs to the
scheduler, as only a single core per node will be utilized and
90% of the node is unused. At a minimum, the user has to
bundle enough jobs to use all the cores on a node. This can
be done by including enough job execution commands in a
job submission script. But, even with this solution, the user is
required to submit many single node requests to the scheduler.
What is needed is a tool that allows one to bundle as many
serial jobs as needed in to one large job of a size that makes

it appropriate for a particular machine. This tool should make
it possible to use multiple compute nodes and all the cores on
an individual node. We describe a few tools that can be used
to do this in the following sections. We do not go into the
implementation details, but rather present these tools from a
user’s point of view.

A. BigJob, a SAGA-based Pilot-Job

Biglob is a SAGA-based, general purpose pilot-job frame-
work. It is maintained by the Research in Advanced Distributed
Cyberinfrastructure and Applications Laboratory (RADICAL)
at Rutgers University [8]. Biglob can be used in many ways
— as a container job, to distribute jobs to multiple resources
or to coordinate the launch and interaction of jobs within the
container. But in this paper, we are using it as a container
job. The pilot-job/container job takes in all the serial jobs and
holds them. At the same time it also submits a job request big
enough to contain all of the serial jobs to the scheduler and
runs the serial jobs concurrently when the compute resources
become available. The software is written in Python and a basic
knowledge of Python is needed to work with the programming
interface. More information about the framework can be found
on the BigJob website [9].

We used BigJob to bundle our serial mIRho simulations;
BigJob is available on many XSEDE resources, such as
Kraken, Stampede, and Lonestar. Many researchers have suc-
cessfully used BigJob [10] to bundle hundreds of smaller jobs
into larger, more manageable groups of jobs [11, 12].

The BigJob tool is available for download from the Python
Package Index[13]. The only prerequisite is Python 2.6 or
higher. The architecture of BigJob is shown in Figure 2.
Though we will not go into the architectural details of BigJob,
as it is beyond the scope of this work, it is sufficient to say that
the architecture may appear quite complex due to the fact that
BigJob can be used for many different purposes. Briefly, to
achieve the goal of running a very large number of serial jobs,
a python script is created that the user edits and runs. This
script submits the container job to the scheduler and stores the
serial job descriptions in a database. As compute nodes become
available, the next serial job in the database is run. A pilot-
job size can be chosen to optimally match the job scheduler
policies on a particular machine.

BigJob maintains the list of processors allocated after the
job request becomes active. The user can design the BigJob
to assign these processors to start and manage smaller jobs.
The main benefit of doing this is that instead of submitting
thousands of single core job requests to the queue, we can
submit hundreds of large job requests (= 500 to 5000 cores) to
the queue. This reduces the overall number of job submissions
to the queue and thereby, to some extent, time spent waiting
in the queue. This job size is also more appropriate for many
of the larger machines. We have tested this on the Cray XT5
machine Kraken.

An example BigJob script would include the following
parts:

Information about the job request to be submitted to the
scheduler (with comments explaining code inline):

pilot_compute_description =

Pilat-API
1) create pilot —
- o i istribute:
Application) Pilot- _ bute
2) submit dweu o Manager » Cogrec:::'inzgon
User Desktop R
esource
A
| Resource Manager I
v
Pilot-Agent
Femmemmmmmem= peeemmmeme== pesmm——=————
1 Data Unit 3 1 Compute Unit i | Compute Unit i
1 P! ! 1
1 LY N ! P! 1
[’ ! App ! App |
: ! ! | Kernel ; V| Kernel !
1 Ll
i e o ‘| M BigJob/BigData
Resource] Application

Fig. 2: Biglob Architecture: The Application is a python
script that submits the container job to the scheduler and
manages the whole workflow. The Pilot-Manager and Pilot-
Agent are part of BigJob, which monitor and manage the jobs
based on instructions from the Application. It is possible to
manage both the compute and data parts of the workflow using
Biglob. A Distributed Coordination Service (a database) is
usually running on a separate resource and stores the job data
in key/value pairs. (Source: https://github.com/saga-project/
BigJob/wiki/BigJob- Architecture)

{ "service_url":
"xt5torque+gsissh://kraken.nics.xsede.org",
specify queuing system of scheduler
"number_of_processes": 960,

#total number of cores requested
"allocation": "TG-123456",

"queue": "debug",
"working_directory":
"walltime":120,
}

"/work/user/",
#minutes

Job descriptions of serial jobs to be run once the scheduler
allocates the resources. These can be specified in a for loop:

submit compute units

for i in range (0, NUMBER_JOBS) :
compute_unit_description = {
"executable": "/work/user/mlRho",
"arguments":

[" —-m "+ str(start) +" -M "+ str(end)+
" -n profileDb"],
"number_of_processes": 1,

fcores per executable
"spmd_variation":"single",

#MPI or serial
"working_directory":"/work/user/",
"output": "output"+str(i)+".out",
"error": "error"+str(i)+".err",

}

It is beneficial for the end user to know and understand all
these details, but it is not necessary. At the minimum, the user
only needs to know what the software can do for them and

https://github.com/saga-project/BigJob/wiki/BigJob-Architecture
https://github.com/saga-project/BigJob/wiki/BigJob-Architecture

how to get the software to do it. The only interaction the user
has with the BigJob software is via the python job submission
script, which takes in similar details as a batch job submission
script. A quick-start guide is available on the BigJob website
[14].

B. Parallel Command Processor

The Parallel Command Processor (PCP) tool was first
brought to our attention by the user support group at NICS.
The original implementation of the tool was produced by
the Ohio Supercomputer Center (OSC) [15] and the original
version was ported by the NICS team to work on a Cray
specific architecture [16]. The source code of PCP is available
from NICS [17]. We have tested this code on multiple Cray
machines and it has worked as expected.

The PCP binary expects a text file containing a list of
commands to be run. We have used PCP to run hundreds
of mIRho jobs concurrently. Basic scripting knowledge would
be useful in creating text files with the jobs that need to be
executed, however the barrier to entry for using PCP is very
low compared to other similar tools.

On a Cray, the command “cc pcp.c” can be used to build
the PCP binary. In the job submission script, hundreds of serial
jobs can be run with this command:
aprun -n 512 ./pcp list.txt
where 512 is the number of processor cores and list.txt

contains the list of jobs to be executed, for example, in the
case of mIRho, 512 commands in total:

mlRho -m 1000 -M 1005 diatom.pro > out_1
mlRho -m 1006 -M 1010 diatom.pro > out_2

mlRho -m 2551 -M 2555 diatom.pro > out_511
mlRho -m 2556 -M 2560 diatom.pro > out_512

It should be noted that PCP has all of the advantages of a
container job. We can adjust the number of serial jobs that are
run in one group as needed. But that is where the similarities
end, as we cannot control the execution workflow in more
sophisticated ways with PCP.

C. aprun

Another approach to executing a large number of serial
jobs is to generate a number of job submission scripts that
each contain as many binary commands as there are cores
in a single node. In order to conduct parameter sweeps, it is
fairly straightforward to write a script that will generate the
necessary job submission scripts for the range of parameters
of interest. In the case of mIRho we wrote a python script to
generate scripts of the form:

mlrho -m 1 -M 2500 input.pro > datal.out &
mlrho -m 2501 -M 5000 input.pro > data2.out &

mlrho -m 27501 -M 30000 input.pro > datal2.out &
wait

where the number of lines in the script is equal to the number of
cores per node. If this script is run. sh it can be invoked in the job
submission script on an XTS5 with 12 cores per node as:

aprun -n 1 -d 12 -cc none —-a xt run.sh

which will run each of the 12 commands on 12 separate
cores of a node.

IV. EXPERIMENTS ON KRAKEN

The purpose of these experiments is to satisfy two condi-
tions: (i) as a proof of concept that these tools can be used to
run hundreds of serial jobs on a Cray across multiple compute
nodes, and (ii) an effort to check whether it is beneficial to
bundle serial jobs in general into larger jobs to get better
throughput. For these tests the metric of interest is total time
to solution, that is, from the submission of the first job to the
completion of the final job. We should note that the results
are typically not useful to make broad generalizations, either
with respect to Kraken or other large machines without a lot
of qualifiers, and further studies are planned to support more
general claims.

We ran the same workload with all three tools on Kraken
and calculated the time to completion. Kraken is a 112,896
core Cray XTS5 machine operated by NICS. Researchers from
a wide variety of backgrounds use Kraken and a variety of
queues are supported. We selected a job size of 960 cores,
which is 80 compute nodes on Kraken. One instance of
mlRho was run on each core and, in the runs where actual
computations were done, ran 250 iterations on a zebra genome.

A. BigJob and PCP Experiments

With both BigJob and PCP, the processors are requested in
a single job submission to the scheduler. Therefore, a single set
of experiments suffice for BigJob and PCP. The experiments
were repeated five times; however, because we had a limited
number of core hours for testing on Kraken, the actual mlRho
workload was only run on the first submission. The rest of
the submissions were used to collect the queue wait times. We
used PCP to submit the jobs and we believe that the run times
would approximately be the same with BigJob too. We left a
gap of multiple days between each job submission.

While the actual run time of the workload is about 4 hours,
it took 52 hours on average for a job to complete. This is shown
in Figure 3.

B. aprun Experiments

To compare the BigJob and PCP frameworks to a more
basic job submission technique, we used a series of scripts
following the template outlined in section III-C. We wrote a
python script to generate 80 run.sh style scripts each of
which had 12 mlRho commands, which each ran 250 iterations.
The python script also generated 80 batch job submission
scripts with an aprun line like that in section III-C. Finally,
a master submission script that submitted all 80 of the batch
job submission scripts at once was written.

B u)]
o o o
| |

Time to Completion in hours
S
|

20 -
10 6
O -
Biglob/PCP aprun

Fig. 3: For a Biglob/PCP style experiment, one job of size
80 nodes was submitted to the scheduler, while 80 separate
jobs were submitted to the scheduler in the case of an aprun
experiment on Kraken. BigJob/PCP jobs took 52 hours on
average to complete, while the aprun jobs took 6 hours. The
experiments were repeated five times.

The experiments were repeated five times; however, be-
cause we had a limited number of core hours for testing on
Kraken, the actual mlRho workload was only run on the first
submission. The assumption is that the run time of the mIRho
program does not vary and is a constant offset. For the first
run we measured the mlRho runtime to be about 4 hours. The
other four sets of jobs were submitted to the queue but returned
immediately once the jobs started running. The average queue
wait time for the five sets of jobs was 2.2 hours. After adding
in the four hour runtime, this gives an average overall time to
completion of approximately six hours, as shown in Figure 3.

C. Analysis

The data from Figure 3 appears to suggest that submitting
80 separate single node job requests to the scheduler achieves
better throughput than a single large job request of 80 nodes.
However, it should be noted that this only applies to certain
types of jobs. There are a variety of policies in place at
different sites that may limit the overall throughput one can
achieve with single job submissions. For example, NICS has
a policy that allows a user to only have 25 simultaneously
running jobs. This is shown in Table I as “run limit”. Although
the NICS website says that there is a run limit of 25 jobs
per user on Kraken, it is unclear as to whether this policy is
currently being enforced because we were able to run a total of
80 jobs in just over 10 hours of total wallclock time. However,
if the policy were being enforced it would require a minimum
of 16 hours to complete 80 jobs with an average runtime of 4
hours each.

Another factor that can potentially effect the total time
to completion is the “queue limit”, which is the maximum
number of jobs a user can submit to the queue. On Kraken a
user can have a total of 100 jobs in the queue at any given

Kraken | Hopper
Queued Limit | 100 16
Run Limit 25 16

TABLE I: The tables shows queue limit, the maximum number
of jobs a user can submit to the queue and run limit, the
maximum number of jobs belonging to one user than can
simultaneously be running in the queue. Hopper has a separate
throughput queue, where the queued limit is 500 and run limit
is 250, but a maximum of only 2 nodes can be requested per
job in this queue.

time. Had the parameter sweep we were modeling been much
larger, we could easily have asked for 320 instead of 80 nodes
with the BigJob/PCP as a single job request, but would not
have been able to have more than 100 single node jobs in the
queue simultaneously with aprun.

Yet another factor that could be effecting the total time to
completion reported in Figure 3 is backfilling. Backfilling is
a scheduling feature used to maximize the resource utilization
by running jobs out of order[18]. Typically, the backfilling
algorithm attempts to find any unused nodes or “holes” in the
schedule and fills them with appropriately sized jobs. Since
these holes tend to be small, the backfilling algorithm generally
benefits jobs that request fewer nodes. Another potential issue
is that while there was a gap of multiple days between each
BigJob/PCP type experiment and each of the five repetitions
of aprun experiments, for a single set of aprun submissions, all
80 of the aprun jobs were submitted simultaneously. As four
sets of these sets of jobs exited immediately so that we only
measured the queue wait time, it is possible for several of the
nodes to be reused for subsequent jobs in the set of 80. This
in turn would result in a lower overall queue wait time for the
entire set of jobs. To see whether our experiment was affected
by this phenomenon, we recorded all the node numbers of the
compute nodes that our jobs ran on. With the exception of
one set of runs, the number of unique nodes used for the 80
jobs was in the 65 — 80 node range. One set ran on the same
five nodes, however this set of runs did not have the smallest
overall wait time, in fact, it had the third longest wait time in
the set of five aprun submissions.

In the end, the user needs to consider various factors
particular to the computational problem and local machine
policies to drive the decision making. Other factors to consider
include the priority that the scheduler assigns to jobs of various
sizes, wall clock limits and any service unit discounts that
may be available. For example, Hopper (NERSC) and Kraken
(NICS) currently provide discounts to users submitting large
jobs [19, 20]

V. CONCLUSION

As Cray machines become more widely available, the
number of researchers using them to run non-traditional ap-
plications is on the rise. We believe that both Cray and non-
traditional users are moving towards each other. Researchers
are adapting to the machines that are the most widely available
and can provide them with the largest number of compute

hours. Cray is providing the flexibility to run a variety of
applications with the Cluster Compatibility Mode.

Although parametric sweeps are not new to the supercom-
puting field, they are a more recent phenomena on Cray super-
computers. Previous obstacles to running multiple binaries on
the same compute node have now been overcome. Some chal-
lenges still remain, particularly in Extreme Scalability Mode,
such as not being able to obtain a node list. But workarounds
for these issues have been developed and deployed at many
sites.

We discovered many solutions when we ran into the
problem of running a parametric sweep application on Kraken.
The brute force solution of just submitting separate single
node job requests to the scheduler is straightforward and easy
to implement. But the more elegant solutions of BigJob and
PCP offer users the ability to submit much larger job requests,
which can be advantageous, depending on a site’s policies.
Although the barriers to entry for using each of these tools
are different, the user has to make an informed decision when
choosing one of these tools. The decision will have to depend
on many factors specific to the application, machine, scheduler
policies and ease of use.

ACKNOWLEDGMENTS

We would like to thank the SAGA-BigJob team at Rutgers
University for their help with Biglob on Kraken. We would
like to thank the user support team at NICS for providing the
source code and instructions for using PCP. This research was
enabled by IU’s advanced cyberinfrastructure, including the
Big Red II supercomputer and the Data Capacitor II storage
system, the implementation of which has been supported by
the Lilly Endowment through their support for the IU Pervasive
Technology Institute and the Indiana Metacyt initiative. This
work used the Extreme Science and Engineering Discovery
Environment (XSEDE), which is supported by National Sci-
ence Foundation grant number OCI-1053575.

REFERENCES

[1] “National Institute for Computational Sciences (NICS) at
the University of Tennessee ,” http://www.nics.tennessee.
edu/.

[2] “National Energy Research Scientific Computing Center
(NERSC),” http://www.nersc.gov/.

[3] “Big Red II at Indiana University,” http://kb.iu.edu/data/
beqt.html.

[4] B. Haubold, P. Pfaffelhuber, and M. Lynch, “mlrho
a program for estimating the population mutation and
recombination rates from shotgun-sequenced diploid
genomes,” Molecular Ecology, vol. 19, pp. 277-284,
2010. [Online]. Available: http://dx.doi.org/10.1111/j.
1365-294X.2009.04482.x

[5] “The Extreme Science and Engineering Discovery Envi-
ronment (XSEDE),” https://www.xsede.org/.

[6] R. S. Canon, L. Ramakrishnan, and J. Srinivasan,
“My Cray can do that? Supporting Diverse
Workloads on the Cray XE-6,” Cray User Group,
2012. [Online]. Available: https://cug.org/proceedings/
attendee_program_cug2012/includes/files/pap157.pdf

[71 M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford,
D. S. Katz, and I. Foster, “Swift: A language for
distributed parallel scripting,” Parallel Comput., vol. 37,
no. 9, pp. 633-652, Sep. 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.parco.2011.05.005

[8] “The Research in Advanced Distributed Cyberinfrastruc-
ture and Applications Laboratory (RADICAL),” http:
/fradical.rutgers.edu/.

[9] “SAGA BigJob,” https://github.com/saga-project/BigJob.

[10] A. Luckow, L. Lacinski, and S. Jha, “SAGA BigJob:
An Extensible and Interoperable Pilot-Job Abstraction
for Distributed Applications and Systems,” in The
10th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, 2010, pp. 135-144.
[Online]. Available: http://doi.ieeecomputersociety.org/
10.1109/CCGRID.2010.91

[11] A. Luckow, S. Jha, J. Kim, A. Merzky, and B. Schnor,
“Adaptive Replica-Exchange Simulations,” Royal Society
Philosophical Transactions A, 2009.

[12] A. Thota, A. Luckow, and S. Jha, “Efficient
large-scale replica-exchange simulations on production
infrastructure,” Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering
Sciences, vol. 369, no. 1949, pp. 3318-3335, 2011.
[Online]. Available: http://rsta.royalsocietypublishing.
org/content/369/1949/3318.abstract

[13] “PyPI - the Python Package Index,” https://pypi.python.
org/pypi.

[14] “Biglob Tutorial,” https://github.com/
saga-project/BigJob/wiki/BigJob-Tutorial-Part-3:
--Simple-Ensemble-Example.

[15] “Ohio Supercomputing Center,” https://osc.edu/.

[16] “OSC and NICS Utilities,” http://www.nics.tennessee.
edu/~troy/pbstools/.

[17] “PCP (parallel-command-processor) Source Code,’
http://svn.nics.tennessee.edu/repos/pbstools/trunk/src/
parallel-command-processor.c.

[18] “Kraken Scheduling Policy,” http://www.nics.tennessee.
edu/computing-resources/kraken/running- jobs#
scheduling-policy.

[19] “Kraken Capability Jobs Discount Policy,”
http://www.nics.tennessee.edu/computing-resources/
kraken/running-jobs#queues.

[20] “Hopper Queue Charge Factor,” http://www.nersc.
gov/users/computational-systems/hopper/running-jobs/
queues-and-policies/.

http://www.nics.tennessee.edu/
http://www.nics.tennessee.edu/
http://www.nersc.gov/
http://kb.iu.edu/data/bcqt.html
http://kb.iu.edu/data/bcqt.html
http://dx.doi.org/10.1111/j.1365-294X.2009.04482.x
http://dx.doi.org/10.1111/j.1365-294X.2009.04482.x
https://www.xsede.org/
https://cug.org/proceedings/attendee_program_cug2012/includes/files/pap157.pdf
https://cug.org/proceedings/attendee_program_cug2012/includes/files/pap157.pdf
http://dx.doi.org/10.1016/j.parco.2011.05.005
http://radical.rutgers.edu/
http://radical.rutgers.edu/
https://github.com/saga-project/BigJob
http://doi.ieeecomputersociety.org/10.1109/CCGRID.2010.91
http://doi.ieeecomputersociety.org/10.1109/CCGRID.2010.91
http://rsta.royalsocietypublishing.org/content/369/1949/3318.abstract
http://rsta.royalsocietypublishing.org/content/369/1949/3318.abstract
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://github.com/saga-project/BigJob/wiki/BigJob-Tutorial-Part-3:--Simple-Ensemble-Example
https://github.com/saga-project/BigJob/wiki/BigJob-Tutorial-Part-3:--Simple-Ensemble-Example
https://github.com/saga-project/BigJob/wiki/BigJob-Tutorial-Part-3:--Simple-Ensemble-Example
https://osc.edu/
http://www.nics.tennessee.edu/~troy/pbstools/
http://www.nics.tennessee.edu/~troy/pbstools/
http://svn.nics.tennessee.edu/repos/pbstools/trunk/src/parallel-command-processor.c
http://svn.nics.tennessee.edu/repos/pbstools/trunk/src/parallel-command-processor.c
 http://www.nics.tennessee.edu/computing-resources/kraken/running-jobs#scheduling-policy
 http://www.nics.tennessee.edu/computing-resources/kraken/running-jobs#scheduling-policy
 http://www.nics.tennessee.edu/computing-resources/kraken/running-jobs#scheduling-policy
http://www.nics.tennessee.edu/computing-resources/kraken/running-jobs#queues
http://www.nics.tennessee.edu/computing-resources/kraken/running-jobs#queues
http://www.nersc.gov/users/computational-systems/hopper/running-jobs/queues-and-policies/
http://www.nersc.gov/users/computational-systems/hopper/running-jobs/queues-and-policies/
http://www.nersc.gov/users/computational-systems/hopper/running-jobs/queues-and-policies/

	Introduction
	Scientific Background
	Program Description

	Tools to run serial jobs on a Cray
	BigJob, a SAGA-based Pilot-Job
	Parallel Command Processor
	aprun

	Experiments on Kraken
	BigJob and PCP Experiments
	aprun Experiments
	Analysis

	Conclusion

