
A Review of The Challenges and Results of
Refactoring the Community Climate Code COSMO

for Hybrid Cray HPC Systems

Dr. Ben Cumming
Swiss National

Supercomputing Center
Lugano, Switzerland
bcumming@cscs.ch

Dr. Carlos Osuna
Center For Climate

Systems Modeling ETHZ
Zürich, Switzerland

carlos.osuna@env.ethz.ch

Mr. Tobias Gysi
Supercomputing

Systems AG
Zürich, Switzerland
tobias.gysi@scs.ch

Dr. Mauro Bianco
Swiss National

Supercomputing Center
Lugano, Switzerland

mbianco@cscs.ch

Dr. Xavier Lapillonne
MeteoSwiss

Zürich, Switzerland
xavier.lapillonne@meteoswiss.ch

Dr. Oliver Fuhrer
MeteoSwiss

Zürich, Switzerland
oliver.fuhrer@meteoswiss.ch

Prof. Thomas C. Schulthess
ETH Zürich

Zürich, Switzerland
schulthess@cscs.ch

Abstract—We summarize the results of porting the numerical
weather simulation code COSMO to different hybrid Cray HPC
systems. COSMO was written in Fortran with MPI, and the aim
of the refactoring was to support both many-core systems and
GPU-accelerated systems with minimal disruption to the user
community. With this in mind, different approaches were taken
to refactor the different components of the code: the dynamical
core was refactored with a C++-based domain specific language
for structured grids which provides both CUDA and OpenMP
back ends; and the physical parameterizations were refactored
by adding OpenACC and OpenMP directives to the original
Fortran code. This report gives a detailed description of the
challenges presented by such a large refactoring effort using
different languages on Cray systems, along with performance
results on three different Cray systems at CSCS: Rosa (XE6),
Todi (XK7) and Daint (XC30).

I. INTRODUCTION

The consortium for small-scale modeling (COSMO) is
a limited-area, non-hydrostatic atmospheric model for both
regional weather forecasting and climate modelling. It is used
both for operational weather forecasting by numerous national
weather services, including those in Germany, Switzerland
and Italy, and for limited-area climate models by the climate
community. The different operational requirements of these
two communities often mean that each community has a
different definition of an “optimal” application. Operational
weather forecasting is often subject to a “time to solution”
objective: the solution for a model must be obtained inside
a time limit imposed by the forecasting schedule. Thus, the
aim is to minimise the hardware and power requirements
to to obtain the solution in a given time frame. Conversely,
climate simulations typically use larger grids and simulate
much longer time frames, so the objective is to minimise the
time to solution1.

1Minimising the “storage to solution” is also a major concern for climate
models, which isn’t discussed in this paper.

In this paper we summarize the efforts of a project that
was performed as part of the HP2C initiative in Switzer-
land to port COSMO for different multi-core and many-
core hardware architectures. The original COSMO, which is
written in Fortran 90 with flat MPI parallelization, is heavily
optimized for NEC vector machines at the expense of sub-
optimal performance on x86-based machines. This project aims
to satisfy the dual objectives of broadening the base of possible
architectures on which the application is optimized, while
giving users to choose a hardware configuration that is best-
suited to the requirements of their use case. An important
requirement of the project is that the new code should be
readily extended to support new architectures, while retaining a
single performance-portable source code. These objectives of
supporting wide range of hardware while retaining a single
source code are essential for ongoing maintenance of the
code and adoption by the user community, but they are very
challenging to acheive.

To this end, two approaches are used to port different
parts of the code base: a domain-specific embedded language
(DSEL) written with C++, OpenMP and CUDA which ab-
stracts the stencil logic from the loop logic with hardware-
specific backends; and adding OpenACC and OpenMP direc-
tives to the original Fortran code. This paper will give our
hands-on experience with these different approaches, with a
particular focus on using the Cray toolchain on Cray systems
at CSCS.

The structure of this paper is as follows. In Section II we
will give a brief overview of the original source code and the
programming models chosen for the port. The main strategies
for porting, namely a domain-specific embedded language in
C++ and directives, and our experiences with implementing
them will be discussed in Section III. Numerical benchmarks
that compare the CPU and GPU implementations of the ported
code to one another and the original code on three Cray
systems, namely XK7, XE6 and XC30 systems at CSCS,
will then be presented in Section IV. Finally, Section V will

summarize the findings to date of the project, along with future
plans.

II. THE COSMO SOURCE CODE

COSMO has about 250,000 lines of Fortran 90 code,
with flat MPI parallelization. The number of lines in each
component of the original Fortran 90 code base, along with
their corresponding run time contributions, are shown in Fig-
ure 2(a) and (b) respectively. Each of the components are
briefly described below:

• Dynamics: The dynamical core solves the equation
of equations describing compressible non-hydrostatic at-
mospheric flow without any scale approximations. The
dynamics account for over 40,000 lines of code, which are
maintained and updated relatively infrequently small set
of developers, and are the most computationally intensive
with 61% of the total run time.
• Physics: The physical parameterization accounts for
processes, such as radiation or turbulence, that are not
described by the dynamics. This code accounts for roughly
43,000 lines of code that are regularly updated and ex-
tended by many members of the user community.
• Assimilation: Data assimilation integrates observation
data into the model methods such as nudging [5]. Assimi-
lation accounts for 40% of the code base, at 80,000 lines,
yet has low run time contribution of 1%.
• Diagnostics: Generation of specific data fields for later
analysis inside the model. This has not yet been ported,
and is not covered in this paper.
• IO: The IO was optimized as part of this project,
however this was independent of the work on hybrid
architectures, and is not discussed in this paper.

The execution sequence of these components in the time
stepping loop is illustrated in Figure 1.

The main focus of the porting effort has been on the
dynamics and physics, which combined account for over 80%
of the time to solution. However the other components must
also be considered carefully to avoid bottlenecks, particularly:

• Ahmdahl’s law will come into effect on multi-core
and many-core systems where serialized code remains,
even if the serialized code has a very small proportion
of the runtime in the sequential version.

• The PCI bus can become a bottleneck when using
accelerators, such that it may be necessary to port a
computationally inexpensive component to the GPU
to avoid copying data between host and device over
the PCI bus.

The aim of providing performance-portable code while min-
imising disruption to users is very challenging for a code with
a large, and active, community of developers. As a result,
different approaches were taken to port different components,
as dictated by the requirements of the different developer
communities.

Fig. 1. An abbreviated version of the main time integration loop for
COSMO. The size of each step, both in terms of source code and run time
are summarized in Figure 2.

A. Programming Model

The flat MPI parallelism in the original COSMO is re-
placed with both coarse-grained and fine-grained parallelism.
The coarse-grained parallelism corresponds to the flat MPI
approach in the original implementation, with domain decom-
position and MPI for communication of halo updates. An
additional level of fine-grained parallelism is introduced, with
OpenMP on multi-core hardware and CUDA parallelization on
GPUs.

Currently two target hardware platforms are supported2,
which require different approaches to fine-grained parallelism
at the node level:
• Multi-socket x86 node: A typical node will have two multi-
core sockets. A hybrid MPI-OpenMP approach is taken, with
no more than one NUMA domain per MPI process.
• GPU node: A node with one or more GPU accelerators.
CUDA and OpenACC provide fine-grained parallelism on the
GPUs, with one MPI process for each GPU. Current efforts
are focussed on Cray XK7 nodes, which have one K20X
accelerator per node, and a fat node with two Sandy Bridge
sockets and 8 K20 accelerators.

An important consideration when using accelerators is
whether to implement a hybrid execution model, whereby work
is shared by both host and accelerator. The two choices are
presented below, however we note that it is possible to have a
solution that lies somewhere between these two extremes:
• Offload: All of the data fields and computational work are
stored and performed on the accelerator, with the host used
only coordinating GPU execution, and auxiliary tasks such as
IO. This approach does not utilize the CPU for computation:

2Preliminary tests of the new Dynamical Core have been carried out on
Intel KNC, however multi-node tests have not yet been tested yet.

Diagnosis, 11k

IO, 25k

Physics, 43kDynamics, 42k

Assimilation, 83k

5 %

12 %

21 %20 %

41 %

Diagnosis

IO

Physics

Dynamics

Assimilation

10 %

6 %

22 %

61 %

1 %

(a) (b)

Fig. 2. A breakdown of: (a) the number of source code lines the main components of the COSMO code base; (b) the contribution of each component to the
time to solution.

it coordinates the GPU, communication and IO.
• Hybrid: The computational work is divided between both
host and device to take advantage of all computational re-
sources on the node. This approach potentially maximises
utilization of available computational resources, however it is
typically more difficult to implement load balancing and syn-
chronization between host and device, and leads to increased
data traffic on the PCI bus.

The initial intention was that parts of the time step that were
computationally inexpensive, such as data assimilation which
has 80,000 lines of code and contributes only 1% of the run
time, would remain on the CPU. The computationally intense
aspects of the dynamical core and physical parameterizations
were to be offloaded to the GPU.

Tests showed that time to transfer 10 prognostic fields
required for assimilation from device to host as 118 ms, com-
pared to the combined time for Dynamics and Physics of 253
ms3. Despite there being little computational benefit in moving
the assimilation to the accelerator, it was nonetheless necessary
to avoid allowing the PCI bus to become a bottleneck. So a
full offload model is used everywhere in COSMO to avoid
copying prognostic fields over the PCIe bus, with full fields
only copied from device to host to perform IO.

III. STRATEGIES FOR PORTING

In this section we give an overview of the approaches taken
to port the dynamical core and the physical parameterization,
along with the changes to the MPI communication infrastruc-
ture that this required. In each case the aim of developing
a single source code that is performance portable had to be
balanced against the requirements of the users who develop
and maintain the different components.

A. The DSEL Stencil Library

It was decided to that the dynamics, which is the most
performance-critical part of COSMO with 60% of the run
time, which would be completely rewritten. A rewrite was
feasible in this case because the dynamics was developed and
maintained by one main developer, which makes collaboration

3These preliminary results were obtained on a HP SL390 node with PCIe
8x, and a Cray XT6 running COSMO-2 on 45 nodes.

easier than a disperse group of developers as is the case
with the physical parameterization. The dynamical core is
also updated infrequently which makes it less of a “moving
target” for a complete rewrite. With this in mind, a domain-
specific embedded language (DSEL) tailored for the stencil
algorithms in the dynamics was developed in C++, and the
entire dynamical core was rewritten using the DSEL, referred
to as the stencil library.

The DSEL separates the loop logic from the stencil def-
inition, which allows aggressive optimization targeted at a
specific hardware back end to be performed at compile time
(performance portability). In this manner, efficient implemen-
tations can be generated from a single stencil description
for each hardware back end supported by the DSEL (single
source code). The Fortran listing for a simple stencil shown in
Figure 3(a) illustrates the separate loop and stencil logic for a
horizontal Laplacian operator applied in three dimensions, with
the loop logic highlighted in green, and the stencil definition
in blue. Optimised versions of this stencil on two different
architectures would have the same stencil definition, however
the optimal loop logic on each architecture could be very
different. For example, on the CPU one might pursue a block-
ing strategy that optimises for cache reuse and distributing
the blocks between relatively few CPU cores. Likewise, on
the GPU an implementor may want to use software-managed
cache and choose thread block sizes that optimize occupancy.
Examples of some different considerations include

• The storage order of the data fields.

• The loop ordering.

• Blocking and tiling on the loops.

• Buffering techniques for passing intermediate values
between stencils that are applied one after the other.

• Software managed caching.

It is a major undertaking to implement such considerations
into every stencil loop of an application like COSMO, which
has many stencils, even when only one hardware platform is
targeted. Doing this in a performance portable manner becomes
far more challenging when multiple hardware platforms, each
of which benefit from different optimizations.

Unlike the optimal loop logic which is hardware spe-
cific, the stencil logic (marked in blue in Figure 3(a)) is
the same on each architecture. Users of the stencil library
implement the stencil logic in a C++ functor, as is done for
the Laplacian operator in Figure 3(b). The loop bounds and
the direction of the loop in the k-direction are then specified
separately from the stencil functor using the DSEL, as shown
in Figure 3(c). Because the stencil Laplace functor is a
type, it can be passed to the StencilStage definition as
a template parameter, along with parameters that describe
the loop logic. There are three important pieces of loop

DO k = 1, ke
DO j = jstart, jend
DO i = istart, iend

lap(i,j,k) = in(i+1,j,k) + in(i,j+1,k)
+ in(i-1,j,k) + in(i,j-1,k)
- 4.0 * in(i,j,k)

ENDDO
ENDDO

ENDDO

(a)
struct Laplace{
static void Do(Context ctx){
ctx[lap(center)] = ctx[in(iplus1)] + ctx[in(iminus1)]

+ctx[in(jplus1)] + ctx[in(jminus1)]
-4.0 * ctx[in(center)];

}
}

(b)
Stencil stencil;
StencilCompiler::Build(/ / compi le the s t e n c i l
stencil,
...
define_sweep<cKIncrement>(
define_stages(

StencilStage< Laplace,
IJRange<0,0,0,0>,
KRange<0,0> >()

)
),
...

);
stencil.Apply(); / / apply the s t e n c i l

(c)
#pragma omp parallel for

for(int block=0; block < numOfBlocks; ++block)
{
context.MoveToBlock(block);
for(int i=iBlockStart; i < iBlockEnd; ++i)
{
for(int j=jBlockStart; j < jBlockEnd; ++j)
{
context.MoveTo(i, j, kstart);
for(int k=kstart; k < kend; ++k)
{
Laplacian::Do(context);
context.Advance<0,0,1>();

}
}

}
}

(d)

Fig. 3. Example of how a simple horizontal Laplacian stencil is expressed
using the DSEL. (a) The original Fortran implementation with the loop logic
and stencil logic highlighted in green and blue respectively. (b) Shows the
stencil logic expressed as an update functor, and the corresponding loop logic
is illustrated in in (c). An idealized example of the code generated by the
OpenMP back end after parsing the stencil definitions in (b) and (c) is shown
in (d).

logic specified: cKIncrement indicates that the loop is in
ascending k order; IJRange specifies how many halo levels
on each of the horizontal boundaries; and KRange indicates
the extent of the range of the k-loop. The loop logic and
the stencil logic are all passed to the stencil compiler as
template parameters, and template meta-programming is used
to generate very efficient code at compile time. The benefit
of this approach is apparent in the relatively simple stencil
description that can be compiled for multiple back ends, with
the complicated implementation details are hidden from the
user who does not require detailed knowledge of template
meta programming. The main drawback with this approach is
that the back end implementation are quite complicated, with
specialist knowledge required to maintain and add support for
new back ends.

There are two levels of fine-grained parallelism used in the
back end. The first level splits the domain into blocks in the
horizontal IJ plane that can be processed independently with no
need for synchronization and consistency. Then second level
can be applied inside each block. This is not the case with
the OpenMP back end, which uses one thread per block. The
additional parallelism is implemented on the CUDA back end,
where one thread is assigned to each vertical column, with the
synchronization between the threads in a block. The different
back ends use different loop and data orderings. The CUDA
back end uses an IJK loop ordering that makes for coalesced
memory reads and writes on the IJ plane. The OpenMP back
end uses a k-first loop order that improves cache reuse and
reduces cache conflicts between threads on adjacent blocks.

There are two two types of stencil motifs used in COSMO.
The first motif has no dependencies in any direction, so that
the stencil operation can be applied to the points of the grid in
any order, which gives greater flexibility in choosing the loop
logic. The second motif arises from the semi-implicit temporal
integration scheme used in some parts of the time stepping
that uses implicit integration in the vertical direction. This
temporal discretization requires the solution of an independent
tridiagonal linear system for each vertical column, for which
the direction of application of the stencil in the k-direction
must be specified due to loop dependencies in the forward and
backward substitution phases of the Thomas algorithm used to
solve the tridiagonal systems. This motif, which also occurs
in parts of the physical parameterization, had a large influence
on the design of the DSEL:
• Explicit k-loop direction: As shown in Figure 3(c), the user
specifies the direction of the k-loop as a template parameter
in the define_sweep<>, while the i-loop and the j-loop
directions are defined by the back end.
• Horizontal blocking/tiling: The blocking is performed in
the horizontal plane only, because blocking in the vertical
direction would require syncronization between vertically ad-
jacent blocks.
• One thread per column: The GPU back end uses one
thread per column, with each thread performing the k-loop
that applies the stencil to each point of the column.

The template meta-programming techniques used in the
stencil library test the capabilities of C++ compilers. The
compile times are slower than for the original Fortran im-
plementation, but have not been as bad as initially feared: a

parallel build of the OpenMP version of the dynamical core
takes less than two minutes on a Sandy Bridge-based system.
The GNU C++ compiler was primarily used to develop the
library because if offers very robust and mature support for
such codes. The Intel compiler is able to compile the code,
however it generally gives executables that are 10–20% slower
than those generated with GNU. The Cray C++ compiler has
also been tested to generate executable that was competitive
with the Intel compiler, however compilation times were much
longer, which make it unattractive for development. This is an
important point for C++ codes where performance can depend
strongly on the compiler: developers make design decisions
that affect the performance according to the tools used during
development.The new C++11 standard has features that would
make the stencil library simpler, however these features are not
supported by the nvcc compiler which is used for the CUDA
back end.

The DSEL is a significant departure from the original
Fortran code, and it is important to involve users in its devel-
opment. A week-long work shop with was held in Frankfurt
in November 2012 for users from the weather and climate
communities. The aim of the workshop were two-fold: first to
introduce users to the stencil library; and secondly to gather
feedback. The response from users was positive, with partic-
ipants at the workshop able to write reasonably complicated
stencils that used most features of the stencil library by the
end of the week, and there is an ongoing effort to port a
new fast waves solver in the dynamical core from Fortran
to the stencil library, in collaboration with its developer at
the German weather service (DWD). Feedback was also very
valuable, highlighting the need to involve the broad community
to determine which features they value the most, and to see
their response to different design choices that were made
in the library. For example, it was very informative to see
how sensitive the specialized user community is to domain-
specific nomenclature, which lead to changes in the naming
and structure of the DSEL to better reflect community norms.

The development of the stencil library is an ongoing
project, with the aim of both improving the design and perfor-
mance of the library. We are also considering how this work
could be applied to other stencil-based codes in atmospheric
and geophysical applications. We finish the discussion of the
stencil library with a summary of the main pros and cons we
have found with this approach.

Pros of the DSEL

• By separating the stencil and loop logic, each stencil
is written only once to achieve good performance on
the supported hardware back ends, which meets the
aim of performance portability with a single source
code.

• The separation of stencil and loop logic also removes
hardware specific language (e.g. OpenMP and Ope-
nACC directives, NEC directives, CUDA) from user
code.

• The modular design is well-suited to unit testing,
which accelerates debugging and regression testing.

• The DSEL provides a set of finite difference opera-
tors, so that the stencil expression better matches the

mathematical formulation.

• Embedding the domain-specific language in C++ gives
the user access to the rich features available in C++.

• Template meta-programming makes it possible to im-
plement functions for commonly used stencil opera-
tions with no run-time overhead.

• Compilation times are quite reasonable for the
OpenMP back end with the GNU and Intel compilers.
They are considerably slower for the CUDA back end,
however it is also that case that OpenACC compilation
with the Cray and PGI compilers is very slow.

• New users who have little or no C++ development
experience have been able to start using the stencil
library with the tutorial materials that have been
developed for the project.

• The work on the dynamical core has not been any
slower than the work on the physical parameteriza-
tions, which added directives to the original Fortran
code, an approach that is often touted as faster. This
is partly due to the higher maturity of the C++ and
CUDA compilers relative to the early OpenACC im-
plementations, and because significant changes were
required in the Fortran code to obtain good OpenACC
performance.

Cons of the DSEL

• The DSEL is a significant departure from the approach
currently used by the community, requiring consider-
able time and effort from users to adapt.

• The scope of the library is limited to functionality
required to implement the dynamical core as it is. New
developments in the dynamical core might require that
new functionality is added to the stencil library.

• There is some repetitive boilerplate code when declar-
ing stencils, which is often due to restrictions imposed
by C++.

• Users who are not familiar with C++ can be distracted
by having to learn a sub-set of C++ at the same time
as the DSEL.

• The engineering effort to add support for a new hard-
ware back end to the library is not trivial, requiring
advanced C++ knowledge.

• Finding an appropriate balance between generic and
domain-specific language is difficult. Some of the
library features are specific to COSMO, which makes
it easier to optimize them, but limits the usefulness of
the DSEL for other applications.

B. Directive-Based Fortran

Compiler directives provided by OpenMP and OpenACC
are non-executable statements that indicate to the compiler
how code can be parallelized. OpenMP is a widely-used
and supported set of compiler directives for multi-threading
on multi-core machines[3]. The recently-proposed OpenACC
directives [2] allow the programmer to specify which parts

DO j=1,je
! forward s u b s t i t u t i o n
DO k=2,ke
DO i=1,ie
c(i,j,k) = 1.0/(b(i,j,k)-c(i,j,k-1)*a(i,j,k))
d(i,j,k) = (d(i,j,k) - d(i,j,k-1) * a(i,j,k)) &

* c(i,j,k)
END DO

END DO
! Back s u b s t i t u t i o n
DO k=n-1,1,-1
DO i=1,ie
x(i,j,k) = d(i,j,k) - c(i,j,k) * x(i,j,k+1)

END DO
END DO

END DO

Note: the Thomas algorithm used to solve the independent tridi-
agonal system in each vertical column on the left has loop
dependencies in k for the c, d and x fields, necessitating explicit k-
loop order in the forward and backward solution phases. Whereas
the stencil below can be processed in any order.

DO k=1,ie
DO j=1,je
DO i=1,ie

a(i,j,k) = w1(i,j,k) * b(i+1,j,k) &
+ w2(i,j,k) * b(i ,j,k) &
+ w3(i,j,k) * b(i-1,j,k)

END DO
END DO

END DO

(a) (b)
Fig. 4. Examples of the two stencil motifs used in COSMO: (a) tridiagonal solve with k-loop dependency; (b) “normal” stencil with no loop dependencies.

of code to offload to an accelerator, with additional directives
for controlling the transfer of data fields between host and
device memory. A significant advantage of using directives
over more ambitious approaches, such as rewriting the code,
is that code parallelized by inserting directives is familiar to
the original authors and users of the code. Because the physical
parameterization has a large user community, and is regularly
updated and extended, directives were chosen to minimize
disruption to users, and keep pace with changes in the original
source. The work on directives presented here has been covered
in more detail in the paper [1].

The intention of this project is to use both OpenMP and
OpenACC directives for a portable code that runs both on
multi-core and accelerators. However, the main focus to date
has been on the OpenACC port for the GPU, which was
performed in two stages. The first stage added directives to
store the required data fields on the device, and perform
the stencil loops on the device. The second phase was to
then investigate and tune the performance of the physical
parameterizations. We now summarize the most important
optimizations that had to be considered during the optimzation
phase.

1) Exploit SIMD parallelization: The physical parameter-
izations perform computation on each vertical column in the
domain independently. So given that each field has an (i, j, k)
structure, a kernel can be applied in parallel over all i, j
indexes at each k-level. This implies a loop ordering, like that
used for implicit vertical integration in the dynamical core,
with parallel execution in the horizontal plane, and sequential
execution in the k-direction. The variable N in the OpenACC
directive vector_length(N) can then be used to control
vectorization.

2) Minimize transfers: To avoid bottlenecks caused by
transferring fields between host and device memory, all data
fields are copied to the device during initialization where they
remain throughout time stepping.

3) Loop restructuring: In most cases it is sufficient to
simply add directives to the loops. However, in some cases
some restructuring of the loop is required to improve per-
formance. By restructuring the loop in Figure 5(a) to that
in Figure 5(b), the number of kernels is reduced from two
to one, and the temporary variable c2 is cached in a register
between k loops. A further optimization that is employed for

some performance-critical kernels is show in Figure 5(c). In
this case, the original three-dimensional field with dimensions
(nx, ny, nz) is decomposed into two-dimensional blocks, each
with dimension (nproma, nz). This new layout makes it easier
to coalesce memory loads when nx is not a multiple of 32,
and gives greater flexibility in the choice of threads per block.

4) Remove automatic arrays: Automatic arrays in Ope-
nACC incur a call to cudaMalloc, which has a significant
overhead on the GPU. These are avoided by passing the array
as an argument, and allocating the memory at a higher level
in the code.

5) Occupancy: The occupancy of a kernel is influenced
by the number of registers required per warp. Some experi-
mentation is required to find the balance between increased
occupancy (more, smaller kernels) and reducing kernel launch
overheads (fewer, larger kernels).

6) Profiling and tuning dominant kernels: After the first
round of implementation, the kernels are profiled with a GPU
profiler, and tuning of parameters such as the vector length is
performed on the dominant kernels.

By taking the steps outlined above, the performance of the
code on the GPU can be improved significantly. However, the
tuned code often does not perform well on the CPU. Indeed,
the tuned GPU version of the code is considerably slower
than the original code when compiled for the CPU. One most
obvious method for keeping performance portability is to have
two versions of each physical parameterization: one tuned for
OpenACC on GPUs; and the other tuned for OpenMP on
multi-core. This approach has the drawback of requiring that
two versions of each parameterization must be maintained (or
more if further hardware back ends are to be supported), and
multiple versions of new parameterizations have to be written.

Currently we are investigating whether it is possible to have
performance portable code that uses OpenMP and OpenACC
directives in the source code. Our experiences to date have
suggested that it is not possible to do this in an elegant manner
for many of the kernels (particularly if we want to target more
than one OpenACC compiler). The addition of accelerator
directives in the proposed OpenMP 4.0 standard [4] has the
potential to make this easier. However if the CPU and GPU
versions of kernel have optimizations that differ greatly, it will
probably still not be possible.

! $acc data p r e s e n t (a , c1 , c2)
! v e r t i c a l loop
do k=2,Nz

! $acc p a r a l l e l v e c t o r l e n g t h (N) p r i v a t e (i , j , k)
! $acc loop
do j=1,Ny

! $acc loop v e c t o r
do i=1,Nx

c2(i,j)=c1(i,j,k)*a(i,j,k-1)
end do

end do
! $acc end p a r a l l e l
! $acc p a r a l l e l v e c t o r l e n g t h (N) p r i v a t e (i , j , k)
! $acc loop
do j=1,Ny

! $acc loop v e c t o r
do i=1,Nx

a(i,j,k)=c2(i,j)*a(i,j,k-1)
end do

end do
! $acc end p a r a l l e l

end do
! $acc end data

(a)
! $acc data p r e s e n t (a , c1)
! v e r t i c a l loop
! $acc p a r a l l e l v e c t o r l e n g t h (N) p r i v a t e (i , j , k , c2)
do k=2,Nz

! $acc loop
do j=1,Ny

! $acc loop v e c t o r
do i=1,Nx

c2=c1(i,j,k)*a(i,j,k-1)
a(i,j,k)=c2*a(i,j,k-1)

end do
end do

end do
! $acc end p a r a l l e l
! $acc end data

(b)
! $acc data p r e s e n t (a , c1)
! $acc p a r a l l e l loop v e c t o r l e n g t h (N)
do ip=1,nproma

! v e r t i c a l loop
do k=2,Nz

! work 1
c2=c1(ip,k)*a(ip,k-1)
! work 2
a(ip,k)=c2*a(ip,k-1)

end do
end do
! $acc end p a r a l l e l loop
! $acc end data

(c)

Fig. 5. Example of restructuring performed to improve performance when
adding OpenACC directives to the physical parameterization. In (a) two
separate horizontal loops (in the ij-plane) are nested inside a vertical loop,
with an intermediate result c2 stored in an array (an optimization for NEC
vector machines). By merging the two horizontal loops in (b) the loops are
performed with one kernel, which stores the intermediate result c2 in a
register.

The physical parameterization has been quite frustrating
at times due to immature OpenACC implementations. The
support for OpenACC has developed a lot recently, however
there are still compiler-specific workarounds throughout the
code for compiler bugs. Also, there are currently only three
compilers with support for OpenACC: Cray, PGI and CAPS.
Of these, only Cray and PGI are mature enough to use for a
large project like this, and furthermore, we are reliant on one
compiler vendor on non-Cray systems. This is a major obstacle
to uptake of OpenACC in the future. Again, the inclusion

of accelerator directives in OpenMP 4 will not necessarily
address this concern, because each compiler vendor will most
likely support a limited subset of the available accelerators: for
example, the GNU compilers will certainly support the new
standard, however it will still most likely be left for hardware
vendors to add support for their accelerators to GNU.

C. Generic Communication Library

The original Fortran COSMO code uses a one-size-fits-
all halo exchange routine, with blocking MPI messaging. The
rewrite of COSMO require a more flexible framework for halo
updates, with the following requirements:
• Back ends: transparent support for fields stored on either
CPU or GPU.
• Layout: support for fields with arbitrary orientation and
padding.
• Portability: can be called from both the C++ and Fortran
codes.
• Boundary conditions: handle related boundary conditions
updates and halo updates at the same time via a common
interface.
• Communication hiding: be able to use asynchronous com-
munication to overlap communication and computation, which
has a significant impact on strong scaling, where the ratio of
halo regions to computation increases.

It was decided that a significantly different and more flexible
solution was required for halo updates.

The Generic Communication Library (GCL) was developed
to meet the halo exchange requirements of the COSMO
rewrite. It is a generic C++ library for performing halo ex-
changes on two-dimensional and three-dimensional structured
grids. It uses generic programming techniques to support data
fields with arbitrary data layouts (IJK, KIJ, etc.) and arbitrary
halo dimensions on each boundary (including communication
with corner neighbours, i.e. all 26 neighbours in 3D). The
library performs halo exchanges for data stored on different
memory spaces, with CPU and GPU support currently imple-
mented, via the same interface. It takes advantage of direct
GPU to GPU communication, whereby the MPI API calls
are passed device pointers directly. This feature is currently
supported by the MVAPICH2 for Infiniband4, OpenMPI5 and
by the Cray MPI library6

Halo exchange is composed of four stages:

• Pack: The 3D slices of the sub-domain that correspond
to halos that are to be sent to neighboring sub-domains
are packed into flat buffers.
• Start exchange: Post asynchronous receive and send
calls with MPI.
• Wait: Wait for all pending MPI receives to finish, after
which the halo contributions from neighbouring nodes will
be stored locally in flat buffers.
• Unpack: Unpack the received halo information from the
flat buffers back into the three-dimensional fields.

4Validated with MVAPICH2 version 1.8 and 1.9.
5Validated with version 1.7
6Validated with version cray-mpich2/5.6.3.

The original halo exchange performed the above stages in one
routine with blocking communication. The GCL decouples the
four stages, so that it is possible to first call pack and start the
exchange, perform unrelated computational work, then perform
the wait and unpack the fields. In this manner it should be
possible to hide communication with computation, so long as
asynchronous progress is enabled in the MPI library.

GCL supports MPI data types for the packing and un-
packing phases, however these are only practical on the CPU
implementation. Support for MPI data types on the GPU is
either very slow (MVAPICH2 on Infiniband) or unsupported
(Cray MPI). So custom CUDA kernels were developed for
packing and unpacking 3D halos, which are very efficient
compared to the OpenMP implementations due to the greater
memory bandwidth available on GPUs.

GCL is used both in the C++ rewrite of the dynamical
core and in the Fortran/OpenACC physical parameterization.
The halo and boundary updates are handled by a C++ halo
framework which has C++ and Fortran calling interfaces.
The halo framework uses GCL for the halo exchanges, and
implements the different types of boundary conditions applied
at the global domain boundary. The framework then applies
either the appropriate boundary condition or halo exchange
at each boundary of a sub-domain via an “update-halo” call.
We note that though GCL was developed primarily for use in
the COSMO rewrite, it was designed to be fully generic, and
COSMO uses only a subset of its features. It is being tested in
other structured grid applications, and it is hoped that it will
receive better support and testing as a result of being used in
other applications.

D. Integration

Developing the full COSMO application using the different
techniques outlined above has been a time-consuming and of-
ten frustrating task. This has been partly due to the challenges
inherent in developing complex mixed C++ and Fortran codes,
which are unavoidable. However, it has primarily been due to
incomplete feature support provided by the OpenACC compil-
ers and the MPI implementations. Throughout the integration
effort, there have been many compiler-specific workarounds
for missing features or bugs in OpenACC. This is the cost of
being early adopters of a new technology like OpenACC, and
the quality of these implementations has improved significantly
to the point where many of the issues faced in this project no
longer remain. However, the lessons learnt here are important,
because such a “mixed” model may be required when porting
other large codes to multi-core and many-core architectures.

The most significant challenges have been related to shar-
ing data fields between the dynamical core and physics.
Ideally, one would like to simply pass pointers for large three-
dimensional fields between the C++ and Fortran, without any
copying. However, this can be challenging in practice. The
stencil library can add padding to fields, which gives significant
speedup for the CUDA back end in particular (about 10% of
both Fermi and Kepler). However padding is not simple to
support in the current Fortran implementation, so the padding
has to be turned off in the DSEL to avoid having to copy
fields between C++ and Fortran. Additionally, The OpenACC
host data directive, which is required for passing pointers to

OpenACC regions in Fortran, was not implemented in the PGI
compiler until version 13.1, which required an elaborate hack
to work around.

The techniques used to keep track of which copy of a
field is the current and previous steps are also complicated
by the different approaches used by the C++ and Fortran
implementations. The stencil library uses double buffering to
perform this, with a pointer swap performed between time
levels. To handle a three-dimensional field that is stored at
two time levels the original Fortran implementation uses a
four-dimensional array u(nx,ny,nz,2), where the fourth
index is “flipped” between time levels. It is very challenging,
to determine a priori how many swaps or flips have been
performed between entering and exiting each component.
When it is not possible to determine how many swaps have
been performed, it is necessary to perform a hard copy of the
current in/out fields, which imposes significant storage and run
time overheads.

Users in the community often have strong compiler pref-
erences, so we want for users to be able to mix and match
compiler toolchains for the different components. For the
C++/CUDA implementation, the GNU and NVIDIA compilers
must be used to build the stencil library, which is then linked
with the Fortran code compiled with Cray or PGI compilers.
The PGI compiler had limited features and bugs that placed
onerous restrictions on the versions of the CUDA library and
GNU toolchain that could be used for the dynamical core. It
was also difficult to mix compilers when building the OpenMP
version. We would like to be able to compile the stencil library
with the GNU toolchain which gives the best performance,
while being able to choose another compiler like PGI for
the Fortran code. Unfortunately the OpenMP runtimes of the
different toolchains are incompatible.

IV. RESULTS

We now perform some benchmarks of the ported COSMO
code on systems at CSCS, summarised in Table I. It is
important to note that the code used in these tests is still
under heavy development, and is currently being tested for
validation and functionality, not performance. We expect to
see considerable performance improvements after tuning, and
as OpenACC and GPU communication support continues to
evolve.

NAME TYPE Nodes CPU GPU
Daint Cray XC30/Aires 2256 2×8-core Sandy Bridge –
Rosa Cray XE6/Gemini 1496 2×16-core Interlagos –
Todi Cray XK7/Gemini 272 1×16-core Interlagos 1×K20X
Dom Cluster/Infiniband 4 2×8-core Sandy Bridge 2×K20C

TABLE I. A SUMMARY OF THE SYSTEMS USED FOR BENCHMARKING.

A. Generic Communication Library

We investigate a GCL microbenchmark to understand the
communication library performance on the different machines,
in particular the performance of direct GPU to GPU (G2G)
communication. The microbenchmark has a sub-domain of
dimensions 128×128×60 on each node, with an additional
three halo levels on each i and j edges of each sub domain (for
a total of 6 additional halo lines in each horizontal direction).

The global boundaries are non-periodic, so sub-domains that
lie on the edge of the domain will have at least one boundary
on which no halo exchange is performed. The halo exchange
was performed 50 times, and the average time across all
processes and all tests was taken. A small Inifinband-based
GPU cluster called Dom was included in these benchmarks, to
provide a comparison with Tödi for G2G communication. Dom
has slightly less-powerful NVIDIA Kepler K20 GPUs than the
K20X devices in Tödi, however this benchmark is concerned
only with communication, not floating point performance.

The CPU support in GCL was tested on the XE6 and XC30
systems Rosa and Daint, with the total pack (combined pack
and unpack times) and exchange times shown in Table II. On
both systems a flat MPI approach was used, with 16 MPI
tasks on each node (one per Sandy Bridge core on Daint, and
one per Interlagos module on Rosa). This meant that each
MPI task had a sub-domain of dimensions 32×32×60, for a
combined grid dimension of 128×128×60 per node. We also
tested using a hybrid MPI-OpenMP approach with fewer tasks
per node. This approach aims to optimize communication by
reducing the total amount of halo data to be exchanged, while
increasing the average message size and reducing the number
of MPI messages that are sent. Indeed, when using two MPI
tasks per NUMA domain we the exchange communication
time was reduced (results not presented here), however the total
halo exchange times were longer because the pack and unpack
routines have not yet been fully optimised with OpenMP. A
minimum of four nodes are required to obtain the maximum
MPI complexity in this case, as is evident in the sharp increase
in exchange times when going from two to four nodes. After
this, the weak scaling times for the exchange times are very
good up to 128 nodes, with the XC30 system having the best
pack and exchange times in each case.

When using the GPU, a single sub-domain of size
128×128×60 is stored on the GPU on each node. Because
Dom has two GPUs per node, results for both one and two
GPUs per node are presented in Table II (results marked with
a star use 2 GPUs per node, so 8∗ is 4 nodes, with 2 GPUs
on each node). The packing times on both Dom and Tödi are
much faster than the CPU implementation, which is reasonable
given the increased bandwidth available on the GPU. However,
despite being twice as fast as those on Daint, the packing times
on Tödi are over 3 times slower than on Dom. Furthermore
the exchange times are much higher on Tödi: the exchange
time for 4 nodes is 1.13 ms on Dom, compared to 3.12 ms
on Tödi. The total halo exchange times for the GPU compare
favorably to those obtained on Rosa and Daint. This is largely
by reducing the packing time, which at 3̃0% for four nodes
on Daint and Rosa is a significant proportion of the total halo
exchange time, to 15% on Tödi.

Part of the discrepancy in the exchange times between Tödi
and Dom is due to a high degree of variability in the Tödi
results. In Figure 6 the mean, minimum and maximum of the
mean communication time across all processors are plotted.
Both the minimum and maximum exchange time increase
significantly when going from 2 to 4 nodes, and change little
after that. However, communication on a small subset of the
nodes is considerably slower, by a factor of about 6 times.
The reason for this variation between runs is not immediately
apparent, and is something that we will investigate further. We

also note that the main time increases going from 8 to 16
nodes, which is to be expected because 16 is the minimum
number of nodes required to maximise MPI communication
complexity with 1 MPI task per node. The results on Dom were
generally much faster (indeed, the mean values on Dom were
faster than the minimum recorded times for Tödi). It would
be very interesting to have access to a larger Infiniband-based
GPU cluster to test how the communication results scale.

These test show that the total communication time, includ-
ing both pack and exchange time, on Tödi is comparable to
those on the CPU-only systems. However, there is still consid-
erable scope for improvement, in particular the high amount
of variability observed in the benchmarks and the relatively
poor performance relative to the Infiniband cluster. Bug-free
support for G2G communication has only been available since
version 5.6.3 of the Cray MPI implementation, and as the
implementation matures and GCL is tuned, we expect that halo
communication will not be a disadvantage with GPU systems.

SYSTEM NODES PACK EXCHANGE TOTAL

Rosa
2 1.77 2.77 4.54
4 1.70 3.83 5.54
8 1.79 3.99 5.77

128 3.65 3.49 7.14

Daint
2 1.08 1.60 2.68
4 1.15 2.38 3.53
8 1.18 2.37 3.56

128 1.25 2.33 3.58

Tödi
2 0.54 2.30 2.85
4 0.54 3.12 3.67
8 0.54 3.30 3.84

128 0.54 4.78 5.32

Dom

2 0.13 0.97 1.10
4 0.12 1.13 1.25

2∗ 0.13 0.99 1.12
4∗ 0.13 1.58 1.71
8∗ 0.13 1.63 1.76

TABLE II. AVERAGE TIME IN MS TO PERFORM HALO EXCHANGE ON
THE DIFFERENT TEST PLATFORMS. THE pack AND exchange COLUMNS

GIVE THE MEAN TIME IN MS TAKEN TO PACK/UNPACK AND PERFORM MPI
COMMUNICATION FOR HALO EXCHANGES.

2 4 8 16 32 64 128
1

2

3

4

5

6

7

8

9

10

11

12

13

nodes

e
x
c
h

a
n

g
e

 t
im

e
 (

m
s
)

min
max
mean .

Fig. 6. The min, max and mean exchange times for the GCL microbenchmark
with G2G communications on Tödi.

B. Strong Scaling

We now investigate the strong scaling of the physics and
dynamics on a single node of each of the three Cray machines
listed in Table I. The tests were performed on one node so
that the communication could be decoupled from the stencil

64x16 64x32 64x64 128x64 128x128 256x128 256x256
0.25

0.5

1

2

4

8

16

32

grid dimensions

ti
m

e
 (

s
)

Daint : Sandy Bridge

Rosa : Interlagos

Todi : K20X

64x16 64x32 64x64 128x64 128x128 256x128 256x256
1

2

4

8

16

32

0.5

grid dimensions

ti
m

e
 (

s
)

Daint : 1 node

Rosa : 1 node

Todi : 1 node

(a) (b)
Fig. 7. Strong scaling results. In (a) the time to solution for 10 time steps is shown in seconds for one NUMA domain on Daint and Rosa (8 OpenMP threads
in each case) and one K20X GPU on Todi. The average time in seconds taken to compute an hour of simulated weather on a node of each test machine is
plotted in (b).

computation, to better focus on the scaling of the stencil
computations.

First, we investigate the dynamical core implemented with
the stencil library DSEL. The new dynamical core uses asyn-
chronous communication, which has not yet been tested or
optimized in situ with the dynamical core. To remove the
communication overheads from tests of stencil performance
we use a performance test with one MPI process and non-
periodic boundary conditions. The OpenMP results presented
here do not use all of the CPU resources on a node, because
they are obtained with one NUMA domain7 to avoid NUMA
issues, so the results are roughly a factor of 2 and 4 times
slower than those for a full node with multiple MPI processes
on Daint and Rosa respectively.

The benchmark performs 10 full time steps of the dynam-
ical core, and the total time taken at mesh resolutions from
64×16×60 to 256×256×60 are tabulated for each of the Cray
systems in Table III, and plotted in Figure 7(a). The OpenMP
results on Rosa and Daint were computed using 8 OpenMP
threads, and the results on Todi were computed using one
K20X GPU.

DYNAMICAL CORE PHYSICAL PARAMETERIZATION
GRID ROSA DAINT TÖDI ROSA DAINT TÖDI

64×16 0.56 0.24 0.64 1.02 0.72 2.81
64×32 1.10 0.45 0.65 1.71 1.36 2.89
64×64 2.12 0.86 0.67 3.22 2.59 3.11
128×64 4.42 1.73 0.85 6.02 5.10 4.94
128×96 6.59 2.62 1.05 9.12 7.72 5.41

128×128 8.79 3.52 1.40 12.71 10.36 7.25
256×128 18.02 7.01 2.61 25.16 20.59 –
256×256 38.32 14.35 5.12 52.25 41.94 –

TABLE III. STRONG SCALING RESULTS ON ROSA, DAINT AND TÖDI
FOR THE DYNAMICAL CORE AND PHYSICAL PARAMETERIZATION. TIMES

IN SECONDS.

The time to solution for the OpenMP implementation
scales linearly with the grid resolution from the very small

7On Rosa a NUMA domain corresponds to one Interlagos die, of which
there are 4 on a node, each with 8 cores. On Daint one NUMA domain
corresponds to 1 Sandy Bridge socket, of which there are 2 on each node,
also with 8 cores.

64×16×60 base domain size.The scaling behaviour is quite
different on the GPU, with linear scaling only above a thresh-
old grid resolution of 128×96×60. The GPU implementation
does not scale below this threshold because there is not enough
work to utilize the computational cores and bandwidth of the
device. We note that the scaling tests were not performed on
grids larger than 256×256×60 as this is the largest grid that
can be stored on a GPU with 6GB of memory.

Similar strong scaling tests were performed for the physical
parameterization, with the average time to simulate an hour of
weather in a 12 hour simulation recorded. Tests on the full
node were performed because the physical parameterization
uses blocking MPI communication, so it is possible to decou-
ple the computation from communication8. The CPU tests use
flat MPI with 16 and 32 MPI tasks on a node on Daint and
Rosa respectively, and the GPU results were obtained with one
MPI task on one node of Tödi. The total time spent in stencil
computation is tabulated in Table III and is plotted in Fig-
ure 7(b). Note that results are not available for grid dimensions
greater than 128×128×60 on Tödi due to memory limitations
on the GPU9. The physical parameterization exhibits the same
strong scaling that was observed for the dynamical core: linear
scaling for all mesh resolutions on the CPU, and linear scaling
above 128×96×60 on the GPU.

The scaling results for both the dynamical core and the
physical parameterization suggest that the fastest time to
solution may be achieved with strong scaling and the OpenMP
back end. Conversely, the GPU back end is the fastest, by
a factor of between 1.4 and 1.45 times when subdomains
larger than 128×96×60 are used on each node. This would
be significant in weather forecasting where the solution is
obtained inside a set time limit with the least resources, or
for climate simulations on very large grids.

Finally, we note that the scaling of the CUDA and Ope-
nACC used in the dynamics and physics respectively are very

8The GCL is used for communication in the physics, however communi-
cation is no asynchronous because the communication steps are performed
sequentially.

9The memory footprint on the GPU will decrease when redundant copies
between the dynamics and physics are eliminated.

1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256
0

10

20

30

40

50

60

70

80

90

Fortran Port

nodes

ti
m

e
 f

o
r

o
n

e
 h

o
u

r
(s

)

Physics

Dynamics

Additional

1 2 4 8 16 32 64 128 256
35

40

45

50

55

60

65

70

75

nodes

ti
m

e
 f
o
r

o
n
e
 h

o
u
r

(s
)

Daint

Rosa

Todi

(a) (b)
Fig. 8. Weak scaling results. In (a) the time to solution for 10 time steps is shown in seconds for one NUMA domain on Daint and Rosa (8 OpenMP threads
in each case) and one K20X GPU on Todi. The average time in seconds taken to compute an hour of simulated weather on a node of each test machine is
plotted in (b).

similar. Currently some non-trivial physical parameterizations
are being ported using the DSEL stencil library to give a direct
comparison between the DSEL and OpenACC.

C. Weak Scaling

We now perform weak scaling tests to better understand
the MPI communication overheads, and to compare the orig-
inal Fortran implementation with the new code. The weak
scaling tests were performed with a sub-domain dimension
128×128×60 plus halos of width 3 on each node. Weather
was simulated for 12 hours, with pseudo-random intitial con-
ditions10, and the average time to simulate one hour was
recorded. Weak scaling is performed from 1 node to 256 nodes
on each machine, for a total grid dimension of 2048×2048×60
at 256 nodes. Flat MPI model used for the CPU implemen-
tations because the physical parameterization does not yet
support OpenMP, and the GPU implementation used one MPI
task per node.

First we compare the original Fortran implementation to the
new dynamical core and GCL communication on Daint. The
total time to solution for both cases, along with a break down
of the physics and dynamics, are plotted in Figure 8(a). The
physical parameterization is the same in both cases, because
its implementation is unchanged in the new version11. The
dynamical core is significantly faster in the new implemen-
tation, which is mostly due to the tuning of the OpenMP
back end for x86 cache performance. The improved dynamical
core performance gives a total speedup of 1.45 times at 256
nodes relative to the original code. The weak scaling of the
new dynamical core is good, but not as good as that for
the old version, which used blocking MPI communication.
The new dynamical core uses asynchronous communication,
with more frequent, smaller messages to hide communication
with computation. However, asynchronous progress was not

10Pseudo random initial conditions are set withing physically realistic
ranges, and the results are validated to ensure that physically reasonable results
were obtained.

11future work on the physical parameterization will include loop restructur-
ing and the addition of OpenMP directives, which will improve performance
on multi-core x86 nodes.

enabled for these tests, so it is not possible to comment on the
efficacy of asynchronous communication, although early tests
suggest that a considerable amount of tuning will be required
to optimize the weak scaling of the communication.

Next we compare the weak scaling of the new version of
COSMO on each of the three Cray test machines, the results
of which are plotted in Figure 8(b). The weak scaling on Daint
from 16 nodes is very good, which is based on a 4×4 node
grid, at which point MPI complexity is maximised. Scaling on
Rosa is similar to Daint, with an outlier at 16 nodes, which
is due to sub-optimal node ordering to minimise inter-node
communication, which was not tuned for these benchmarks.

It was not possible to use direct GPU-to-GPU commu-
nication on Tödi because we have not had enough time to
validate results with the latest Cray MPI implementation for
GPUs. As a result, GCL was modified to allocate page-locked
buffers in host memory, and the buffers on the GPU were
first copied from device to host before using host pointers to
perform communication, then the received results were copied
back to the device. The additional host-device transfers have a
negative impact on the weak scaling on Tödi, as illustrated
in Figure 8(b). As the complexity of MPI communication
increases from 2 to 16 nodes, the weak scaling is very poor,
due entirely to increased communication overheads. Weak
scaling is very good from 16 or more nodes, because the
message passing complexity does not increase for more than
16 nodes12. Despite the poor initial scaling, the GPU results
on Tödi are still faster than the dual socket Sandy Bridge
system Daint up to 256 nodes. Based on our observations for
the GCL benchmark in Section IV-A, it is reasonable to expect
that the communication overheads on the Tödi will be reduced
significantly once full GPU-to-GPU communication has been
implemented and tuned. These results highlight the importance
of having an efficient MPI implementation for direct GPU
communication for stencil codes like COSMO.

12A 4×4 process grid is used with 16 MPI processes, which has 4 processes
that perform halo exchanges with all 8 neighbours (including corners). For 8
nodes on a 4×2 process grid, the most neighbours any process has to exchange
with is 5.

V. DISCUSSION

In this paper we have presented an overview of the strate-
gies used to port a large, real-world atmospheric simulation
code from flat MPI to hybrid systems, along with some
preliminary results. Two different approaches were taken to
port the original Fortran 90 code to hybrid architectures. The
first was to port the dynamical core using a DSEL in C++
that can compile efficient code for both OpenMP and CUDA
back ends from a single source file. The second approach
added OpenACC directives to the original Fortran 90 code
for the physical parameterizations. The results presented here
have shown that both approaches are viable: a node to node
comparison between a Cray XK7 (K20X GPU) and Cray XC30
(dual socket SandyBridge) gave speedup in the range of 1.4–
1.45 times on the GPU for both the dynamical core and the
physical parameterization.

The ongoing viability of this project will depend on
improvements in both the OpenACC compilers, and the im-
plementation of direct GPU-to-GPU communication in MPI.
Currently, the main bottleneck for the GPU implementation
of our library is the direct GPU-to-GPU communication: if
this improves we expect to have very competative hybrid
GPU performance. Another significant challenge, for which
we currently have no solution, is how to write performance
portable code for both OpenMP and OpenACC in a single
source code. This is an important question that has to be
addressed, because with current tools this is most likely not
possible.

The issue of performance-portability is addressed by the
DSEL, which can generate efficient code for both OpenMP
and CUDA back ends from a single user-defined stencil de-
scription. This approach has the additional benefit of removing
hardware-specific code from user code, and allowing users to
express the stencil operations in a language that is closer to that
used in their mathematical formulation. The main impediment
to user adoption is the radically different approach taken by the
DSEL, which can be intimidating to domain scientists who are
uncomfortable with migrating from Fortran to C++. However,
the programming model will have to change from the flat MPI
model if multi-core and many-core systems are to be utilized
efficiently, and it is likely that it will involve either a DSEL-
like approach or compiler directives.

ACKNOWLEDGMENT

The authors would like to thank Roberto Ansaloni from
Cray and Peter Messmer from NVIDIA for their contributions
and assistance throughout this project. This project was sup-
ported by the HP2C initiative in Switzerland, and through the
POMPA working group of the COSMO consortium.

REFERENCES

[1] X. Lapillonne and O. Fuhrer. Using compiler directives to port a large
scientific application to GPUs: and example from atmospheric science.
Parallel Processing Letters, submitted for review.

[2] OpenACC. The OpenACC application programming interface v 1.0,
2011.

[3] OpenMP Architecture Review Board. OpenMP Application Program-
ming Interface v 3.1, 2011.

[4] OpenMP Architecture Review Board. OpenMP Application Program-
ming Interface Version 4.0 - RC 2, March 2013.

[5] C Schraff. Data assimilation and mesoscale weather prediction: A study
with a forecast model for the alpine region. Publication 56. Technical
report, Swiss Meteorological Institute, Zurich, 1996.

