Enhancements to the Cray Performance Measurement and Analysis Tools

Heidi Poxon Technical Lead & Manager, Performance Tools Cray Inc.

Strengths

Provide a complete solution from instrumentation to measurement to analysis to visualization of data

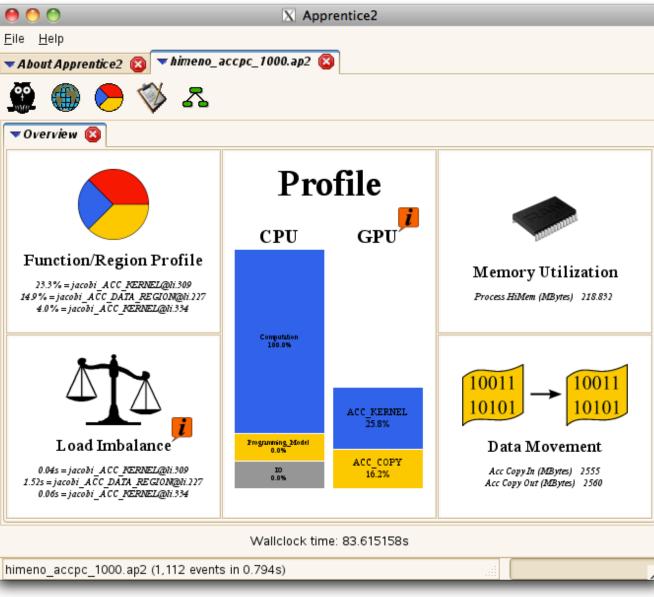
Performance measurement and analysis on large systems

- Automatic Profiling Analysis
- Load Imbalance
- HW counter derived metrics
- Predefined trace groups provide performance statistics for libraries called by program (blas, lapack, pgas runtime, netcdf, hdf5, etc.)
- Observations of inefficient performance
- Data collection and presentation filtering
- Data correlates to user source (line number info, etc.)
- Support MPI, SHMEM, OpenMP, UPC, CAF, OpenACC
- Access to network counters
- Minimal program perturbation

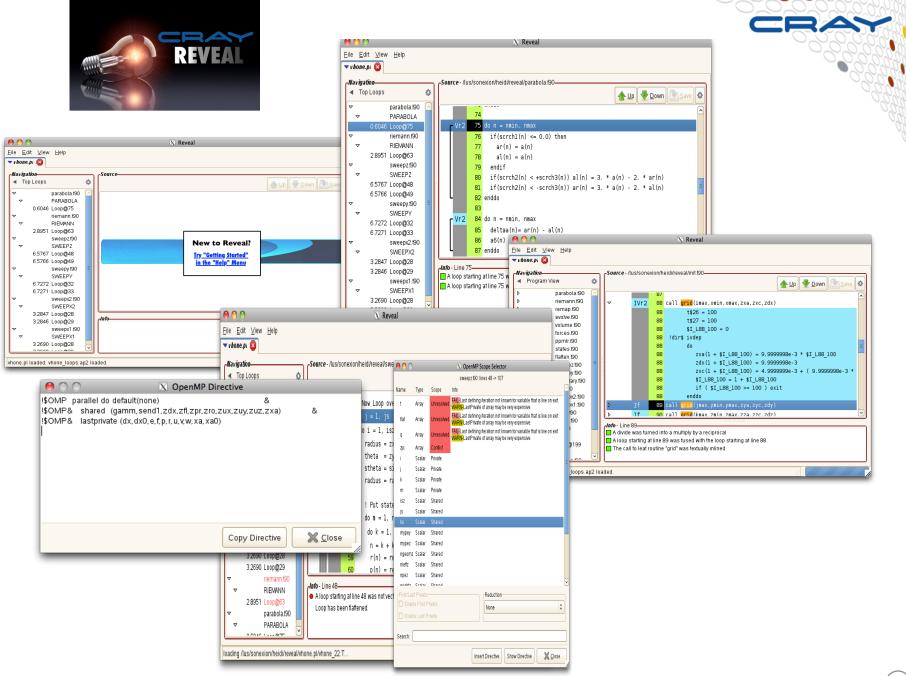
The Cray Performance Analysis Framework

Supports traditional post-mortem performance analysis

- Automatic identification of performance problems
 - Indication of causes of problems
 - Suggestions of modifications for performance improvement
- pat_build: provides automatic instrumentation
- CrayPat run-time library collects measurements (transparent to the user)
- pat_report performs analysis and generates text reports
- pat_help: online help utility
- Cray Apprentice2: graphical visualization tool

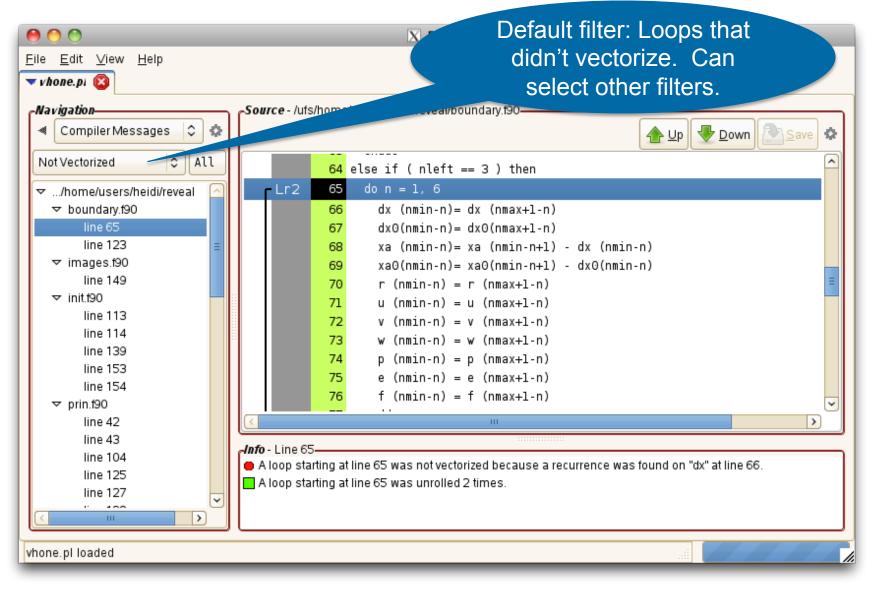

• To access software:

module load perftools


Recent Enhancements

- Apprentice2 for the Mac
- Aries[™] network counters
- PAPI Cray network component
- Apprentice2 application performance summary
- Reveal 1.0 released
- CrayPat-lite

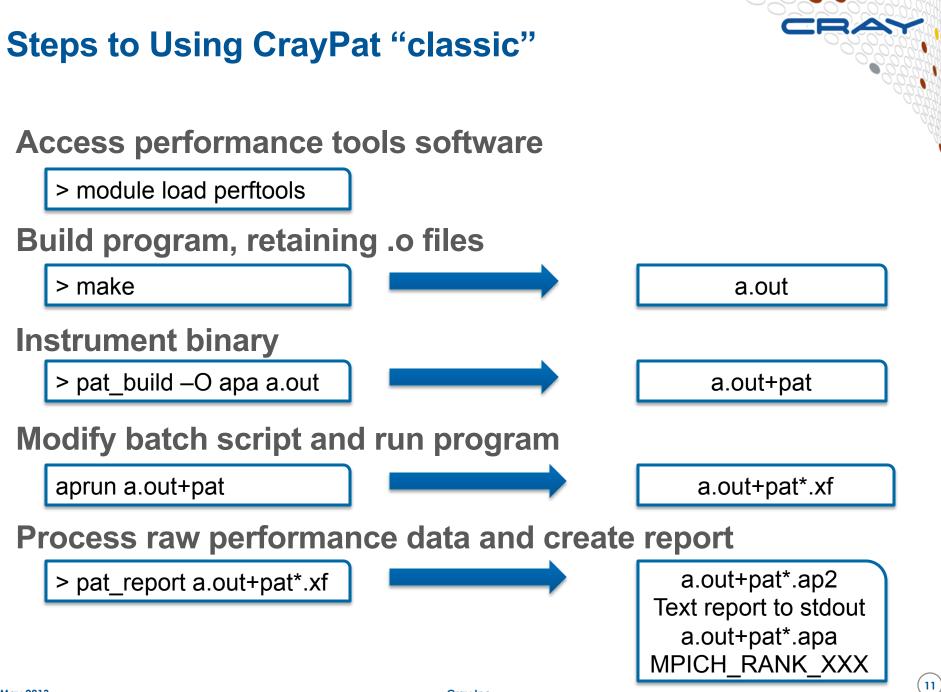
Application Performance Summary with GPUs


5

Reveal 1.1 Functionality – March 2013

- Message filtering (allows you to identify all loops that didn't vectorize or which functions were not inlined, etc.)
- New "Insert All Valid Directives" menu option (which inserts OpenMP directives for all "green" loops scoped successfully)
- Usability enhancements (Example: scoping loop selection and results windows combined into one tabbed window (to reduce the number of additional windows that "popup")

Message Filtering


CrayPat-lite Goals

 Provide automatic application performance statistics at the end of a job

- Focus is to offer a simplified interface to basic application performance information for users not familiar with the Cray performance tools and perhaps new to application performance analysis
- Provides a simple performance summary mechanism for Cray performance tools users before they move on to more detailed analysis with classic perftools
- Gives sites the option to enable/disable application performance data collection for all users for a period of time

Keep traditional or "classic" perftools working the same as before

 Provide a simple way to transition from perftools-lite to perftools to encourage further tool use for performance analysis

Steps to Using CrayPat-lite Access light version of performance tools software > module load perftools-lite **Build program** > make a.out (instrumented program) Run program (no modification to batch script) aprun a.out Condensed report to stdout a.out*.rpt (same as stdout) a.out*.ap2

MPICH RANK XXX files

Benefits of CrayPat-lite

- Program is automatically relinked to add instrumentation in a.out (pat_build step done for the user)
- .o files are automatically preserved
- No modifications are needed to a batch script to run instrumented binary, since original binary is replaced with instrumented version
- pat_report is automatically run before job exits
- Performance statistics are issued to stdout
- User can use "classic" CrayPat for more in-depth performance investigation

Performance Statistics Available

Job information

- Number of MPI ranks
- Number of PEs per node
- Number of threads
- Number of cores per socket
- Execution start time
- System name and speed
- Wallclock
- High memory water mark
- Aggregate MFLOPS (CPU only)

Performance Statistics Available (2)

• Profile of top time consuming routines with load balance information by group (user functions, MPI, etc.)

Observations

- Currently reporting MPI rank reorder suggestions if applicable
- Instructions on how to access additional information that is available

Predefined Set of Performance Experiments

- Set of predefined experiments, enabled with the CRAYPAT_LITE environment variable
 - sample_profile
 - event_profile
 - GPU

What do the predefined events mean to someone familiar with the Cray performance tools?

CRAYPAT_LITE=sample_profile

- Default experiment
- Equivalent to "pat_build -O apa a.out"
- Provides profile based on sampling
 - Includes collection of summary CPU performance counters around MAIN (for MFLOPS)
 - Includes Imbalance information
- More information available in .ap2 file
 - Can get classic report by running pat_report

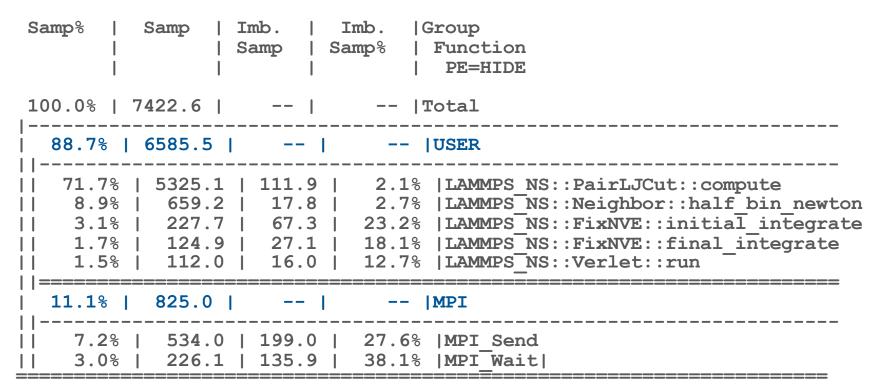
CRAYPAT_LITE=event_profile

- Provides profile based on summarization of events
- Includes OpenMP and OpenACC information if these models are used within program
- Equivalent to "pat_build -u -gmpi a.out" +
 - Collection of summary CPU performance counters
 - Filter to only trace functions above 1200 bytes
 - In most cases, omits tiny repetitive functions that can perturb results (like ranf())
 - Can give coarser granularity results over classic perftools

• More information available in .ap2 file

CRAYPAT_LITE=GPU

- Provides more detailed OpenACC GPU statistics
- Equivalent to "pat_build -w a.out" (coarsest granularity tracing, around MAIN)
- Output similar to classic perftools accelerator table
 - Includes host and device time
 - Bytes transferred between host and device
 - Time to transfer data between host and device
- More information available in .ap2 file


Default Output – Job Summary Info

CrayPat/X: Version 6.1.0.10929 Revision 10929... 03/04/13 23:51:00 sample profile Experiment: lite Number of PEs (MPI ranks): 64 Numbers of PEs per Node: 32 PEs on each of 2 Nodes Numbers of Threads per PE: 1 Number of Cores per Socket: 16 Execution start time: Tue Mar 5 18:17:03 2013 System name and speed: mork 2100 MHz

Wall Clock Time: 75.432429 secs High Memory: 43.96 MBytes MFLOPS (aggregate): 25718.61 M/sec

Default Output – Condensed Profile

Table 1: Profile by Function Group and Function (top 7 functions shown)

Default Output – For More Information...

Program invocation:

lammps.x -var x 4 -var y 2 -var z 8

For more detailed performance reports, run:
 pat report /lus/scratch/test/lammps.x.lj.64pe.32ppn.ap2

For interactive performance analysis, run: app2 /lus/scratch/test/lammps.x.lj.64pe.32ppn.ap2

End of CrayPat output.

Event Profile Output - Observations

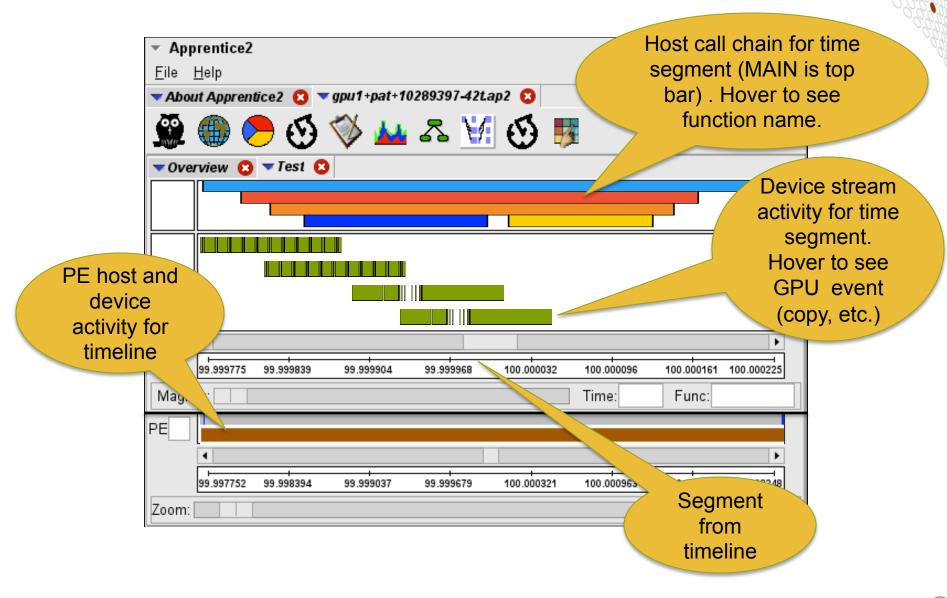
======= Observations and suggestions ===

MPI Grid Detection:

There appears to be point-to-point MPI communication in a 4 X 2 X 8 grid pattern. The execution time spent in MPI functions might be reduced with a rank order that maximizes communication between ranks on the same node. The effect of several rank orders is estimated below.

A file named MPICH_RANK_ORDER.Grid was generated along with this report and contains usage instructions and the Hilbert rank order from the following table.

Rank Order	On-Node Bytes/PE	On-Node Bytes/PE% of Total Bytes/PE	MPICH_RANK_REORDER_METHOD
Hilbert	5.533e+10	90.66%	3
Fold	4.907e+10	80.42 %	2
SMP	4.883e+10	80.02%	1
RoundRobin	3.740e+10	61.28%	0


CRAY

Reveal OpenMP Directive Validation

Image: Second system Image: Second system File Edit View Image: Vhone.pi Image: Second system Navigation Image: Second system Image: Program View Image: Second system	Source - /ufs/home/users/heidi/reveal/riemann.f90	User inserted directive with mis- scoped variable 'I'
 ✓ boundary:f90 ▶ BOUNDARY ▶ dtcon.f90 ▶ dump.f90 ▶ evolve:f90 ▶ flatten.f90 ▶ forces:f90 ▶ images:f90 ▶ init.f90 ▶ parabola.f90 ▶ ppmlr.f90 ▶ prin.f90 ▶ remap.f90 ▼ riemann.f90 	<pre>R 64 !\$0MP parallel do default(none) 65 !\$0MP& private (n) 66 !\$0MP& shared (lmin,lmax,prgh,urgh,vrgh,plf* 67 !\$0MP& crgh,l,plfti,pmold,prghi,umid 68 !\$0MP& zrgh,gamfac1,gamfac2) LSg 69 do l = lmin, lmax L 70 do n = 1, 12 71 pmold(l) = pmid(l) 72 wlft (l) = 1.0 + gamfac1*(pmid(l) - pl 73 wrgh (l) = 1.0 + gamfac1*(pmid(l) - pr 74 wlft (l) = clft(l) * sqrt(wlft(l)) 75 wrgh (l) = crgh(l) * sqrt(wrgh(l)) 76 zlft (l) = 4.0 * vlft(l) * wlft(l) * w Name</pre>	dl, umidr, wlft, wrgh, zlf veal OpenMP Scoping e Loops Scoping Results remann.190: lines 69 -> 86
 ▼ RIEMANN Loop@44 Loop@69 Loop@89 states.f90 sweepx1.f90 sweepx2.f90 sweepy.f90 sweepz.f90 sweep.f90 sweep.f90 vhone.f90 volume.f90 volume.f90 zonemod.f90 	<pre>77 zrgh (1) = 4.0 * vrgh(1) * wrgh(1) * w 78 zlft (1) = -zlft(1) * wlft(1)/(zlft(1) 79 zrgh (1) = zrgh(1) * wrgh(1)/(zrgh(1) citt 80 umidl(1) = ulft(1) - (pmid(1) - plft(1 crgh 81 umidr(1) = urgh(1) + (pmid(1) - prgh(1 gamta 82 pmid (1) = pmid(1) + (umidr(1) - umid1 gamta 83 pmid (1) = max(smallp,pmid(1)) 84 if (abs(pmid(1) - pmold(1))/pmid(1) < to 85 enddo 86 enddo 86 enddo 71 for - Line 69</pre>	Scalar Private WARN Scope does not agree with user OMP directive. Scalar Private Array Shared Array Shared ac1 Scalar Scalar Shared ac2 Scalar Shared Scalar Scalar Shared Array Shared
vhone.pl loaded	A loop starting at line 69 was not vectorized for an unspecified reason. A loop starting at line 69 was partitioned. En Searce	nable First Private None

Cray Inc.

GPU Timeline

Questions ?

CRAY