
SeaStar Unchained: Multiplying the Performance of the Cray SeaStar Network

David Dillow and Scott Atchley

Oak Ridge Leadership Computing Facility

Oak Ridge National Laboratory

Oak Ridge, TN

{dillowda,atchleyes}@ornl.gov

Abstract—The Oak Ridge Leadership Computing Facility
(OLCF) supports many different systems and many differ-
ent interconnects. The only common programming interfaces
across these systems are BSD Sockets and MPI. Due to the
design assumptions such as implicit buffering leading to extra
copies, Sockets performance is almost universally lower than
the native interface. Even in the cases that Sockets provides
similar bandwidth as the native interface, it suffers from
excessive CPU usage. MPI is the de-facto interface for intra-
job communication, but is difficult to use between jobs and
provides no ability to communicate with service nodes or off-
system nodes (e.g. for I/O forwarding). We have developed
the Common Communication Interface (CCI), a programming
interface that exposes the advances in interconnect hardware,
notably Remote Direct Memory Access (RDMA) and operating
system (OS) bypass, while imposing as little overhead as
possible. This API directly supports inter-job as well as off-
system communication. CCI is a lightweight abstraction layer
that provides point-to-point messaging and remote memory
access.

The Cray SeaStar ASIC, with its programmable embedded
processor, provides an excellent platform to investigate the
properties of various network protocols and programming
interfaces. This paper describes our native implementation CCI
on the SeaStar platform, and details how we implemented full
OS bypass for common operations. We demonstrate a 30%
to 50% reduction in latency, more than a six-fold increase
in message injection rate, and an almost 7x improvement in
bandwidth for small message sizes when compared to the
generic Cray Portals implementation.

I. INTRODUCTION

The Oak Ridge Leadership Computing Facility (OLCF)

supports several systems with differing interconnect tech-

nologies. Collaborating with industry partners, we developed

the Common Communication Interface (CCI) to provide

a programming API that is as simple to use as BSD

sockets, but performs with minimal overhead when running

on underlying interconnects such as Verbs and Portals [1].

As part of that work, the authors implemented a prototype

that runs natively on Cray’s SeaStar hardware. This provided

a sanity-check on the API and provided renewed respect for

the achievable performance of the SeaStar platform.

In this paper, we describe the operation of the SeaStar

hardware (Section II) and give a high-level overview of the

Portals API and details of its implementation on SeaStar

(Section III). We describe the goals and a high-level

overview of CCI, provide details of the prototype native

SeaStar implementation (Section IV), and present our results

(Section V).

II. SEASTAR HARDWARE

The Cray XT series of supercomputers is built around

the proprietary SeaStar ASIC [2]. This ASIC combines a

high-speed, seven port router with an embedded processor

to provide network access and reliability, availability, and

serviceability (RAS) functions for each node on the network.

The router portion of the ASIC provides the basic building

block of the 3D torus network for the machine. Each of the

six network links has been measured to provide slightly more

than 3 GB/s of data payload bandwidth in each direction of

the full-duplex connection [3]. Each 64 byte packet on the

link is protected by a 16 bit CRC checksum and uses a retry

protocol to ensure reliable transmission over the network.

The seventh port from the router connects to the receive

engine on the embedded processor, providing inspection

access to the NIC and DMA facilities to the host memory

space. The ASIC is connected to the AMD Opteron hosts

via a 16 bit HyperTransport (HT) link running at 800 MHz,

providing over 2 GB/s of effective bandwidth to memory.

The embedded processor is a PowerPC 440 core clocked

at 500 MHz. This dual-issue, 32 bit core includes indepen-

dent 32 KB data and instruction caches, and has direct access

to 384 KB of SRAM memory local to the ASIC. Additional

hardware on the ASIC allows the embedded processor to

access host memory via 15 address translation slots, each

providing a 256 MB chunk of translated space.

The embedded processor is responsible for managing the

flow of data into and out of the network. For transmission of

packets, the TX DMA engine allows up to 31 commands to

This research used resources of the Oak Ridge Leadership Computing
Facility, located in the National Center for Computational Sciences at Oak
Ridge National Laboratory, which is supported by the Office of Science of
the Department of Energy under Contract DE-AC05-00OR22725.
Notice: This manuscript has been authored by UT-Battelle, LLC, under

Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
The United States Government retains and the publisher, by accepting the
article for publication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, world-wide license to publish
or reproduce the published form of this manuscript, or allow others to do
so, for United States Government purposes.



be queued for processing. There are four basic commands –

load destination, transmit data, end packet, and end message.

As the TX engine breaks up long messages into the 64 byte

packets used on the network, it must first reset state and

know the appropriate destination node on the network. This

allows it to mark the first packet of the message with the

Start-Of-Message indicator and resets the CRC calculation.

Once the TX engine has been initialized for the message,

it can be instructed to DMA from host memory using raw

bus addresses over the HT link. There is no provision to

DMA data from the ASIC’s local memory. At the end

of the message, the final DMA command will end the

message. This command is able to notify the processor of

its completion, and may optionally append a 32 bit CRC to

the message to provide for end-to-end reliability. The end

packet command is similar, and allows to multiple CRCs to

be calculated and inserted for a message – for example, the

header and payload of the message could have independent

CRC checks.

Additionally, the ASIC TX engine has the ability to inject

small messages into the data stream using programmed

IO. A 256 byte buffer and four command FIFO allow the

processor to send short messages independently of the main

TX DMA engine. A hardware interlock prevents injection

of the PIO messages into middle of a DMA message to the

same host – such an event would corrupt the message from

the DMA engine.

As the packets flow into the NIC from the router, they are

placed into an RX FIFO. If the packet is marked as Start-

Of-Message, a flag is set and a pointer to the FIFO entry is

provided to the embedded processor. As the packet reaches

the head of the FIFO, the source is matched against a 256

entry content-addressable-memory (CAM) to determine its

disposition. Each CAM entry has an associated seven entry

command queue. If the source does not match an entry in

the CAM, or the associated command queue is empty, the

RX pipeline is stalled and the embedded processor must take

action to resume operations.

Each RX command in the queue may discard the data

or DMA it to the the host using raw addresses on the HT

bus. Each command handles an assigned length of up to

256 KB, which must be exhausted before moving to the

next command. This allows one command to handle multiple

packets from the same message. Commands may optionally

check the CRC at the end of the length, and notify the

embedded processor when the command is retired.

The embedded processor is responsible for noticing the

Start-Of-Message flag and setting up the CAM and RX

command queues for the message. It is also possible for

the processor to read it out of the RX FIFO and discard

it once it reaches the head of the queue, thus avoiding the

need for a CAM entry for that message. The processor must

also handle the DMA completion events, keep the DMA

queues full for messages that do not fit in a single command,

react to commands from the host, and notify the host upon

completion.

Based on the work of Pedretti et al [4], software for the

embedded processor is generally coded in C. This provides a

good balance of performance and ease-of-development, and

this improves along with the state of compiler technology.

III. PORTALS

Portals was designed and developed at Sandia National

Laboratories in collaboration with the University of New

Mexico. Beginning with the Sandia Red Storm system in

2002, Cray used Portals 3.3 as the interface to the SeaStar

network[5].

A. Portals API Overview

The design of Portals had scalability as its primary goal.

Portals did not promise to enable any application to scale, it

instead only promised to not limit an application’s ability to

scale. To enable this scalability, Portals avoids maintaining

state. It depends on reliable, in-order delivery of messages;

connectionless communication; and all buffering is handled

in user-space [6].

The design also was meant to allow zero-copy, OS-bypass,

as well as application bypass, which allowed for overlap

of computation and communication without application in-

volvement. All messages contain match bits (i.e. tags) that

will correspond to a posted buffer on the target. All messages

are expected and messages without a corresponding buffer

are dropped. This design gives the flexibility to the appli-

cation to use the match bits to implement both one-sided

and/or two-sided semantics.

The communication model is a matching put and a match-

ing get. The match bits are not a specific memory address;

they are compared against an application-defined tag in a

list of match entries. Once matched, Portals looks up the

associated memory descriptor for the entry. If the operation

is a put, the data is placed in that memory location and it

may have an optional acknowledgment. If it is a get request,

the request is matched and then a reply is then returned to

the initiator and placed in the initiator’s buffer specified in

the PtlGet() call.

B. Portals Implementation on SeaStar

The Portals 3.3 implementation on SeaStar is split be-

tween a network abstraction layer (NAL) that provides the

network protocol for the Portals API that is implemented

in a common library. The SeaStar NAL (SSNAL) lives

in kernel space and provides the entry-points needed to

send and receive messages. It provides the interrupt handler

used by the NIC to notify the host processor of events

requiring attention. Almost all Portal API calls from user-

space must be “bridged” to the kernel-space library and

NAL implementations, as the processing of inbound requests

from the network take place in the kernel in the interrupt



handler. Additionally, as portions of the Portal message

header contain trusted information such as the source process

id and message length, the header must be generated by the

kernel in kernel-memory unaccessable to the user process.

Allowing the user to control these values could bypass

authentication mechanisms or confuse the network protocol.

1) Portals Transmit Path: Posting a message using

PtlPut() packages up the API call and forwards it into

the kernel library. There, the arguments are unpacked and

validated. Once the library is assured this is a valid request, it

allocates a control structure and creates the message header.

Next, a list of DMA commands to pick up the header and

message data out of the MD is created. This DMA program

is placed into a mail box in the NIC’s uncached memory

region, where the firmware will pick it up during its next

periodic poll for work. It will be added to firmware’s list

of pending transmit tasks, and once it reaches the head of

the queue, the DMA program will be added to the SeaStar’s

TX queue. If the program is larger than the available space

in the queue, the firmware will add as many operations as

possible to the TX queue. Any remaining TX operations will

cause the firmware to attempt to add more entries to the TX

queue on each pass through the control loop.

The final command in the DMA program will be set

to notify the firmware of the completion of this TX

request. At that point, the firmware will post an event

to the host indicating which TX request just completed,

and interrupt the host. The kernel library will clean up

the structures associated with that request and queue an

PTL EVENT SEND END event for the next time the user

code calls into PtlEQPoll() or PtlEQWait(), which

also requires a bounce into kernel-space.

2) Portals Receive Path: On the generic receive path, the

firmware is notified of a new message when a packet arrives

with the Start-Of-Message indicator set. The firmware peeks

into the RX FIFO to verify that we are processing a Portals

message, and then copies the contents of the Portals header

into local memory for further validation. The source of the

message is looked up in the list of active sources, and a new

tracking structure allocated if it is not found. The destination

process is verified to be alive, and a new RX task structure

is allocated to handle this message. The message header is

then transferred across the HT bus to the host memory using

programmed IO, and the host kernel is interrupted to notify

it to generate a DMA program.

The host kernel interrupt handler retrieves the match bits

from the copied header, and walks the match entries for the

targeted portal index. Upon finding a matching entry with

room in the memory descriptor, it generates a DMA program

to discard the header from the RX FIFO and transfer the

body of the message to the appropriate locations in host

memory. The firmware is notified of the generation of the

program, and links it into the list of pending messages to

process from this source. Once the source is assigned a

CAM and has room in the associated RX DMA queue, the

firmware feeds the program into the queue when it becomes

the active receive task.

The final entry in the DMA program will be set

to notify the firmware of its completion. The firmware

then posts an RX completion event and interrupt to

the host, which uses the information to queue the

proper event for PtlEQPoll()/PtlEQWait() such as

PTL EVENT PUT END or PTL EVENT REPLY END.

Finally, the host will post a command to the firmware to

release the tracking structure for this message.

One large difference between transmission and receive

processing on SeaStar is that messages from different

sources may be progressing through the RX hardware si-

multaneously. As each message can be many megabytes or

even gigabytes in length, it will arrive broken up into 64

byte packets, and these will often be interleaved in the RX

FIFO. The RX hardware handles the de-multiplexing of the

individual packet streams using the 256 CAM entries to sort

the messages into the buckets provided by the host-specified

DMA programs. It is possible on large machines to have

more than 256 individual sources sending a message to the

same node at once; when this happens, resource exhaustion

occurs and messages in excess of the available CAM entries

will be dropped. Cray’s implementation of Portals relies

on the Basic End-to-End Reliability and CAM Overflow

Protocol to detect and recover from these situations. The

details of these protocols are not discussed here.

There is also an accelerated version of Portals for SeaStar

that takes advantage of the contiguous process space avail-

able under Catamount, documented in [7]. In this model,

user-space directly writes transmit commands to a mailbox

on the NIC, which can generate the DMA program itself. For

receive side, the match list processing is also performed by

the embedded processor. When the match lists are short this

improves the latency for messages, but the slower embedded

processor loses to the host processor as the lists grow.

IV. CCI: THE COMMON COMMUNICATION INTERFACE

Many HPC projects include a network abstraction layer

(NAL) to isolate the application from the underlying network

interface. Examples include MPICH’s Nemesis, Open-MPI’s

BTL, Lustre’s LNET, PVFS’ BMI, and many more. Each

project must then update their NAL as new interconnects

and their programming interfaces are introduced.

ORNL, with industry collaborators, designed the Com-

mon Communication Interface (CCI) as a common NAL,

which provides a scalable messaging service and remote

memory access (RMA)[1]. The goal is to provide a NAL

that could be adopted by new projects that wished to take

advantage of common HPC interconnects. Currently, CCI

supports Verbs (InfiniBand and RDMA over Converged

Ethernet), Cray GNI (Gemini and Aries), Sockets (UDP and

TCP), and Ethernet-Direct on Linux, which bypasses the IP



stack. There is partial, outdated support for Myricom’s MX

(Myrinet and Ethernet) and Cray Portals3 (SeaStar).

The remainder of this section will provide a brief overview

of the programming interface and the prototype implemen-

tation running directly on the SeaStar hardware.

A. Programming Interface

CCI provides access to the network device via an end-

point. The endpoint is the container of resources such as

buffers and queues, and is bound to a specific device.

An application may open one or more endpoints. CCI

uses an event driven model and the application polls the

endpoint for new events. Events include send completions,

receive completions, connection handshakes, etc. When the

application no longer needs the event, it returns the event to

CCI for reuse.

Semantically, CCI uses connections to manage communi-

cation between two peers. Although CCI uses connection se-

mantics, it tries to minimize per-peer connection state, espe-

cially per-peer buffering, as much as the underlying network

allows. CCI provides choices for reliability and ordering to

all application developers to choose the best fit for his needs.

CCI offers reliable/ordered (RO), reliable/unordered (RU),

and unreliable/unordered (UU) connections.

CCI provides two modes for communication, Message

(MSG) and Remote Memory Access (RMA). The MSG

service uses send/receive (i.e. two-sided) semantics for small

messages. Unlike most two-sided interfaces, however, the

application never directly posts receive buffers. When the

application opens an endpoint, the CCI transport automati-

cally populates the receive queue. After returning a receive

event, CCI will then repost the buffer for further use. CCI

limits a single message to the size of the underlying MTU or

a pseudo-MTU, depending on the network’s capabilities. The

maximum send size (MSS) ranges from slightly under 9000

bytes on Ethernet down to 128 bytes for Cray GNI. CCI does

not provide fragmentation and reassembly and requires the

application to manage it if desired. By limiting messages

to a single MTU, CCI can take advantage of multiple

interfaces and/or multiple paths through the network for RU

connections.

MSGs work well for control messages, but bulk data

movement is better served by RMA. Available only on

reliable connections, RMA provides one-sided, zero-copy

semantics for READ and WRITE with an optional FENCE.

If the hardware supports RMA, CCI will use it and, if not,

emulate it. Applications may optionally include a message

that is guaranteed to be delivered to the target after the RMA

completes to notify the peer that the operation is complete.

B. CCI on SeaStar

Our initial prototype focused on CCI’s message interface.

While the wire format could be modified to allow kernel

and NIC-based de-multiplexing endpoints to be used in-

terchangeably, we focus on the interface that would most

commonly be used on the compute platform – NIC-based.

This mode allows for full OS-bypass and zero-copy receives,

with multiple processes owned by the same user sharing a

command queue to the NIC.

For the purposes of the prototype, we chose 4 KB to be

the MSS. This is not an inherent limitation in the protocol,

but was the smallest MSS that was thought to be useful. It

could be adjusted upward to 8 KB without significant effort,

at the cost of increased memory usage. Similarly, a number

of the default memory sizes could be adjusted upward. The

remaining discussion assumes a MSS of 4 KB.

Network resources are owned by the CCI endpoint. For

user-mode CCI, each endpoint maps a number of memory

regions into its address space:

• TX areas. Under CCI, each message is buffered for

transmission. Each endpoint has its own pool of trans-

mit buffers, currently 32 areas of 16 KB each, or 512

KB. This allows for 96 full-size messages to be queued,

as we must account for the header and do not allow a

message to span buffers.

• RX areas. Each endpoint owns a number of receive

buffers. The current implementation allows up to 8,192

areas of 16 KB each, or 128 MB. This allows for 24,576

full-size messages to be queued, accounting for headers.

• RX ready ring. Used to provide the NIC with infor-

mation on which RX areas are available for reception

at this time.

• Completion queue. Used to receive notification from

the NIC of command completions and newly received

messages. The completion queues live in host memory,

and empty slots are initialized to zero.

• Command queue. Used to instruct the NIC to transmit

a message, update RX ready ring indexes, and return

completion queue credits to the NIC for future process-

ing. The command queue lives in uncached memory on

the NIC, and empty slots are initialized to zero.

• Host-side controls. Shared page used to coordinate ac-

cess to the command queue by multiple processes. The

current number of entries available on the command

ring and the next entry to fill are maintained in this

area.

The CCI message header is described in Figure 1. The

first word contains the message type, destination endpoint,

and message length. As SeaStar does not have a mechanism

to notify the recipient that a message has ended – only that

a new one has started – it is vital that the length is correct.

For CCI, a table of message types, destinations, and length

is constructed in kernel-controlled memory. The NIC uses

these tables to DMA the correct header for the message it

is sending, then DMAs the rest of the message as built by

untrusted user space. These tables currently require 292 KB



31 29 28 26 25 21 20 10 9 0

Type Sub

Type Dest EP Length

31 19 18 12 11 9 8 4 3 0

Dest Endpoint ID (Low word)

Src Conn Gen (Low) Sequence

Src Conn ID Pad Src EP Gen

Dest Endpoint ID (High word)

Dest Connection ID

Dest Connection Gen

Data (1 or more words)
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤❤

Figure 1: CCI message header

of kernel memory to handle 32 user-level endpoints for each

of the various CCI message types.

As the rest of the message is not trusted, the header carries

several fields to help ensure that each message is valid for

a given destination. The 64 bit nonce is included to ensure

that we properly established a connection with the receiving

endpoint; the connection id and generation allow for lookup

of the connection and verification that it is still alive. The

sequence number and source connection information are

only used for reliable connections; these fields allow the

NIC to easily generate acknowledgments to the sender once

the message has been placed in the host buffer.

1) Message Transmission: In CCI, messages are buffered

on send. While adding a copy to the cost of sending a

message, this design choice simplifies message lifetime for

the user – similar to the BSD sockets interface – and

allows an implementation to pre-register memory to avoid

overhead of repeated register/unregister cycles. The native

CCI implementation on SeaStar leverages this approach,

with the kernel informing the NIC of the location of the

transmit buffers during endpoint creation. DMA program

generation for message transmission becomes a simple table

lookup and a small amount of math.

To process a cci_send() request, the CCI library

allocates a tracking structure from the local pool on the host.

This tracking structure also holds the completion event that

will be given to the user once the message has been sent.

Once we have a tracking structure, we then allocate buffer

space from our TX areas. We populate the header in that

area based on the information contained in the connection

structure, and copy the user message after the header.

With the message properly built, we then atomically

claim a command credit from the host-side control area and

advance the command index by one. We write the launch

TX command to the NIC command queue, perform any

bookkeeping needed for reliability, and return to the user.

The NIC picks up the command by noticing a non-zero

value at the current command consumer index, verifies that

the source endpoint is active, and that a credit is available for

the completion queue to hold the event when the command is

finished. A task structure is allocated in local NIC memory to

track the request, and the TX DMA engine is programmed

if there are three entries available in the ring. If room is

not available, the request is queued until another transmit

completes and frees up additional space. Once bookkeeping

has been completed for the transmission, the command

location is zeroed to indicate that the slot is empty, and

the command consumer index increased to point at the next

slot to be filled with a command.

Once the TX DMA engine has sent the message, we

use our pre-reserved completion queue credit and put our

notification in the next available slot for the source end-

point’s queue. User space will poll this location during

a cci_get_event() call and discover the completion.

If the message was not sent on a reliable connection, we

can immediately give the user the event from the tracking

structure. Otherwise, we queue the message to await ac-

knowledgment. Once the user returns the event, we place

the tracking structure back in the free pool for re-use.

2) Message Reception: Message reception begins once

the NIC firmware is notified of the arrival of a packet with

the Start-Of-Message indicator set. The firmware allocates

a source and tracking structure and inspects the first word

of the message to determine the processing needed – is this

a CCI message, IP packet, or Portals message? The CCI

message handler retrieves the destination endpoint id and

message length from this same word, minimizing the number

of accesses required to the hardware RX FIFO.

Once the destination endpoint is known, we verify that

there is enough room in the completion queue to notify

the host, and that we have room in the RX area for the

specified length. Implicit in these checks is verification that

the endpoint is still alive – if not, then the “resources-not-

ready” response is converted to a “refused” response to

differentiate the error.

Given the sufficient resources, we attempt to program the

RX DMA engine if we are the active task and space is

available for the two entries required for the message – we

discard the first word of the header, as that information is

transferred in the completion queue entry. If no room is

available, the task is queued until previous tasks complete

and make space. Whether or not we programmed the DMA

engine, we pre-construct the completion event and store it

for use when the DMA completes. When the message has

been safely transferred to host memory, we are notified of

the DMA completion and remove our task from the queue.



We post the pre-computed event to the completion queue

and release our tracking structure to the free pool, ending

the firmware’s involvement.

The user-space library checks the next slot in the comple-

tion queue during cci_get_event() and upon finding

it non-zero, begins processing the message. We calculate a

pointer to the message based on which RX area was used

and the offset into that chunk of memory. The library then

extracts the endpoint id and validates it against our endpoint

nonce. We verify that the specified connection is active and

that the source of the message matches the expected remote.

For reliable connections, the sequence number is verified,

and recovery performed as needed. We then retrieve an

event from the free pool and prepare it for the application’s

consumption. The entry in the completion queue is zeroed

out for future notifications. Once the application returns the

receive event to the library, we process the receive area for

potential reuse by the firmware and put the event structure

back in the free pool.

The firmware code works from one receive area at a time.

If the message being received does not fit in the current

area, the firmware sends a completion event that notifies the

library of which area is closed out and how many messages

it handled during its life. As receive events are returned to

the library, it checks if the area is inactive and if we have

returned all outstanding events. Once this has happened, the

area is ready to be re-used and its index is placed in the

ready-ring. We normally notify the firmware of additional

ready areas by piggy-backing on transmit requests, but if

the library has several pending entries to send it will send a

dedicated command to expedite the transaction, preventing

stalls in a receive-heavy workload.

The CCI firmware also implements CAM swapping to

prevent this limited resource from being exhausted. Pro-

viding storage for the out-going CAM contents requires

approximately 128 bytes per node, or 2.5 MB for 19200

nodes. While this does not fit into SeaStar memory, a small

amount is kept in local memory and the rest is mapped from

host memory as cached address space. This is intended to

provide quick access for the common case of a reasonable

number of sending nodes, but continue to work in the

extreme case. This code has not been fully excercised, and

its effectiveness is unknown.

C. Caveats

As a prototype, the current implementation of CCI on

native SeaStar has a few limitations:

• RMA currently unimplemented. Work has focused on

the messaging functionality, and little work has been

done to implement memory region registration or to

assess how much of the processing can be effectively

offloaded to the NIC.

• Command queue fairness. There is currently one user-

level command queue shared by cooperating processes

on a host. The kernel ensures that all of these processes

are owned by the same user, but it is possible that one

of the processes could starve the others by flooding

commands into the queue. Further, commands owned

by a process that crashes are not recoverable unless

all other processes sharing the queue exit. These issues

are not expected to be significant impediments to the

expected scientific computing use-cases on compute

nodes, but would need further work to resolve on

service nodes.

• Transmit scalability. We currently allow for only 96

full-size messages to be queued at once for each

endpoint, though it is possible to fit 8,192 messages

in the buffers if they each contain 40 bytes or less of

user payload. Messages sent on a reliable connection

must currently occupy a slot in the transmission area

until acknowledged. This is likely to lead to stalls on

large machines. A possible approach is to double-buffer

the transmitted messages, but this would require an

extra copy if CCI FLAG NO COPY is not used for

the cci_send() call.

• User-driven progress. The current library requires the

application to periodically call cci_get_event()

to ensure progress is made. This is acceptable for

the current transmit handling, but would need to be

addressed if double-buffering is added.

V. SEASTAR PERFORMANCE

To evaluate the performance potential of the native CCI

implementation on SeaStar, tests were performed on OLCF’s

test and development machine, “chester”. At the time of

the testing, chester was a single cabinet Cray XT5. Each

compute node contained two 2.6 GHz Opteron processors,

each providing six cores for a total of 12 cores per node.

Each node contained 16 GB of DDR2 800 MHz memory.

All tests were performed on two compute nodes adjacent on

a single module; this ensured a consistent network latency

between different tests.

The system ran the Cray Linux Environment 2.2UP03

during the Portals testing. This includes Cray’s customized

2.6.16 Linux kernel, Portals 3.02.0001, and SeaStar firmware

03.12.2246. The CCI native testing was performed on a

modified Linux kernel 2.6.37 and custom firmware.

A. Latency

To test latency, we implemented a ping-pong test for

each stack. All binaries were compiled with -O3 and

-fno-builtin. For each message size, we conducted an

average of 500,000 iterations. For the Portals testing, we

implemented two strategies for transmission. One stategy

bound the buffer, executed the PtlPut(), and unbound

the buffer for each message. The second strategy bound the

buffer once, and copied each message into the buffer prior to

the PtlPut() call. We found that the version that copied



PortalsCCI (RO)CCI (UU)

Message size (bytes)

1 /
2
R
o
u
n
d
-t
ri
p
ti
m
e
(µ

s)

4K2K1K51225612864321684210

12

11

10

9

8

7

6

5

4

3

2

1

0

Figure 2: SeaStar Ping-pong Latency

PortalsCCI (RO)CCI (UU)

Message size (bytes)

In
je
ct
io
n
B
an
d
w
id
th

(M
B
/s
)

4K2K1K5122561286432

2000

1750

1500

1250

1000

750

500

250

Figure 3: SeaStar Streaming Bandwidth

PortalsCCI (RO)CCI (UU)

Message size (bytes)

In
je
ct
io
n
R
at
e
(K

il
o
m
es
sa
g
es
/s
)

4K2K1K5122561286432

1100

1000

900

800

700

600

500

400

300

200

100

Figure 4: SeaStar Streaming Message Rate



produced lower latencies for messages up to 8 KB, and use

those results here. All processes were bound to the same

core on the socket closest to the NIC.

As shown in Figure 2, the round-trip through the kernel

for transmission, and interrupting the host on reception add

up. The jump in latency for the Portals implementation at

32 bytes denotes the point at which the message body no

longer fits in the Portals header, requiring the NIC to wait for

the DMA program from the host, and necessitating a second

interrupt to indicate completion of the message. While not

shown in the figure, requesting an ACK on a Portals message

adds 4.4 to 6 µs to the latency of the reported non-ACK’d

results.

By avoiding these overheads, CCI half-round trip latency

starts at 2.8 µs and stays under 3 µs until we reach a packet

size of 512 bytes on an unreliable/unordered (UU) connec-

tion. CCI latency tops out at just under 5 µs at the MSS for

UU. Adding the ACK processing adds approximately 800 ns

to the latency until the time to actually transmit a message

begins to hide the processing time.

B. Streaming

To test message injection rate and bandwidth, we im-

plemented a streaming test. After an initial burst of trans-

missions to achieve a specified number of messages in

flight, additional messages are sent as previous transmissions

complete. The transmit side sends messages for a specified

length of time, and the client reports how many were

received at the end. For both implementations, we tuned

the number of messages in flight for maximum results for

that stack.

As shown in Figure 3, CCI begins to run out of bandwidth

at 2 KB messages, and caps out at 2 GB/s when using the

maximum message size. Portals single-node bandwidth has

been measured at over 1700 MB/s with 1 MB messages

in our other work, so we believe these results may be

dominated by the receive processing, and sending to multiple

destinations could improve Portals performance.

More interesting are the message injection rate shown in

Figure 4. CCI is able to send over one million messages

per second – a message every 960 ns – from a single

node for message sizes up to 1 KB. As we approach our

maximum message size, our rate drops to slightly under

500,000 messages per second as we start to hit bus band-

width and transaction limitations. As expected, the injection

rate for reliable connections is lower until we reach the

maximum message size. This reflects the additional latency

and processing required for the acknowledgment packets.

VI. CONCLUSIONS AND FUTURE WORK

While subject to a number of limitations, the prototype

implementation of CCI on SeaStar produced promising

results. We demonstrated half-round trip latencies of 2.83

µs (UU) and 2.99 µs (RO) with zero-byte payloads. These

are 30% to 50% of the latency achieved by the stock Cray

Portals implementation. As we reach the 4 KB maximum

message size for CCI, our latency begins to be driven by

bandwidth and we hit 4.99 µs (UU) and 5.26 µs (RO). In

the streaming message tests, CCI was able to inject over one

million messages per second (UU), or over 640 thousand

messages per second for RO connections. This is a six-fold

increase in injection rate, and leads to similar bandwidth

gains for message traffic under 2 KB.

Of course, this is a prototype implementation, and im-

poses a number of trade-offs when compared to a fully-

optimized production implementation. Addressing the issues

of transmission scalability and thread safety will no doubt

reduce some of the gains, though it is hoped that spending

time optimizing the code would partially offset the costs.

Any work to complete the implementation would not be

performed at OLCF. The SeaStar hardware has reached its

end-of-life – indeed, Cray has since released two generations

of improved hardware in its Gemini and Aries ASICs – and

OLCF has no longer operates any XT class machines. The

authors do have access to a personally-owned XT cabinet,

and may eventually complete the implementation as a hobby

and for the educational experience.

REFERENCES

[1] S. Atchley, D. Dillow, G. Shipman, P. Geoffray, J. M. Squyres,
G. Bosilca, and R. Minnich, “The common communication
interface (CCI),” in 19th Annual IEEE Symposium on High-
Performance Interconnects, August 2011.

[2] R. Brightwell, K. T. Pedretti, K. D. Underwood, and T. Hudson,
“Seastar interconnect: Balanced bandwidth for scalable
performance,” IEEE Micro, vol. 26, pp. 41–57, May 2006.
[Online]. Available: http://dx.doi.org/10.1109/MM.2006.65

[3] D. A. Dillow, G. M. Shipman, S. Oral, Z. Zhang, and Y. Kim,
“Enhancing i/o throughput via efficient routing and placement
for large-sscale parallel file systems,” IEEE International Per-
formance Computing and Communications Conference, vol. 0,
pp. 1–9, 2011.

[4] K. T. Pedretti and T. Hudson, “Developing Custom Firmware
for the Red Storm SeaStar Network Interface,” in Proceedings
of the Cray User Group Conference, 2005.

[5] R. Brightwell, T. Hudson, K. Pedretti, R. Riesen, and K. D.
Underwood, “Implementation and performance of Portals 3.3
on the Cray XT3,” in Proceedings of the 2005 IEEE Interna-
tional Conference on Cluster Computing, 2005.

[6] R. Brightwell, R. Riesen, B. Lawry, and A. B. Maccabe, “Por-
tals 3.0: Protocol building blocks for low overhead communica-
tion,” in Proceedings of the 2002 Workshop on Communication
Architecture for Clusters, 2002.

[7] R. Brightwell, T. Hudson, K. Pedretti, and K. D. Under-
wood, “An Accelerated Implementation of Portals on the Cray
SeaStar,” in Proceedings of the Cray User Group Conference,
2006.


