
Recent enhancements to the Automatic Library Tracking Database infrastructure at
the Swiss National Supercomputing Centre

Timothy W. Robinson
Swiss National Supercomputing Centre (CSCS)

Via Trevano 131, 6900 Lugano, Switzerland
Email: robinson@cscs.ch

Neil D. Stringfellow
iVEC

26 Dick Perry Ave, Kensington, WA 6151, Australia
Email: ed@ivec.org

Abstract—The Automatic Library Tracking Database
(ALTD)—an infrastructure developed previously by staff at
the National Institute for Computational Sciences (NICS)—
is in production today on Cray XT, XE, XK, and XC30
systems at several Cray sites, including NICS, Oak Ridge
National Laboratory, the National Energy Research Scientific
Computing Center, and the Swiss National Supercomputing
Centre (CSCS). The Automatic Library Tracking Database
automatically and transparently stores information about ap-
plications running on Cray systems and also records which
libraries are linked to those applications, and from these
data, support staff at HPC centres can derive a wealth of
information about software usage—such as the use or non-
use of particular compiler suites or the uptake of numerical
libraries and third-party applications—right down to the level
of specific version numbers. The tool works by intercepting the
GNU linker to gather information on compilers and libraries,
and intercepting the job launcher to track the execution of
applications at launch time. We have recently extended the
ALTD framework deployed at CSCS to record more detailed
information on the individual jobs executed on our machines:
the job information recorded by the previous incarnation of
ALTD was limited to username, executable, (batch) job id,
and run date; we have extended the tool to record many
additional job characteristics such as begin and end times,
requested versus used core counts, number of processing
elements and threads per process, and mode of linking (e.g.,
static or dynamic). In combination with custom post-processing
scripts—which map executables to software codes, research
domains or research groups—our ALTD implementation now
delivers a far more complete picture of system usage, providing
not only a list of running applications but also information on
the way that these same applications are being run. On a
practical level, such information can be used, for example, to
guide future hardware and software procurements, or to assess
whether or not researchers are using our systems in the manner
for which they were provided with resource allocations.

Keywords-ALTD; library usage; application usage; monitor-
ing; job accounting

I. I NTRODUCTION

In 2005, the Swiss National Supercomputing Centre
(CSCS) installed its first Cray system, an XT3 named Piz
Pal̈u, which was the very first of its kind in Europe. The
early Cray XT systems ran the Unicos/lc operating system
and Catamount lightweight kernel, and recorded and stored
a great deal of job accounting information, including the

complete job launch command (the “yod” line, cf. “aprun”
on current systems), and thus the executable name and all
command line arguments. During the period of operation of
the Cray XT3 it was possible, therefore, to identify with
relative ease not only which codes were being run on the
system—and the amount of CPU resource they consumed—
but also fine-grained information such as the number of
processors/cores used for particular codes. This information
was invaluable for generating usage reports and for deter-
mining which applications were of greatest importance to
the user community. As well as the benefits with respect
to usage reporting, the accounting database information
allowed application support personnel to identify situations
where the machine was being used in a less than efficient
manner. For example, it was known that certain applications
benefitted greatly from using small memory pages. By
examining the job accounting database, application staff
could see when these applications were launched without the
“−small pages” flag, and action could be taken to educate
the users accordingly.

The mapping of executable names to specific software
applications requires a certain degree of knowledge on the
part of the user support or application specialists. Users have
the freedom to name their executables arbitrarily (“a.out”,
for instance), but our own experience shows that in the
vast majority of cases users will choose sensible, descriptive
names for their executables, and in the case of third-party ap-
plications, users do not tend to rename the executables from
their default filenames (“namd2” for NAMD, “cp2k.popt”
and “cp2k.psmp” for CP2K, “cpmd.x” for CPMD, and so
on). Thus, we can obtain a very reasonable understanding
of application usage on our systems from an examination of
the executable name and command line arguments.

With the deployment of the Cray XT5 and the introduction
of the Compute Linux Environment operating system, we
lost the job accounting capabilities that the systems had
under Unicos/lc. In 2011, the Application Level Placement
Scheduler (ALPS) was enhanced to some extent such that the
job launch commands (“aprun” lines) were now recorded in
the system log files, but to link these aprun lines to specific
batch jobs and/or users would have required a complex set of

scripts that examined multiple different log files on multiple
different nodes.

At the present time, the tools provided by Cray give us
very little information on which applications are running on
the systems. Because of this, application support specialists
cannot easily answer questions such as “how many times
has applicationx been launched on the production system
in the last month?”, or “is someone using a legacy version
of applicationx, and if so, why?” We also lack information
on which compilers are being used to build applications,
and which libraries are most utilized. We cannot answer
questions such as “how many applications make use of
library x?”, “which users are using legacy versions of library
x?”, or “how many users are trying out different compiler
suites?”

One method of tracking application or library usage is to
track the loading of modules. Obviously, this method is only
useful for tracking software that has been provided by Cray
or HPC centre staff and made available through the modules
framework. A second shortcoming of this methodology is
that module loads do not necessarily reflect actual usage.
Indeed many users load a number of modules by default in
their shell initialization files without actually making use of
them. Likewise, other users may be making use of centrally
installed software without loading the respective module,
by providing the paths to “includes” and “lib” directories
explicitly in their Makefiles.

User surveys, on the other hand, can provide at best an
incomplete picture of software usage, and at worst a highly
distorted view. A fundamental problem with user surveys is
that they log opinions, and not behaviour: users often simply
do not know which software libraries (especially version
numbers) they have linked into their applications.

To address the limitations discussed in the preceding para-
graphs, we implemented the Automatic Library Tracking
Database (ALTD) framework by Fahey, Jones, and Hadri, as
described at the Cray User Group meeting in 2010.[1] This
tool tracks transparently and completely all library usage
and application execution, and is installed on production
systems at several Cray sites including the National Institute
for Computational Sciences (NICS), the National Center
for Computational Sciences (NCCS) at Oak Ridge National
Laboratory (ORNL), and the National Energy Research Sci-
entific Computing Center (NERSC). Briefly, ALTD records
information from every invocation of the GNU linker and
from every instance that the resulting executable is launched
on the compute nodes. The tool gathers this information
by intercepting—through wrappers—the GNU linker (ld)
and the ALPS application launcher (aprun). Because the
tool parses the entire link line it can be used to determine
ancillary information about the compilation, such as which
compiler suite was used to build the application. The tool
is extremely lightweight and its presence is transparent to
the user: there is negligible overhead at link time and job

launch, and none at all during job run time.
Application support specialists at HPC centres can be

responsible for maintaining very large suites of applications,
libraries and tools, many of these with multiple concurrent
versions. With ALTD one can determine information such
as which libraries and applications are most frequently
used (right down to version numbers), which compilers
are being used to build particular applications, and which
users are running executables linked to old or deprecated
libraries (or worse, libraries known to be buggy). This
information can assist user support services in managing
their supported application portfolios and forecasting needs
for future procurements. One of the most powerful features
of ALTD is the fact that it tracks only those libraries that are
actually linked into the application, not simply a list of all
libraries appearing in a user’s link line. This is particularly
important for the Cray machines because libraries are more
often than not managed automagically through the modules
framework: some modules are loaded by default (e.g., Cray’s
scientific libraries, cray-libsci or xt-libsci) and hence the
libraries associated with that module appear in the user’s
link line regardless of whether or not they are actually used.

A. Technical details

For full details of the ALTD framework please refer to
Fahey, Jones and Hadri.[1] Briefly, ALTD is written
in Python and stores data collected in a MySQL
database in three tables: altd<machine> link tags,
altd <machine> linkline, and altd<machine> jobs.

1) Link time: The replacement for ld is a wrapper that
generates a record in the linktags table with an auto-
incremented tagid. The completed record holds the user-
name, a foreign key (linklineid) and an exit code. In the
case where the link line matches exactly with a previous one,
the linkline id is not incremented. The link line is formed
as a string and inserted into the linkline table.

During the linking phase, a piece of assembly code is
generated, formed into object code and linked into the user’s
executable. This code—the ALTD section header—consists
of four fields: ALTD version number, build machine name,
tag id, and year. The build machine and tagid are checked
at job launch time to trace the executable back to its entry
in the link tags table.

2) Application execution time: The replacement for aprun
is a wrapper that can run an arbitrary prologue and/or
epilogue script. The wrapper script executes an “objdump”
on the executable to obtain the ALTD section header, and
an entry is written in the jobs table in the ALTD database.
The fields in this table are shown in Figure 1.

B. Extensions

In this paper we describe extensions we have made
to the ALTD framework to improve its application-level
accounting capabilities. It is important to understand that

+---------------+---------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+---------------+---------------+------+-----+---------+----------------+
run_inc	int(11)	NO	PRI	NULL	auto_increment
tag_id	int(11)	NO		NULL	
executable	varchar(1024)	NO		NULL	
username	varchar(64)	NO		NULL	
run_date	date	NO		NULL	
job_launch_id	int(11)	NO		NULL	
build_machine	varchar(64)	NO		NULL	
+---------------+---------------+------+-----+---------+----------------+

Figure 1. List of the fields in the table altd<machine> jobs and the
data format of each field.

+------------------+-------------------------+------+-----+---------+----------+
| Field | Type | Null | Key | Default | Extra |
+------------------+-------------------------+------+-----+---------+----------+
aprun_inc	int(11)	NO	PRI	NULL	auto_inc
run_inc	int(11)	NO		NULL	
job_id	int(11)	NO		NULL	
tag_id	int(11)	NO		NULL	
username	varchar(64)	NO		NULL	
account_or_group	varchar(64)	NO		NULL	
begin_time	datetime	NO		NULL	
end_time	datetime	YES		NULL	
executable	varchar(1024)	NO		NULL	
linking	enum(’unknown’,’static’,				
’dynamic’,’script’)	NO		NULL		
aprun_line	varchar(1024)	NO		NULL	
num_pes	int(11)	NO		NULL	
depth_per_pe	int(11)	NO		NULL	
used_cores	int(11)	NO		NULL	
claimed_cores	int(11)	NO		NULL	
num_nodes	int(11)	NO		NULL	
pes_per_cu	tinyint(4)	NO		NULL	
exit_code	tinyint(4) unsigned	YES		NULL	
some_env_vars	varchar(1024)	YES		NULL	
app_name	varchar(128)	YES		NULL	
notes	varchar(128)	YES		NULL	
+------------------+-------------------------+------+-----+---------+----------+

Figure 2. List of the fields in the table altd<machine> accounting and
the data format of each field.

this accounting refers specifically to applications launched
with the aprun command, so it is somewhat different from
traditional job-level accounting, which is usually dealt with
by the batch system in use. We are interested in accounting
of compute node activity, whereas job-level accounting
would likely consider time spent in moving data around,
pre- and post-processing on service nodes, and so on.

In the previous version of ALTD the amount of data
captured at run time was somewhat limited, as can be
seen in Figure 1. We have added an additional table,
altd <machine> job accounting that contains further de-
tails about applications launched on the system. The fields
in this table are shown in Figure 2, and are described in
turn in the following sections. Five fields are in common
with the jobs table: runinc, tag id, job id (job launch id),
executable, and username. Some of the accounting informa-
tion is generated from modifications to the aprun-prologue
and aprun-epilogue scripts, and some from the batch system
in use (SLURM in the case of CSCS).

1) aprun inc: This field is the primary key for the
accounting table.

2) account or group: This field has been introduced to
record the account or group id used for running the job.
This is necessary for accounting in situations where a
single username is associated with more than one project
allocation.

3) begin time and end time: These fields hold the times-
tamps for the application begin and end times. The be-

gin time is obtained from the aprun prologue script at
the point of inserting the record into the database table.
Likewise, the endtime is inserted at the time that the aprun
epilogue script is executed (at the completion of the “real”
aprun command).

It is envisaged that these two fields would be used to
determine the wall time of the aprun instance. Then, in con-
junction with the usedcores (see below), one could derive
the amount of CPU time consumed in the aprun instance. It
is important to note that this wall time might be significantly
different to the wall time of the batch job enclosing the aprun
command: A user may have more than one aprun line in their
batch script, and pre- or post-processing commands run on
the service nodes may consume considerable additional time.

4) linking: This field categorizes the application launched
by aprun as a statically linked executable, a dynamically
linked executable, or a shell script. The result is obtainedby
issuing a “file” command on the executable passed to aprun.
If the file command is unable to classify the application as
one of these three types, the field is set to ‘unknown.”

5) aprun line: This field holds the entire aprun line with
all command line arguments. With this information one can
see in full detail how a user has launched his/her application.

6) num pes: This field takes the number of processing
elements from the aprun command line argument “-n.”

7) depth per pes: This field records the number of CPUs
used per processing element. It is taken from the aprun
command line argument “-d.”

8) used cores: This field records the total number of
cores used by the application. This is the product of the
number of processing elements and depth per processing
element, with core specialization taken into account where
applicable.

9) claimed cores: This field records the total number of
cores claimed in the ALPS reservation, calculated as the
product of the number of nodes allocated and the number
of cores per node as given by a request to apbasil. By
comparing the number of used cores with the number of
claimed cores application support staff could be alerted to
potential misuse of the system: Consider, for example, a
situation where a machine is upgraded from a 12-core to
16-core socket, but the user continues to use their old batch
job script and thus makes use of only 12 of the 16 processing
elements available per socket.

10) num nodes: This field records the number of nodes
used in the job. It is derived from the number of processing
elements and their depth, and how many cores are present
per compute node.

11) pes per cu: This field is relevant for the XC30
architecture, where one can choose how many CPUs are
to be used per compute unit for an ALPS job. This is
specified by the user with the “-j” option to aprun. An aprun
specifying “-j 0” is a request to use all available CPUs per
compute unit.

12) exit code: This field holds the exit code of the aprun
process, as recorded by the aprun-epilogue script.

13) some env vars: This field could be used to collect
information about environment variables set at job launch
time, such as $OMPNUM THREADS.

14) app name: This field is provided for ease of map-
ping executables to application names. It is envisaged that
application support specialists would enter this data based
on their own knowledge of the application that a given exe-
cutable is associated with. It is known that certain executable
names correspond to certain software packages: For exam-
ple, “mdrun” is an executable belonging to the molecular
dynamics package GROMACS. In this case the appname
field could hold the application name “GROMACS.”

15) notes: This field is reserved for application support
specialists to add additional information about the applica-
tion that is necessary for their own reporting requirements.
An example might be the scientific domain that the appli-
cation belongs to.

II. RESULTS

The Automatic Library Tracking Database has been in
production on our Cray XE6 (Rosa) since March 2011, our
XK7 (Tödi) since October 2012, and the XC30 (Daint) since
April 2013. The improvements to the tool described in the
previous section were implemented on Rosa and Tödi in
October 2012, and on Daint in April this year.

At last year’s Cray User Group conference, we presented
an analysis of the most used software applications and
libraries on Rosa, Kraken and Jaguar.[2] In the present paper
we will not present again a list of application and library
usage but will focus instead on presenting some examples
of scenarios (hypothetical and/or real) where ALTD can
be used to determine how applications are being built and
run, and how the tool can flag unusual usage patterns or
potential misuse of the system. As will be demonstrated,
particular queries of the ALTD database have shown some
interesting usage patterns on our systems—ones that might
not have been revealed by analysing the batch system-level
accounting logs.

A. Compiler usage trends

Although not central to its design, ALTD can be used
to determine which compiler was used in compiling an exe-
cutable, due to the fact that ALTD records the complete paths
to libraries on the user’s link line. To determine the compiler
used to build MPI code, one could thus examine the path
to the MPI library: The programming environment provided
by Cray installs MPI libraries in directories with names that
correspond to the compiler (mpich2-cray, mpich2-pgi, and
so on), so we can thus infer the compiler used by searching
the ALTD database for these very strings.

At CSCS, the Cray, GCC and Intel programming envi-
ronments are available on all machines, while the PGI and

0

10

20

30

40

50

60

70

2011-Q2 2011-Q3 2011-Q4 2012-Q1 2012-Q2 2012-Q3 2012-Q4 2013-Q1

P
er

ce
nt

ag
e

of
us

er
s

Quarter

CCE
GCC
PGI
Intel

PathScale

Figure 3. Percentage of users using a particular compiler on the production
XE6 system.

Table I
COMPILER USAGE ACROSS THREE SYSTEMS: PERCENTAGE OF USERS

Rosa (XE6) T̈odi (XK7) Daint (XC30)

Cray 28% 69% 20%

GCC 52% 58% 57%

PGI 44% 19% N/A

Intel 31% 19% 60%

PathScale 8% 1% 0%

PathScale compilers are available only on the XE6 and XK7.
The PathScale programming environment is supported only
to a limited extent by Cray and since the upgrade of Monte
Rosa to XE6 on 1 December 2011, CSCS users have been
strongly encouraged to use an alternative compiler.

As a case study, we have investigated the use of the
various compilers on our main production system over the
past two years. In Figure 3 we show how the percentage
of users of each compiler has changed over this period of
time. At the end of 2011, GCC overtook PGI as the most
popular compiler, and it has remained in the top position
ever since. In the first quarter of this year, more than 50
percent of all users were using GCC to build MPI code.
The use of the Cray compiler has remained more or less
constant over time at between 15 and 25 percent of the user
base. Uptake of the Intel compiler appears to be steadily
increasing, and in the most recent quarter was used by more
than 30 percent of the user community. Not surprisingly,
with the lack of support for PathScale (the lack of provided
scientific libraries, in particular), the use of PathScale has
decreased significantly over time: as of today, there are just
one or two users continuing to use this compiler on the XE6.

In Table I we compare the overall use of compilers on
Rosa to that on our XK7 machine, Tödi, and XC30, Daint.
Apart from the use of GCC, which is fairly similar across
the three systems (ranging between 50 and 60 percent), the
relative use of the compilers differs significantly on the
different platforms. On the XK7 the Cray compiler is the

Table II
USERS RUNNING APPLICATIONS HAVING COMPILED OR HAVING NOT

COMPILED CODE

Rosa (XE6) T̈odi (XK7) Daint (XC30)

Have compiled code 470 153 45

Never compiled code 116 7 9

most popular, being employed by more than two thirds of the
user base. It is important to note that the Cray programming
environment is loaded by default on the XK7 system: the
user can choose a different compiler with a module swap
command. For the XE6 and XC30 systems there is no
default compiler, and the user must load a programming
environment explicitly. This may explain to some extent
the high usage of the Cray compiler on the XK7, however
there are other factors that may also contribute: Firstly,
the XK7 is primarily a research and development system,
so the user base may be more willing to try a compiler
that they would not have encountered on other platforms.
Secondly, the Cray and PGI compilers are the only compilers
that currently provide support for OpenACC directives-based
programming. The most popular compiler on the XC30
system is Intel, which is perhaps not surprising as Daint is
the first Cray system at CSCS to feature Intel-based CPUs.

It is interesting to compare for each platform the number
of users compiling code with the number of users running
jobs on the system. These statistics can be obtained from
ALTD by comparing unique usernames in the jobs and
link tags tables. In Table II we show the number of users
who have run jobs on the system without ever having
compiled and linked a code. The results show that for the
main production system, Rosa, the percentage of active users
who have never compiled any code on the system is about
25 percent. These users may be using codes compiled by
the HPC centre staff or by their colleagues. This proportion
is very similar for the new production system, Daint. For
the research and development system, Tödi, on the other
hand, we see that less than 5 percent of active users have
not compiled code on the system.

The presence (or indeed absence) of “black-box” users
is an important consideration because application staff at
HPC centres spend a considerable amount of time installing
and maintaining third-party applications. In cases where a
significant majority of users at an HPC centre are building
their own codes, more emphasis should perhaps be placed on
assistance porting and optimizing the users’ codes, compared
to the amount of time spent installing applications centrally.

B. Linking modes and use of accelerator-based program-
ming models

In Table III we show the number of jobs run on each
platform where the application is a statically linked exe-
cutable, a dynamically linked executable, or a shell script.

Table III
L INKNG MODE OF APPLICATIONS RUN ON THREE PLATFORMS

Rosa (XE6) T̈odi (XK7) Daint (XC30)

Statically linked 95% 75% 98%

Dynamically linked 5% 22% 2%

Shell script < 1% 2% < 1%

Unknown < 1% < 1% < 1%

Ninety-five percent of jobs run on the XE6 were statically
linked executables, as were 98 percent of jobs on Daint. The
large proportion of statically linked code could be explained
by several factors: Firstly, Cray systems have historically
supported only static linking, and even today, the compiler
wrappers default to static linking. Secondly, static linking
might be favoured by users who rely on executables showing
completely predictable behaviour over time.

On the GPU-based system Tödi, we see a much
higher proportion of dynamically linked executables—
about 22 percent of the total. On the XK7 system, load-
ing the cudatoolkit—necessary for CUDA,1 OpenCL and
OpenACC—turns on dynamic linking. Thus we can deduce
an upper limit for GPU-accelerated applications at 22 per-
cent of all jobs. T̈odi is primarily a machine for developing
GPU-accelerated code and these results suggest that there
is significant amount of usage on this machine for purposes
other than its intention. We can investigate further by looking
at the number of users with compile lines that include
libcuda.so or libOpenCL.so compared to the total number
of users who have compiled any code on this system. The
results reveal that 35 of the 153 users who have linked code
on Tödi have never built any code using CUDA or OpenCL.
These results show that in the absence of system-level GPU
accounting—which is still in its infancy—ALTD can provide
invaluable information on system usage from simple SQL
queries.

C. Job sizes and applications

In Table IV we show the number of jobs of various
sizes executed on the three systems. Rosa (in its present
incarnation) is a sixteen cabinet XE6 system (1496 compute
nodes), T̈odi is a three cabinet XK7 (272 compute nodes)
and Daint is a twelve cabinet XC30 (2256 compute nodes).
The results show that on all but the newest platform the
majority of jobs are single node jobs. On Daint there is a
large proportion of 62 node jobs, and further querying of the
ALTD database shows that these come from a single user.
The ALTD accounting table provides further information
about the application and the way it is being run: the code is
CP2K (cp2k.popt) and was compiled by the user; it is being
run in pure MPI mode (no OpenMP) using 16 processes per

1CUDA 5 introduced support for separate compilation to produce in-
dependent object files, and the ability to combine object filesinto static
libraries.

Table IV
PERCENTAGE OF JOBS OF A GIVEN SIZE ACROSS THREE PLATFORMS

Nodes Rosa (XE6) T̈odi (XK7) Daint (XC30)

1 64 79 15

2 11 1 1

3− 4 10 3 4

5− 8 6 1 1

9− 16 5 5 3

17− 32 2 2 6

33− 64 1 2 59

65− 128 1 5 5

129− 256 0.5 2 1

257− 512 < 0.1 < 0.1 2

513− 1024 < 0.1 N/A 1

1025− 2048 < 0.01 N/A 0.5

> 2048 N/A N/A 1

node and with hyperthreading turned off (pesper cu=1)).
Likewise, ALTD could be used to determine which applica-
tions are being run on single nodes, and by whom.

D. Depth per processing element and OpenMP

An examination of the depth per processing element can
give us an indication—to a first approximation—of how
many users are running threaded applications. In Table V
we show the number of jobs launched where depth per
processing element is greater than 1 compared to the total
number of jobs launched on each platform. In parentheses
we give the corresponding number of unique users running
such applications.

The results reveal some interesting differences across the
platforms: On the Cray XE6 machine, just four percent
of jobs were launched with depth per processing element
greater than 1. On the XC30, one third of jobs were launched
in this manner, and on the XK7 machine, nearly two thirds.
Likewise, just 20 percent of users of Rosa have run any jobs
with depth greater than 1, whereas the percentages on Tödi
and Daint are 68 and 41, respectively.

Table V
NUMBER OF JOBS RUN USING DEPTH PER PROCESSING ELEMENT

GREATER THAN 1 (NUMBER OF DISTINCT USERS IN PARENTHESES)

Nodes Rosa (XE6) T̈odi (XK7) Daint (XC30)

All jobs 329054 (325) 164988 (119) 5873 (27)

Depth per PE> 1 13034 (73) 104877 (81) 1929 (11)

III. C ONCLUSION

We have described an extension to the Automatic Library
Tracking Database that enables more complete information
to be recorded about applications launched on Cray systems,
information such as the number of processing elements
and threads used, the mode of linking, and site-definable
metadata such as mappings between executable names and
applications or application domains.

We have presented some examples of scenarios where an
analysis of results obtained from ALTD can assist applica-
tion support specialists by alerting them to unusual usage
patterns or potential misuse of system resources. Moving
forward, we consider that there is a strong need for further
development of the tool to provide a framework where the
data mining, reporting and alerting is a fully automated
process. Ideally, the tool should alert application specialists
to situations such as the use of legacy or buggy libraries, or
potential wastage of available compute resources.

REFERENCES

[1] M. Fahey, N Jones, and B. Hadri,The Automatic Library
Tracking Database, Proceedings of the Cray User Group 2010,
Edinburgh, United Kingdom.

[2] B. Hadri, M. Fahey, T. Robinson, and W. Renaud,Software Us-
age on Cray Systems across Three Centers (NICS, ORNL and
CSCS), Proceedings of the Cray User Group 2012, Stuttgart,
Germany.

