
Surviving the Life Sciences Data Deluge using Cray Supercomputers

Bhanu Rekepalli and Paul Giblock

National Institute for Computational Sciences

The University of Tennessee

Knoxville, TN, USA

bhanu@utk.edu, pgiblock@utk.edu

Abstract—The growing deluge of data in the Life Science
domains threatens to overwhelm computing architectures. This
persistent trend necessitates the development of effective and
user-friendly computational components for rapid data anal-
ysis and knowledge discovery. Bioinformatics, in particular,
employs data-intensive applications driven by novel DNA
sequencing technologies, as do the high-throughput approaches
that complement proteomics, genomics, metabolomics, and
metagenomics. We are developing massively parallel appli-
cations to analyze this rising flood of life sciences data for
large scale knowledge discovery. We have chosen to work with
the desktop or cluster based applications most widely used
by the scientific community, such as NCBI BLAST, HMMER,
and MUSCLE. Our endeavors encompasses extending highly
scalable parallel applications that scale to tens of thousands
of cores on Cray’s XT architecture to Cray’s next generation
XE and XC architectures along with focusing on making them
robust and optimized, which will be discussed in this paper.

Keywords-Benchmarking; Bioinformatics; HPC;

I. INTRODUCTION

The exponential growth of data generated in biology re-

search generated by advances in next generation sequencing

technology [1] and mass-spectrometry analysis [2], from

small atoms to big ecosystems, necessitates an increasingly

large computational component to perform analyses. Novel

next-generation sequencing (NGS) technologies and com-

plementary high-throughput approaches involving genomics

(DNA), transcriptomics (RNA), proteomics (proteins), and

metagenomics (genetic material from environmental sam-

ples) drive data-intensive bioinformatics. Current NGS tech-

nologies enable researchers to sequence five human genomes

in a week with a cost less than five thousand dollars per

genome. In comparison, the first human genome cost three

billion dollars [3] and took more than a decade to sequence.

NGS data is doubling every year, outpacing Moore’s law,

which is adding a plethora of data to genomic databases

worldwide. This trend increases the demand for computing

power utilizing High Throughput Computing (HTC) and

High Performance Computing (HPC) architectures for data

analysis from genome assembly to annotation, which will

advance scientific fields from human disease research to

agriculture and evolutionary science.

The growing use of sequencing data, medical imaging

data, and their byproducts used for drug discovery and

biofuel generation introduces critical problems such as data

movement, storage, and analysis. This paper addresses the

analysis part of the critical problems in life sciences. We are

developing massively parallel applications to analyze this

rising flood of life sciences data, and to rapidly contribute

fresh knowledge to the fields of computational biology

and biomedicine. The availability and accessibility of these

highly scalable parallel bioinformatics applications on Cray

supercomputers will help to bridge the gap between the rate

of data generation in life sciences and the speed and ease at

which scientists can study this data.

These highly scalable applications are used to address

the data analysis needs of our collaborators. For example,

researchers at the Joint Institute for Biological Sciences

at UT-Knoxville are studying permafrost, or perennially

frozen ground, which underlies about 24% of the Earth’s

land surface and covers the Arctic landscape. It is also

a source of extremely potent greenhouse gases, such as

methane and carbon dioxide. Temperatures in the Arctic

may increase 6 ◦C over the next 100 years and will increase

the depth of the active layer, the seasonally unfrozen soil

above the permafrost. Defining the diversity, activities, and

biogeochemical parameters by carrying out large-scale ge-

nomic and metagenomics sequencing and analysis studies

on various samples from active and permafrost layers will

allow for a better understanding of the Arctic permafrost

system as it relates to climate change factors on Earth.

Our collaborators at Seattle Children’s research Institute

are engaged in an unprecedented effort to identify the genetic

changes that give rise to some of the world’s deadliest

cancers by decoding the genomes of hundreds of cancer

patients. Scientists involved in the project are sequencing

the entire genomes of both normal and cancer cells from

each patient, comparing differences in the DNA to identify

genetic mistakes that lead to cancer. As the novel genomics

space is imploding, the unknown space – with no functional

or structural characterization – is expanding in multiple

orders [4]. Thus, the collaborative project between NICS

and Seattle Children’s Research Institute is focusing on

improving and expanding functional annotation of newly

sequenced genomes, proteomes, and meta-genomes [5] to

better understand the functional behavior of various genes

involved in cancer and other diseases.

II. IMPLEMENTATION

The following sections discuss our Highly Scalable Paral-

lel (HSP) tools, and their optimizations for various CRAY ar-

chitectures, along with discussing scaling studies performed.

A. Benchmark Programs

NCBI BLAST is an implementation of the Basic Local

Alignment Search Tool (BLAST) by the National Center for

Biotechnology Information [6]; one of the most widely-used

tools for sequence similarity searches. BLAST can perform

comparisons between protein or DNA sequences and a

sequence database. There are variations of the algorithm for

different research needs. The program is used by researchers

for annotating newly sequenced genomes and similarity

searches among other purposes.

HMMER by Howard Hughes Medical Institute’s Janelia

Farm is also used for similarity searches of sequence

databases [7] along with protein domain identification.

Moreover, HMMER can perform homolog searches. The

tool uses hidden Markov models instead of the local align-

ment search employed by BLAST.

MUSCLE [8] is another very commonly used tool for

bioinformatics research. MUSCLE executes multiple se-

quence alignment among a set of biological sequences. It

also outperforms most other multiple sequence alignment

algorithms such as CLUSTALW [9].

B. Optimizations

The tools are useful, but they are not designed to run

on supercomputers, such as those provided by Cray. In-

stead, the software assumes a common environment such

as a desktop or workstation. Unlike the target environment,

supercomputers contain a massive number of cores, have

little to no local storage, and rely on distributed filesystems

for persistent storage. Our goal is to efficiently run these

software tools on high performance computing systems. The

codebase for the programs is quite large; NCBI BLAST

contains over one million lines of code, HMMER with

35,000 lines, and MUSCLE with nearly 28,000. Due to the

maintenance cost, the need to maintain consistency, and our

desire to target even more applications, we realize that as

few changes should be made to the software as possible.

Therefore, we designed a reusable solution for minimizing

these differences [10].

HSP-Wrap, or Highly Scalable Parallel Wrapper, is the

name of our software wrapper, which acts as a harness for

the underlying tools and provides scaling optimizations. The

wrapper is implemented in C, uses MPI for communication,

and serves as a load balancer where input is distributed

across processes running on the compute nodes. The de-

sign of the wrapper stems from our experiences with the

aforementioned tools, both from code review and profiling.

We utilize CrayPat [11], PAPI [12], gprof [13], and our own

timing code to analyze the runtime of both the tools and the

wrapper itself. The CrayPat profiler was used to investigate

MPI communication. PAPI and gprof were used to measure

the performance of the tools. The wrapper measures the time

taken for a number of tasks and this is useful for tuning the

wrapper’s parameters for a particular architecture or tool.

The results of our prior scaling studies suggests that

input and output is one of the greatest problems to solve

[10]. For example, BLAST and HMMER load large se-

quences databases tens of Gigabytes in size. Each BLAST

or HMMER process should not need to read these files from

storage. Instead we load the database once, and broadcast

it across the computational nodes with the MPI_BCast

command. The data is then stored into POSIX shared

memory segments (SHMs) so that the wrapped tool pro-

cesses can access the shared data. We provide two soft-

ware libraries, libstdiowrap and libstdiowrap++, to facil-

itate the use of these shared memory segments from

the wrapped applications. Libstdiowrap provides analogs

to the C standard I/O routines. Libstdiowrap++ is the

C++ compatibility library. It is based around an im-

plementation of the std::filebuf class, as well as

analogs of the std::ifstream, std::ofstream, and

std::fstream classes for convenience. The majority of

the applications’ input and output routines can be ported

to use libstdiowrap through a number of C preprocessor

macros.

The shared memory segments are also used to supply

the processes with the load-balanced input. The inputs for

BLAST and HMMER are protein or DNA sequences, but

MUSLE requires a set of sequences for alignment. HSP-

Wrap maintains a queue of input on each compute node.

The node maintains a pool of worker processes which are

issued queries from the queue. Input latency is reduced since

the queries already reside locally on the node. The wrapper

on the compute nodes can then request more input from the

designated master node as its local queue drains. We hope

to compare this technique with a work-stealing algorithm in

the future.

The performance of output operations was also improved.

We use a two-stage buffering technique to reduce the per-

formance penalty of hundreds or thousands of processes

writing to storage simultaneously. The first buffering stage

sits between HSP-Wrap and the tool process in the form

of one or more shared memory segments. Writes are made

asynchronously from the tool by simply copying the data

into the shared memory segment reserved for the process’s

output. The first stage is flushed to the second stage upon

task completion or to avoid overflow of the first stage buffer.

The data can optionally be compressed between the two

stages to reduce memory and disk consumption and to

decrease the time spent writing. Additionally, HSP-Wrap

can distribute the output files across multiple directories if

the storage is a distributed file system. This helps improve

the chance that output is written across multiple object

Table I
INPUT SELECTION

Node Count 1 2 4 8 16

blastp 192 384 768 1,536 3,072

hmmscan 1,536 3,072 6,144 12,288 24,576

muscle 1,200 2,400 4,800 9,600 19,200

1 figures are the number of sequences of length 250 – 450 Amino
Acids

2 figures are the number of multiple sequences alignments of
500 proteins

storage targets within the Lustre, or similarly distributed,

filesystems.

III. EXPERIMENT SETUP

We evaluated the performance of HSP-Wrap combined

with the wrapped versions of NCBI BLAST, HMMER 3.0,

and MUSCLE 3.8.31; and commonly used databases such

as the nr (non-redundant) protein sequence database, and

the Pfam (Protein Families) domain database to benchmark

on the three previously mentioned Cray architectures. These

HSP tools were initially developed on Kraken, a Cray

XT5 supercomputer. Kraken has 9,408 compute nodes with

two sockets per node with two 6-core 2.6 GHz AMD

Opteron 2435 processors, 16 GB memory with 3D torus

Cray SeaStar2+ interconnect, and with peak performance of

1.17 PetaFLOPs [14]. The HSP tools are further optimized to

new Cray systems at the National Institute for Computational

Sciences known as Mars and Darter. Mars is a Cray Nano

machine with 16 XK6 compute nodes, each with a 16-core

AMD 2.2GHz Opteron processor, 16 GB memory, and an

NVIDIA X2090 GPGPU with 6 GB of memory. Mars also

has 20 XE6 compute nodes with two 16-core AMD 2.2GHz

Opteron processors and 32 GB of memory per node. All

nodes are connected with a 2D torus Gemini interconnect.

Darter is a Cray XC30 supercomputer with a total of 748

compute nodes. Each node has two 8-core 2.6 GHz Intel

Sandy Bridge processors, 32 GB of memory per node, and

the newly designed dragonfly Aries interconnect with peak

performance of 248.9 TeraFLOPs.

We evaluated the Protein BLAST function through the

blastall -t blastp tool. The database used was the

nr database as of March 2012. Input query sequences were

selected from the same version of the nr database. We

sampled a number of sequences with a length of 250 – 450

Amino Acids according to Table I. We assessed HMMER’s

hmmscan tool in performing searches against the 24.0

version of the Pfam database. Again, sequences were chosen

with 250 – 450 Amino Acids, but the number of sequences

differs from the blastp experiments due to hmmscan’s

faster speed. MUSCLE’s muscle tool was also tested. We

generated the inputs for MUSCLE by finding homologs with

the Protein BLAST function. We ran a portion of the nr

database against itself, limited the number of homologs to

500, then chose all of the results resulting in 500 proteins.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1 2 4 8 16

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

Compute Nodes

Kraken
Darter
Mars

Figure 1. BLAST weak scaling results

 0

 2000

 4000

 6000

 8000

 10000

 12000

 128 256 384 512

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

Compute Nodes

Kraken
Kraken (ideal)

Darter
Darter (ideal)

Figure 2. BLAST strong scaling results

Hence, MUSCLE tests perform multiple sequence align-

ments on 500 proteins, the number of multiple sequences

alignments used for the experiment is shown in Table I. We

derived these counts by choosing a number which allows

each core to perform several operations. The job should also

run sufficiently long to provide more accurate results, and

the number of tasks is scaled with the number of nodes.

Finally, we also looked at strong scaling performance of

BLAST on Kraken and Darter; Mars is excluded due to its

relatively low core count. For this, we used 98,304 protein

sequences, sampled as above. The experiment is run on 128,

256, and 512 nodes.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1 2 4 8 16

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

Compute Nodes

Kraken
Darter
Mars

Figure 3. HMMER weak scaling results

IV. RESULTS

The BLAST weak scaling results in Figure 1 show a

near linear speedup. There is also a significant difference

in performance between the 3 machines. Darter performs

significantly better than Kraken, and Mars has the worst

performance. Darter’s superior performance is no surprise

given the specifications of the machine. However, we are

surprised to see Kraken outperform Mars. More analysis

will be necessary for us to determine the cause of this. The

strong scaling results for BLAST, shown in Figure 2, are

near ideal. Again, Darter outperforms Kraken at these high

node counts. We only consider strong scaling of BLAST due

to the resource constraints and positive results seen in the

weak scaling for the other applications in the past [10] [15].

HMMER performance, shown in Figure 3, is nearly con-

stant across the node counts used for this experiment. Again,

Darter outperforms the other machines, but all three are very

close in execution time. HMMER is less computationally

intensive than BLAST. Therefore, the faster processors of

Darter do not provide much improvement, and the runtime

is instead limited by network and filesystem speeds. Given

our previous results with HSP-HMMER [15], we suspect

that the software maintains scalability across larger amounts

of nodes as well.

The MUSCLE results in Figure 4 show linear speedup.

The speedup is not as good as that seen in BLAST or

HMMER. The performance profile is still positive, and

perhaps further some tuning can improve the speedup.

Interestingly, MUSCLE is the only experiment in this study

where Mars outperforms Kraken, and substantially so this is

because MUSCLE is compute intensive rather than memory

intensive.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 1 2 4 8 16

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

Compute Nodes

Kraken
Darter
Mars

Figure 4. MUSCLE weak scaling results

V. CONCLUSION

We’ve shown that our method for scaling BLAST on the

Kraken supercomputer can be extended to multiple programs

as well as architectures. The HSP versions of the BLAST,

HMMER, and MUSCLE tools run with linear speedup, and

allow one to take advantage of new systems with very little

additional effort. The power of these tools and the machines

they run on will only help increase the speed at which life

sciences researchers are able to conduct their research.

ACKNOWLEDGEMENTS

This research used resources at the Joint Institute for

Computational Sciences, funded by the National Science

Foundation (NSF) and also supported in part by the NSF

grant EPS-0919436.

REFERENCES

[1] E. R. Mardis, “A decade’s perspective on dna sequencing
technology,” Nature, vol. 470, no. 7333, pp. 198–203, 2011.

[2] M. Beck, A. Schmidt, J. Malmstroem, M. Claassen, A. Ori,
A. Szymborska, F. Herzog, O. Rinner, J. Ellenberg, and
R. Aebersold, “The quantitative proteome of a human cell
line,” Molecular systems biology, vol. 7, no. 1, 2011.

[3] The Human Genome Project, “About the Human Genome
Project,” http://www.ornl.gov/sci/techresources/Human
Genome/project/about.shtml.

[4] B. Rekapalli, K. Wuichet, G. D. Peterson, and I. B. Zhulin,
“Dynamics of domain coverage of the protein sequence
universe,” BMC genomics, vol. 13, no. 1, pp. 1–6, 2012.

[5] R. Higdon, W. Haynes, L. Stanberry, E. Stewart, G. Yandl,
C. Howard, W. Broomall, N. Kolker, and E. Kolker, “Unrav-
eling the complexities of life sciences data,” Big Data, 2013.

[6] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J.
Lipman, “Basic local alignment search tool,” Journal of
molecular biology, vol. 215, no. 3, pp. 403–410, 1990.

[7] S. R. Eddy, “Profile hidden markov models.” Bioinformatics,
vol. 14, no. 9, pp. 755–763, 1998. [Online]. Available: http:
//bioinformatics.oxfordjournals.org/content/14/9/755.abstract

[8] R. C. Edgar, “MUSCLE: multiple sequence alignment with
high accuracy and high throughput,” Nucleic Acids Research,
vol. 32, no. 5, pp. 1792–1797, 2004.

[9] “MUSCLE,” http://www.drive5.com/muscle/.

[10] B. Rekepalli, A. Vose, and P. Giblock, “HSPp-BLAST:
Highly Scalable Parallel PSI-BLAST for very large-scale
sequence searches,” in Proceedings of the 3rd International
Conference on Bioinformatics and Computational Biology
(BICoB), F. Saeed, A. Khokhar, and H. Al-Mubaid, Eds.
BICoB, 2012, pp. 37–42.

[11] Cray, Inc., “Performance tools. in optimizing applications on
the cray x1 system,” 2003.

[12] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A
portable programming interface for performance evaluation
on modern processors,” International Journal of High Perfor-
mance Computing Applications, vol. 14, no. 3, pp. 189–204,
2000.

[13] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: a
call graph execution profiler,” ACM Sigplan Notices, vol. 17,
no. 6, pp. 120–126, 1982.

[14] National Institute for Computational Sciences, “Kraken,” http:
//www.nics.tennessee.edu/computing-resources/kraken.

[15] B. Rekapalli, C. Halloy, and I. B. Zhulin, “HSP-HMMER:
a tool for protein domain identification on a large scale,”
in Proceedings of the 2009 ACM symposium on Applied
Computing. ACM, 2009, pp. 766–770.

