
High Fidelity Data Collection and Transport Service
Applied to the Cray XE6/XK6

Jim Brandt∗, Tom Tucker†, Ann Gentile∗, David Thompson§, Victor Kuhns‡, and Jason Repik‡

∗Sandia National Laboratories, Scientific Computing Systems, Albuquerque, NM, USA
Email: {brandt|gentile}@sandia.gov

†Open Grid Computing, Austin, TX, USA
Email: tom@ogc.com

§Kitware Inc., Carrboro, NC, USA
Email: david.thompson@kitware.com
‡Cray Inc., Albuquerque, NM, USA
Email: {vgkuhns|jjrepik}@cray.com

Abstract—A common problem experienced by users of large
scale High Performance Computer (HPC) systems, including the
Cray XE6, is the inability to gain insight into their computa-
tional environments. Our Lightweight Distributed Metric Service
(LDMS) is intended to be run as a continuous system service
for providing low-overhead remote collection and on-node access
to high-fidelity data, capable of handling 100s of data values
per node per second, vastly exceeding the data collection sizes
and rates typically handled by current HPC monitoring services
while still maintaining much lower overhead. We present a case
study of utilizing LDMS on the Cray XE6 platform, Cielo, to
enable remote storage of system resource data for post run
analysis and node-local access to data for run-time in-situ analysis
and workload rebalancing. We also present information from
deployment on an XK6 system at Sandia, where we leverage
RDMA over the Gemini transport to further reduce LDMS
overhead.

I. INTRODUCTION

There is the desire within both the user and system
administrator communities to have lightweight and scalable
access to resource utilization related information at the node
level that is out of band to the application. Such information
can be useful from an application perspective for use in
run-time reconfiguration of workload partitioning. From a
user perspective it can be useful for detection of resource
oversubscription and/or under utilization. It can also be used to
drive future decisions in partitioning and resource allocation as
well as provide deeper understanding of various performance
degradation issues including some types of failure. System
administrators can benefit from this type of information in both
troubleshooting and assisting users in making more efficient
use of platform resources. Finally, such information could
benefit future system design making systems more robust and
putting them in better alignment with user application needs.

Typical HPC monitoring systems, such as Ganglia [1] and
Nagios [2] primarily target system administrator notification
of failures and trend analysis and therefore are designed, in

Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

terms of overhead and infrastructure, for collection of a few
tens of metrics per node with frequencies typically on the order
of minutes to tens of minutes. In contrast, our Lightweight
Distributed Metric Service (LDMS) software is intended to be
compatible with both capacity and capability platforms and
run as a system system service for providing low-overhead
remote collection and on-node access to high-fidelity data,
capable of handling 100s of data values per node per second. It
targets collection not only of system monitoring data but also
of application resource utilization data suitable for analysis and
feedback.

In this paper, we present application of LDMS to the
Cray XE6 and XK6 platforms, addressing configuration issues
specific to these platforms and their specific features. We
include a case study utilizing XE6 production HPC systems.
This study was designed to show the viability of utilizing a
system service (LDMS) to provide low-latency information
directly to an application for run-time in-situ analysis and
workload balancing decisions and to long term storage and
analysis system for post-run analysis using the same Applica-
tion Programmer Interface (API) for both types of operation.

LDMS supports both socket and Remote Direct Memory
Access (RDMA) based transport. Socket based transport en-
ables LDMS to be compatible with as many platforms as
possible, however it comes at the cost of CPU overhead associ-
ated with per packet processing for both remote data requests
and sends. This overhead can be eliminated by utilizing an
RDMA based transport. While LDMS has RDMA support for
Infiniband and 10Gb Ethernet networks the Gemini network
presents some challenges in this area.

When the case-study work was performed LDMS had no
RDMA over Gemini capability. Thus the case study results
presented utilize LDMS using the socket transport on the
Cray XE6 platforms “Cielo” located at Los Alamos National
Laboratory and “Cielo Del Sur” (CDS) located at Sandia
National Laboratories in New Mexico (SNL/NM).

LDMS has since undergone some architectural changes and
now also supports RDMA over the Gemini network. This paper
also presents some preliminary overhead information for the
current LDMS architecture on an XK6 system, “Curie”, at



Sandia, where we leverage RDMA over the Gemini transport
to further reduce LDMS’s CPU overhead on compute nodes.

We first present the architectural and topological config-
uration for the case study work performed on the Cielo and
CDS systems. The remote storage and analysis for this work
required the run-time transport of high-fidelity data being
collected on Cielo to a Linux cluster located at Sandia National
Laboratories in California (SNL/CA) and from CDS to four
linux workstations also located at SNL/CA. We discuss how
the LDMS architecture supports connectivities and transport
across the asymmetric security domains encountered in this
configuration. We then show how the same LDMS API also
supports application access to node local system data. Finally
we present overhead results with respect to CPU and memory
for both the socket based transport utilized on the XE6 and
the RDMA transport utilized on the XK6 system.

II. HIGH LEVEL LDMS OVERVIEW

LDMS is a data collection, transport, and storage tool that
supports a wide variety of configurations. A high level diagram
of the functional components used in the case study is shown in
Figure 1. In the diagram data is collected on “Compute Nodes”
though in general it may be collected on any device. LDMS
uses a data pull model in general and the arrows in the diagram
are showing direction of data flow. As shown in the figure
there are two consumers of data being hosted by the LDMS
daemons (ldmsd) running on the compute nodes: 1) application
processes running on the compute nodes and 2) other ldmsds
running on “Aggregation Nodes”. An in depth discussion of the
applications’ consumption of data is presented in Section III.
The pulling of data by one or more ldmsds from another can be
repeated, asynchronously, in daisy chain fashion until the data
reaches an endpoint shown in Figure 1 as “Storage Node(s)”.

Fig. 1. LDMS data collection and transport system components. LDMS
daemons collect and optionally aggregate, transport, and store data. Collected
data can be accessed on-node by applications and transported off-node for
aggregation and storage. On-node access and off-node transport utilize the
same API.

In the LDMS framework, data are grouped into sets (called
metric sets) of one or more values (called metrics) where each
set is also associated with a “component identifier” (compo-
nent id). While these data can be collected/derived from any
source and arbitrarily grouped, in this work such data and
their names were primarily collected from the proc file system

and were grouped according to their sources. Cray specific
samplers include kgnilnd for data from /proc/kgnilnd
and gemctrs which uses the Cray gpcd library (Gemini
Performance Counter Device) to access the Gemini counter
mmrs [3], [4] for Gemini tile and NIC data.

The example metric set below shows (datatype,
value, metricname) tuples for data from
/proc/vmstat collected from compute node “nid00574”.
component id is a unique identifier for the component with
which the data should be associated. While in this example
component id may seem redundant with the node name,
a given node may have metric sets associated with node
sub-components such as sockets, cores, communication
buses, etc. In the case study work presented here each of
these sub-components was identified with different ranges of
component id.

nid00574/vmstat
U64 0 component_id
U64 8205697 nr_free_pages
U64 1787 nr_inactive
U64 1939 nr_active
U64 657 nr_anon_pages
U64 822 nr_mapped
U64 3084 nr_file_pages
U64 0 nr_dirty
...

Note that each subsequent collection of a metric set over-
writes the values from the previous collection and that no
historic data is retained by an ldmsd.

In addition to the ability, mentioned above, to daisy chain
ldmsds, data can also be collected via any ldmsd along a
chain. The data being hosted by any ldmsd can be accessed
by any entity via the same API being used for the data
pulls by daisy chained ldmsds whether the accessing entity
resides on the same node as the ldmsd being accessed or
not. Relevant API calls in this work are ldms_get_set,
ldms_get_metric and ldms_get_u64 used to get a
metric set handle, a metric handle from a set, and a value by
type (uint64_t in this case) from that metric respectively.

III. CASE STUDY: RESOURCE-AWARE APPLICATION
FEEDBACK USING LDMS

Performance of an application on a particular platform
depends not only on the speed and capabilities of the hardware
and system software but also on how the application utilizes
those resources across all of its processes. The work presented
in this section represents a project to assess the viability of
enabling distributed HPC applications to utilize node level
monitoring information to make run-time load balancing deci-
sions.

For this case study, we present motivation, in-depth details
of the applications used and their interaction with the LDMS
monitoring system, platform and end-to-end configuration
specifics, outcomes, and conclusions.

A. Motivation

Though it is the job of the operating system scheduler
to place processes efficiently, the scheduler only has insight
into processes running local to its node. Thus the burden of



efficiently allocating work across all of the nodes associated
with a particular application must fall to the application
software and user. Further, for performance reasons, the typical
practice in HPC is to bind processes to a particular core within
a node leaving the job of balancing workload even within a
node to the application/user. Thus tuning an application for
performance requires some level of insight into how it will
utilize the underlying compute resources both at the system
level (e.g. nodes, network topology, storage) and at the node
level (e.g. cpu, memory, cache, shared communication bus,
network subsystem).

Due to the size and complexity of modern supercomputers
it is difficult to gain insight into how these resources are being
utilized by the application processes. Profiling tools such as
OProfile [5], Tuning and Analysis Utilities (TAU) [6] and
CrayPat [7], to name a few, allow a user to profile their
applications but can incur significant overhead which can in
turn impact the behavioral profile of the application. Also
many of these tools require building instrumented code or
relinking against other libraries. With complex codes the tools
for automatically instrumenting an application may fail leaving
the user to instrument by hand.

In order to gain low-level understanding of resource behav-
ioral characteristics for the purpose of failure modeling, Sandia
has been developing lightweight and scalable data collec-
tion, analysis, and visualization tools which target automated
decision making based on relevant component level (node,
core, network, etc.) information. Another project at Sandia has
been targeting the use of node granularity resource utilization
information to help guide applications in their selection of
resource to load binding decisions.

The work presented in this paper combines tools from
both of these projects to enable large-scale resource utilization
information collection for post run analysis and run-time use
of this information for guiding load balancing operations. The
main goal of this work was to demonstrate the viability of
large scale collection and use of this type of information to
inform application load balancing decisions through both post-
run analysis and run-time node/process local analysis.

B. Description

The LDMS data collection, off-node transport, and on-
node interface provides the infrastructure to support resource-
aware application feedback. An application can query LDMS
during run-time for resource state data to be used in decisions,
such as rebalancing and task stealing, either in response to
an application’s own dynamic requirements or in response to
the demands of other applications competing for the same
resources. Here we describe our experimental use of this
enabling infrastructure applied to run-time repartitioning. We
utilize production HPC applications and algorithms in this
work, however determination of functional forms of values
and conditions of interest and performance tuning was beyond
the scope of this evaluation study.

The applications Aria [8] and Fuego [9], [10] in San-
dia’s SIERRA [11] multi-mechanics suite can, under cer-
tain conditions, repeatedly rebalance during run-time using
the Zoltan [12] partitioner within the Trilinos Project’s [13]

algorithms for the solution of large-scale, complex multi-
physics engineering and scientific problems. Zoltan determines
partitioning taking into account specified “object weight(s)”
and target relative “partition size(s)”. Examples of the former
include number of elements or particles. Aria and Fuego
support some user selectable options for weight, imbalance
thresholds to invoke rebalance, and rebalance frequency rates.
In practice in these codes the target relative partition size
is typically uniform; in this work we have modified Zoltan
within SIERRA to call the node-local ldmsd to get system
state information on demand and to use this information in
setting the target relative partition size values at the core level.
These function(s) for target partition size can be user defined.
Thus a smaller (or larger) partition, with resulting lighter (or
heavier) computational load, will be assigned to certain cores
based on the their run time resource state information. In the
Zoltan implementation used for this work, the entire space is
repartitioned and finer-grained control based on, for example,
system architecture, is not supported. While Zoltan includes a
number of partitioning algorithms, RCB was used in all cases
in this work. The Zoltan-LDMS interaction used to rebalance
the applications of interest is illustrated in Figure 2.

Fig. 2. Mechanics of the application feedback. Application uses Zoltan for
repartitioning during run-time. Zoltan has been modified to use user-defined
functions of the resource state data to calculate per-core target partition sizes
to be used in the partitioning algorithm. Resource state data is obtained by
LDMS data and is accessed on-node via the same API as is used to obtain
data off-node for aggregation and transport.

Note that the LDMS update frequency is independent of
the timescales of the Zoltan repartitionings. Zoltan determines
target relative partition sizes based on the most current system
state information held by LDMS. In this way there is minimal
delay in obtaining the system state information, with the
tradeoff of possibly using out-dated system information. Out-
dated here refers to the time between when the last data sample
was collected and when Zoltan queried its local ldmsd for the
data. Thus the maximum age of the data obtained by Zoltan is
bounded by the collection period. Note that our ultimate goal
is not necessarily to achieve the best partitioning, but rather a
better partitioning at minimal cost that doesn’t offset the gains.

Determination of the best resource state information to be
used in determining advantageous target relative partition sizes
and the functional form for the computation is non-trivial;
those utilized in this study were chosen naively in order to
exercise the end-to-end functionality and to demonstrate the
viability of this methodology. The expected mode of operation
is that a more exhaustive post-run analysis of the resource



data collected and stored off-node would be used to determine
these.

C. Experimental Setup

Figures 3 and 4 depict a high level view of LDMS entities,
their interaction with application processes, and the data paths
between collection and endpoints (application and storage)
used in this work on Los Alamos National Laboratory’s Cielo
and on Sandia National Laboratories’ Cielo Del Sur (CDS).
Both Cielo and CDS are Cray XE6 systems.

1) Platforms and LDMS Components: While the platform
architectures and application path to monitored data are the
same for both systems, the paths from compute nodes to stor-
age is substantially different. These differences stem from both
platform configuration and security posture and are discussed
briefly here. Note that ideally LDMS would be run as a system
service with aggregator ldmsds being run on service nodes,
distributed within the communication fabric so as to minimize
network traffic hotspots. However, due to the experimental and
transitory nature of our use of the systems for performing this
work, we utilized hosts that enabled data transport to systems
that were available for performing storage. In both cases we
set out to store data to a distributed MySQL database. Since
neither system was set up for this as a local option we had to
write to remote storage devices in both cases and these had
to be on systems with security postures compatible with the
systems being monitored.

Fig. 3. LDMS data collection and transport system used for Cielo case study
experiments.

On Cielo (Figure 3) we utilized visualization (viz) nodes
for performing aggregation of compute node data due to their
direct connectivity to compute nodes via the Gemini fabric and
their external connectivity. Because the security posture of the
viz nodes required that all external connections to viz nodes
be initiated by the viz nodes themselves we had to enhance
the LDMS transport to support this asymmetry. The need
for this enhanced support stems from our use of a data pull
model. Further details of this are presented in section III-C2
and depicted in Figure 5. The system that was available for
storage of data from Cielo was Sandia’s linux cluster Whitney.
In this configuration we utilized the Whitney’s gateway node,
whitney132, to pass traffic from two of Cielo’s viz nodes to

two of Whitney’s admin nodes which were used for storing
data to SSD disks.

Fig. 4. LDMS data collection and transport system used for CDS case study
experiments.

The CDS platform did not have any viz nodes and only had
external connectivity to the login nodes and the System Man-
agement Workstation (SMW). The SMW, however did not have
direct connectivity to the compute nodes. Thus we utilized the
CDS boot node for running the ldmsds that aggregated data
from the compute nodes and the SMW for running ldmsds to
provide a transit path from the boot node to external storage
nodes. In this case desktop “Shuttle” computers running Linux
and using SSD disks for storage were used.

The difference in hosts being used for storage between
Cielo and CDS was due to the difference in Cielo’s and CDS’s
security postures and the need to have available and compatible
storage hosts. In the case of Cielo the storage hosts we utilized
from the Whitney cluster were a diskfull admin node and a
diskless compute node. Each had four AMD Barcelona quad
core 2.2 GHz processors and 32GB of memory. The admin and
compute node were both running Red Hat Enterprise Linux 5
with a 2.6.18 kernel. We populated each of these two nodes
with with two Crucial M4-CT256M4SSD2 SSDs for storing
the data from Cielo. Due to the poor database performance
of these machines we wrote the data initially to flat files and
subsequently bulk loaded it into a database on the admin node
for analysis. We collected 1012 data values per compute node
at a sample interval of 9 seconds to exceed our self-imposed
criteria of 6 data sets per minute per monitored node over at
least 625 compute nodes.

For CDS our storage hosts consisted of four desktop Shuttle
XPC PCs each with a single Intel Core i7 3.3 GHz processor
and 6GB of memory and running Fedora 14 with a 2.6.35
kernel. We stored information to two MySQL databases per
storage host. For database storage we used a single Crucial
M4-CT256M4SSD2 solid state drive (SSD) per host. Thus
our configuration used 8 databases (2 per SSD) across our
four storage hosts. With this configuration we were able to
ingest 1012 samples per node per 5 second interval over all
556 available compute nodes to distributed MySQL databases.



The XE6 platform, like most other production HPC plat-
forms, only allows a user to schedule a single job on a
node at a time. Thus in order to run our monitoring software
concurrently with applications we ran it as a root process from
the platform’s boot node prior to running applications to be
monitored.

2) Transport: LDMS supports both RDMA and socket
based communication in Ethernet and Infiniband network
environments. While the use of RDMA to transport data from
compute nodes to the first level of aggregation minimizes the
compute node CPU overhead incurred by ldmsd, the use case
being presented used Cray’s socket over Gemini transport for
movement of data from compute nodes to aggregators because
at the time the work was performed we did not have the
capability to use RDMA over the Gemini network. LDMS
now supports RDMA over the Gemini network and preliminary
details are presented in Section IV-B. Transport of data from
initial aggregators to our remote storage hosts also required
use of the socket based transport because the target storage
hosts were located at other sites multiple network hops away
where the network was Gigabit Ethernet and did not support
RDMA.

Support for asymmetric network access was added to
LDMS to enable transport of data across arbitrary network
topologies and specifically to enable use of the pull model
where network security policy prevents connection setup in
the desired direction. Figure 5 depicts the case study scenario
described for the Cielo to storage host data path. There are
three explicit modes of ldmsd operation: 1) Active, 2) Bridge,
and 3) Passive. In the Active mode of operation the ldmsd
listens for a connection request and engages the requesting
entity in connection setup upon receiving the request (this is
the normal mode of operation). In the event that the network
security posture blocks external connection requests the ldmsd
that would be listening must initiate the connection and hence
is told what host it should be setting up a connection with; this
is the Bridge mode of operation. In this mode the Bridge ldmsd
periodically attempts to initiate a connection with a ldmsd
running in Passive mode. The difference between a ldmsd
operating in Passive mode and one operating in Active mode
is that once the connection is established the Active ldmsd
services requests for data over the connection in the case of a
socket transport or does nothing if RDMA is being used. In the
case of the Passive ldmsd, once the connection is established
the Passive ldmsd performs queries for data from the Bridge
ldmsd in the same manner that it would have done if pulling
data from an Active ldmsd. It can be seen in the diagram of
Figure 5 that independent of the mode of operation, which only
affects the initial connection setup, data requests are made in
the direction of the Compute Node while data flows in the
direction of the Storage Host.

3) Core Specialization: Cray’s “Core Specialization” [14]
(corespec) mode enables a user to specify that a particular
core on each compute node be utilized for all system related
processes thus freeing the rest of the cores to be completely
devoted to user application processes. The tradeoff is locality
of application processes in that utilizing corespec, while elim-
inating system process competition with application processes,
can increase the number of compute nodes required to be
allocated in order for a user to procure a given number of

Fig. 5. LDMS supports asymmetric network access to satisfy security
constrains on connection setup. While the overall data transport uses the pull
model throughout, Active ldmsd listen for a connection request; Bridge ldmsd
are used to set up a connection to Passive ldmsd which are prevented from
initiating connections themselves.

cores and thus can also increase the application’s remote com-
munication. As part of this work we ran the Aria application
in both normal and corespec modes to determine the effects
on both system/application process contention and wall clock
time to application completion. The application in this case
utilized 8310 cores. Thus for the non-corespec case only 520
compute nodes were required while for the corespec case 554
compute nodes were required. We utilized the default of core
15 to host system processes when running in corespec mode.

Indeed the data collected to remote storage indicated
that there were zero non-application processes and zero non-
voluntary application process context switches on the 15 cores
hosting application processes when running in corespec mode
while distributions similar to those shown in Figures 6 and 7
were seen for non-application process system time and non-
voluntary context switches respectively when not running core-
spec. Comparison of wall clock time to completion between
the two cases for application runs of ∼ fifteen minutes duration
showed minor improvement for corespec over non-corespec
(∼ 2.6% in this case).

D. Demonstration

1) Small-scale Repartitioning: We first address the Fuego
case. While the problem discussed here does not scale to
significant sizes, it illustrates the dynamic application needs
addressed by this work. Fuego’s physics includes particle
transport. Computational imbalance arises as articles move,
are injected, split, and removed. Computational load varies in
the physical space through time, and hence the workload per
process will as well. Partitioning in the physical space for the
problem spread across 32 core (32 chosen for visual clarity)
is shown in Figure 8. At this time the partitions are unevenly
divided in space, seeking to balance the particle density which
is greatest at the bottom left of the figure. The regions of high
particle number vary with time, as the particle locations and
evolve inward and up and thus partition sizes and locations
will change with time. As particles move in time the particle-
partition mapping changes and the distribution is spread out
thus triggering a rebalancing. In practice, Fuego is rebalanced
using Zoltan when the particle imbalance across processes
exceeds a user defined threshold.



Fig. 6. System time for one collection period (9 sec) on a per core basis over
556 nodes (8896 cores) of CDS. Each dot represents one core; each row of
16 dots represents all the cores of a node in numerical order Physical layout
of the nodes is not representative of the rack layout. (Note that red is 0 and
blue is 3)

Fig. 7. Non-voluntary context switches for one collection period (9 sec) on a
per core basis over 556 nodes (8896 cores) of CDS. Layout is that of Figure 6.
(Note that red is 0 and blue is 1000)

In this work, we have augmented the determination of the
target partition sizes to include a function of based on the ratio
of idle cycles to total cycles utilized since the last partitioning.
The intent is that processes that had exhibited larger idle time
could take on more load (processes were bound to cores in all
runs in this work). In practice we expect that a function that
weights more heavily more recent load will be a better choice.

Figure 9 shows results for this example spread across
64 cores. In this simple demonstration there is a resultant
small improvement in computational cycles dedicated to the
application execution across all processes involved. Note that
this example problem was generally well balanced to begin

Fig. 8. Mapping of physical space and particles to partitions in a small-scale
Fuego application. Repartitioning seeks to balance the computation. Regions
of high particle number, and thus computational load, vary with time, starting
at the lower left of the figure and evolving inward and up. Thus partition
sizes and location will change with time. In this work, the usual repartitioning
calculation based on particle number is augmented by consideration of run-
time resource utilization data obtained by LDMS. The partitioner accesses
LDMS data via the on-node API at run-time.

with (the y-axis does not start at zero). Detailed determination
of data and the feedback functional form for this case were
beyond the scope of this work and thus this should not be
taken as a general indicator of potential results.

Fig. 9. Simple demonstration of shows improvement in computational cycles
across all processes involved. Note that this example was generally well
balanced to begin with (y-axis starts at 0.9).

2) Large-scale Repartitioning: Aria is a thermal code. In a
general sense the dynamics of the simulation is not as closely
tied to the computational load as in the particle case since,
for instance, a hot spot in the calculation does not change
the size of a matrix, but rather the values within it. However
the problem may still be subject to imbalance and hence Aria
provides the ability to rebalance using Zoltan when element
imbalance or assembly time imbalance exceed user-defined
thresholds.

Two cases were used for application feedback. We first
performed a number of Aria runs and used LDMS for run-
time collection of system utilization data and to transport the
data off-node for subsequent analysis. This analysis indicated
that non-voluntary context switches and interrupts occurred



non-uniformly. Since these impact the time dedicated to the
application on a resource, we chose to then assign target
partition sizes based upon the number of occurrences of non-
voluntary context switches and interrupts since the previous
rebalancing. The revised application was then run on Cielo,
with a maximum application size, and thus LDMS collection
size, of 10112 cores.

The effect of using resource state data for run-time de-
termination of the partition sizes is shown in Figure 10. In
this case the distribution of partition sizes resulting was very
broad resulting in a broad distribution of elements per partition
as compared to the initial distribution. Non-voluntary context
switches and interrupts occurred preferentially on Cores 0 and
9 during this run and as a result, the smaller partitions did
occur preferentially on those cores. More work is required
to determine a weighting of these quantities that might be
advantageous for overall application run time.

We also applied the idle cycle criteria previously used in the
Fuego problem to this problem on a 8310 core run on the Cray
XE6 platform Cielo Del Sur at Sandia National Laboratories.
We targeted a relatively comparable size, but still with less than
the full complement of cores at our disposal, since this enabled
us to also test the problem with Crays corespec option. Results
of the partitioning with and without feedback are shown in
Figure 11 for a set of selected timesteps (indicated in legend
in parentheses). The non-feedback distribution changes only
slightly in time, as expected. In the feedback case an early
distribution (green) is much broader than the non-feedback
distribution, probably to a larger degree than desired given the
general computational balance of the problem. In this case the
use of a feedback function that includes computational load
drives the target partitioning and thus the distribution to a more
balanced distribution.

E. LDMS Compute Node Overhead

The following data sources were utilized to collect
base compute node related information: /proc/meminfo,
/proc/vmstat, /proc/stat, /proc/kgnilnd,
/proc/interrupts. Additionally, /proc/PID/stat,
/proc/PID/statm, and /proc/PID/status were used
to collect information about both application and LDMS
process usage of compute node resources on a per-core basis.

In this study we collected 1012 data values per node, 720 of
which were core specific, with a collection period of 9 seconds
on Cielo, and a collection period of 5 seconds on CDS.

At the time this work was performed each data collector
was run as a separate daemon process which then commu-
nicated with ldmsd via a unix domain socket. Thus CPU
overhead was distributed across multiple cores of a node
as determined by the Linux scheduler. Because the ldmsd
processes were not bound to a specific core, except in the
case of running corespec Section III-C3, they were seen to
run on several cores throughout their run time. In order to
determine the LDMS overhead all LDMS related processes
were monitored and their user and system times, as presented
from /proc/PID/stat, summed over the time window of
an application run. Attribution of time to core mapping was
achieved by summing the times a LDMS process was being run
on a particular core as presented from /proc/PID/status

Fig. 10. Feedback Distributions for 10,112 core run of an Aria problem
on Cielo at a selected partitioning step. Processes exhibiting more context
switches and interrupts are assigned a smaller target relative partition size.
In this case the distribution of partition sizes is broad (top) resulting in
a broad distribution of elements per partition as compared to the initial
distribution (middle). Non-voluntary context switches and interrupts occurred
preferentially on Cores 0 and 9 across all nodes and, as a result, the smaller
partitions occur preferentially on those cores (bottom).

over the same application run time window. Figure 12 shows
the fractional utilization, by core, for all LDMS processes
running on a particular node over an Aria application run.
The average fractional utilization over all nodes involved in
the Aria run, by core, is shown in Figure 13. Figure 14 shows
the mean fractional CPU utilization over the same application
run but includes high and low bars (note that for all cores the
low is zero). Fractional utilization is just the LDMS process
CPU time divided by the time window over which that time
was summed (here the application run time).

Figure 15 shows the breakdown of CPU overhead by
LDMS process (Note that this is presented as a % of node
CPU time). It can be seen from this that the process with



Fig. 11. Partition Distributions for selected timesteps for an 8310 core
run of an Aria problem on CDS. Processes exhibiting larger ratio of idle
cycles to total cycles utilized since the last partitioning are assigned a larger
target relative partition size. Uniform partition sizes (top) results in tighter
distributions than those without feedback. In the feedback case, when too broad
partitioning occurs early (bottom, green), the partitioning feedback criteria
self-corrects the distribution. Numbers in Legend in parentheses indicate
timestep.

Fig. 12. Fractional utilization for LDMS processes on a per core basis running
on a particular compute node in a 10,112 processor Aria run on Cielo.

Fig. 13. Fractional utilization for LDMS processes on a per core basis
averaged over all nodes involved in a 10,112 core Aria run on Cielo.

Fig. 14. Fractional utilization for LDMS processes on a per core basis,
including high and low (0), over all nodes involved in a 10,112 core Aria run
on Cielo.

the most overhead is ldmsd which not only gathers data from
the collection daemons but responds to external queries for
data updates from both application and aggregator ldmsds.
In this case the external ldmsd queries account for nearly
all queries as the application queries are for several metrics
on minute intervals while ldmsd aggregator queries are for
all 1012 metrics every 5 seconds. The total over all LDMS
processes was 0.009% of the compute node CPU time.

Fig. 15. Breakdown of CPU overhead by LDMS process presented as
percentage of the node’s CPU time on CDS. Total over all LDMS processes
is 0.009% of the compute node CPU time.

Figure 16 shows the breakdown of memory footprint by
LDMS process. Memory footprint here is defined as the
“resident set size” taken from /proc/PID/statm/ of each
LDMS collector daemon process. Again ldmsd can be seen



to have the largest footprint as it hosts all data sets. The
aggregate memory footprint is the memory overhead incurred
for all LDMS processes and is 4.02MiB. Given that the per-
node memory size is 32GB this represents about 0.012% of
the host memory.

Fig. 16. Breakdown of Memory footprint by LDMS process on CDS.
Aggregate memory footprint is 4.02MiB which is 0.012% of the host node
memory size of 32GB.

The core LDMS infrastructure was re-written subsequent
to the performance of this work and has several enhance-
ments that reduce both overhead and complexity. Among these
enhancements ldmsd now incorporates a plugin architecture
which dispenses with the disparate collection daemons refer-
enced above and incorporates them into the ldmsd process.
Further details of this and other enhancements are presented
in Section IV.

F. Conclusions

This case study demonstrated the viability of enabling
distributed HPC applications to utilize node level monitor-
ing information to enable run-time application feedback. The
LDMS aggregation and transport capabilities enabled post-
processing analysis of application resource utilization data and
use of the on-node data interface in order to enable run-time
repartitioning of Sandia HPC production applications. This
work was performed on the Cray XE6 platforms Cielo and
CDS at LANL and SNL in their production configurations.
LDMS support for asymmetric network access enables trans-
port of data across arbitrary network topologies, and includes
features for connection setup that support the requirements of
these systems security domains to transport data collected on
the Cray XE6 platforms across DISCOM and the wide area to
remote storage hosts.

While performance tuning was beyond the scope of this
work, in separate work we continue to address the use of
LDMS in conjunction with mapping and repartitioning algo-
rithms. In particular we are addressing the inclusion of more
architecture-specific details in the feedback and repartitioning
algorithms.

Unlike typical monitoring systems, LDMS data is intended
to collect data at frequencies suitable for providing meaningful
application resource utilization information rather than those
useful for general system monitoring or detecting failed nodes.
Thus the target data collections rates of LDMS are of order
seconds as opposed to those of, for example Gangia or Nagios,
which are typically in the minutes to tens of minutes range.
This requires that LDMS overhead must be very low. The

compute node overhead on a per node basis for using the
LDMS monitoring software in this case study was ∼ 0.01%
(on our non-Cray production systems Ganglia is over an order
of magnitude higher than LDMS) with a memory footprint of
∼ 0.012% of the host memory. In the next section we report
on new features in LDMS, including those that take advantage
of additional Cray-specific features to further reduce compute
node overhead.

IV. LDMS ENHANCEMENTS AND TESTING ON THE CRAY
XK6 PLATFORM

Subsequent to completion of the case study presented in
this paper and as a result of some of the outcomes, parts of
LDMS were re-designed and re-written to enhance LDMS with
respect to complexity and overhead. These enhancements are
briefly described in this section along with some preliminary
overhead results from deployment on Sandia’s two chassis
Cray XK6 system, Curie.

A. Architectural Changes

Due to the complexity of running and managing multiple
collection daemons in addition to the overhead of ldmsd
maintaining socket connections to many daemon processes,
ldmsd was modified to incorporate a plugin interface. This
interface enables ldmsd to directly host plugins for performing
data collection as well as for other purposes (e.g. storage
operations). A Unix Domain Socket based interface enables
instantiation and configuration of plugins which are written
as separate libraries. Additionally several serial operations
with respect to both collection and aggregation of data have
been parallelized thus reducing the time window required for
compute node ldmsds and aggregator ldmsds to update their
information.

As a result of these changes the memory footprint has
been reduced (e.g. ldmsd with 5 collector plugins now has a
footprint of about 1.3MB as opposed to approximately 3.3MB
for ldmsd and the same 5 collectors as daemons. Additionally
the aggregate CPU overhead has also been reduced. Results
are presented in Section IV-C below.

B. RDMA over the Gemini Network

Perhaps the most substantial enhancement to LDMS, with
respect to compute node CPU overhead on Cray XE6/XK6
platforms, since the case study was performed, has been the
implementation of an LDMS Gemini based RDMA transport.
This transport was enabled by enhancements to the Cray Linux
Environment that allow configuration of system “protection
domain tags” (pTags) [15] for application use. The RDMA
transport enables an aggregation ldmsd to directly fetch data
from a compute node ldmsd without CPU intervention. This
means that the only CPU overhead on the compute node,
when using this transport, comes from data collection plugins.
The benefit can be seen by comparing the CPU overhead of
an ldmsd being queried by an aggregator ldmsd over socket
vs. RDMA transports while collecting identical metrics at
identical collection periods. Overhead results are presented in
Section IV-C below.



The fan-in capability of ldmsd aggregation nodes is cur-
rently limited by the size of the Gemini NICs memory reg-
istration table to ∼ 900 metric sets. This limitation will be
alleviated by the ldmsd RDMA transport registering larger
memory regions and managing connections there as opposed
to the current registration per metric set scenario.

C. Gemini RDMA Overhead

Figure 17 shows the number of metrics for each of the
five samplers run in the experiments on Curie. Of these, four
read from the proc filesystem (meminfo, vmstat, procstatutil,
kgnilnd) and one (gemctrs) makes an ioctl call to get its
data.

Fig. 17. The number of metrics for each named metric set.

By referring to both Figures 17 and 18 it can be seen
that CPU overhead scales up as the number of metrics in a
metric set. The procstatutil sampler is seen to have greater
overhead than would be expected given the number of metrics
being collected and bears further investigation. The difference
in overhead with respect to the gemctrs sampler is likely due
to the difference in the data source and method of acquisition
of this data (i.e. ioctl call vs. read from proc).

Figure 18 provides a comparison of overhead associated
with samplers and transports. From this figure it can be seen
that: 1) overhead is mostly due to the on-node data collection
process, 2) the RDMA (UGNI) transport overhead is the same
as that running with no data being pulled from the compute
node ldmsd (there is a 2 to 3 jiffy startup cost associated with
ldmsd using the UGNI transport), and 3) the RDMA transport
overhead is less than that for the SOCK transport in all cases.

Figure 19 provides a comparison of the memory footprints
associated with the same samplers and transports referred to
above. It can be seen from this that in all cases that ldmsd
using the RDMA transport has a larger memory footprint than
using SOCK and that the samplers, with the exception of
gemctrs, all contribute about the same to the increase over
ldmsd running alone. It can also be seen by comparing this
figure with Figure 16 that the redesigned ldmsd architecture
has a substantially smaller memory footprint than the previous
daemon based collector architecture.

V. CONCLUSIONS

Our Lightweight Distributed Metric Service (LDMS) soft-
ware is intended to be run as a system service for providing
low-overhead remote storage of and on-node access to high-

Fig. 18. Percent utilization of one core for ldmsd running each of 5 metric set
samplers, all 5 simultaneously, and none. These cases are shown for ldmsds
being queried over the socket (SOCK) and RDMA (UGNI) transports on one
second intervals as well as not being queried at all (NONE)

Fig. 19. The Resident Set Size (RSS) for ldmsd running each of 5 metric set
samplers, all 5 simultaneously, and none. These cases are shown for ldmsds
being queried over the socket (SOCK) and RDMA (UGNI) transports on one
second intervals.

fidelity system related data, suitable to enable post-processing
analysis of application resource utilization data and use of the
on-node data interface in order to enable run-time application
feedback. It provides end-to-end capabilities for data collec-
tion, transport, and storage.

In this work, we have utilized LDMS on production
XE6 platforms in the demonstration of its viability for use
in analysis and run-time repartitioning of production HPC
applications. We have demonstrated features of the LDMS
communication architecture to support the asymmetric network
security domains in which production Cray systems exist at
SNL and LANL.

We have presented the memory and CPU related overhead
of LDMS and how impact on applications can be minimized in
the Cray XE6/XK6 environment by taking advantage of Cray
specific features such as corespec and RDMA over Gemini.

ACKNOWLEDGMENTS

The authors would like to thank the following:

• Regarding platforms used in the case study: John
Zepper, John Noe, Jeff Ogden, Sue Kelly and Bob



Ballance (SNL) for access to Cielo Del Sur; Jim
Lujan, Cory Leuninghoener, Kathleen Kelley, Cindy
Martin, Quellyn Snead (LANL), and Joel Stevenson
(SNL) for assistance in the Cielo deployment; and
Jerry Friesen, Adam Supinger, and Tuesday Armijo
(SNL) for access to Whitney.

• Larry Kaplan and Jason Schildt (Cray) for XE6 plat-
form specific information used in the case study.

• Regarding the applications utilized in the case study:
Karen Devine (SNL) for information on Zoltan;
Pat Notz, Greg Wagner, Stephan Domino, Alex
Brown, and Robert Baca (SNL) for information on
SIERRA codes; Jonathan Hu (SNL) for information
on SIERRA-Trilinos integration.

• Ryan Olsen, Steve Martin (Cray), and Hasan Abbasi
(ORNL) for information on UGNI.

• Kevin Pedretti (SNL) for information on the use of
the gpcd library.

REFERENCES

[1] “Ganglia,” http://ganglia.info.
[2] “Nagios,” http:/nagios.org.
[3] Cray Inc., “Cray Linux Environment (CLE) 4.0 Software Release,” Cray

Doc S-2425-40, 2010.

[4] ——, “Using the Cray Gemini Hardware Counters,” Cray Doc S-0025-
10, 2010.

[5] OProfile, “OProfile,” http://oprofile.sourceforge.net/news.
[6] U. of Oregon, “Tuning and Analysis Utilities: TAU,”

http://www.cs.uoregon.edu/Research/tau/home/php.
[7] Cray Inc., “Using Cray Performance Analysis Tools,” Cray Doc S-2376-

52, 2011.
[8] P. Notz, S. Subia, M. Hopkins, H. Moffat, and D. Noble, “Aria 1.5 User

Manual,” Sandia National Laboratories Report SAND2007-2734, 2007.
[9] S. P. Domino, C. D. Moen, S. P. Burns, and G. H. Evans,

“SIERRA/Fuego A Multi-Mechanics Fire Environment Simulation
Tool,” in 41st AIAA Aerospace Sciences Meeting (AIAA Paper 2003-
0149), 2003.

[10] S. Domino, G. Wagner, A. Luketa-Hanlin, A. Black, and J. Suther-
land, “Verification for Multi-Mechanics Applications,” in 48th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Ma-
terials Conference (AIAA Paper 2007-1933), 2007.

[11] H. C. Edwards, “Sierra Framework Version 3: Core Services Theory
and Design,” 2002.

[12] K. Devine, E. Bowman, R. Heaphy, B. Henrickson, and C. Vaughan,
“Zoltan Data Management Services for Parallel Dynamic Applications,”
in Computing in Science and Engineering, vol. 4, no. 2, 2002, pp. 90–
97.

[13] Sandia National Laboratories, “The Trilinos Project,”
http://trilinos.sandia.gov.

[14] Cray Inc., “Workload Management and Application Placement for the
Cray Linux Environment,” Cray Doc S-2496-31, 2010.

[15] ——, “Using the GNI and DMAPP APIs,” Cray Doc S-2446-4003,
2012.


