
External Torque/Moab on an XC30 and Fairshare

Tina M Declerck, Iwona Sakrejda
NERSC

Lawrence Berkeley National Lab
Berkeley, CA USA

TMDeclerck,ISakrejda@lbl.gov

Abstract— NERSC's new Cray XC30, Edison, utilizes a new
capability in Adaptive Computing's Torque 4.x and Moab 7.x
products which allows the Torque server and Moab to execute
external to the mainframe. This configuration offloads the
mainframe server database and provides a unified view of the
workload. Additionally, it allows job submissions when the
mainframe is unavailable/offline. This paper discusses the
configuration process, differences between the old and new
methods, troubleshooting techniques, fairshare experiences, and
user feedback. While this capability addresses some of the needs
of the NERSC community it is not without tradeoffs and
challenges.

Keywords—Torque; Moab; fairshare; external configuration

I. INTRODUCTION
Job scheduling is an important part of the functionality of

any high-performance computing center. The National Energy
Research Scientific Computing Center (NERSC) has used a
combination of Torque and Moab on most of our systems with
good results. When login nodes are internal to the Cray job
scheduling works well. However, since Cray provided the
ability to utilize external login nodes, Torque and Moab
configuration is either limiting or more complex depending on
how the site wants to access the scheduling system. The
interactions with Cray’s job launcher, Alps, required the
Torque and Moab services to remain internal to the Cray
system. On our current Cray XE-6 system, Hopper, each of the
login nodes ran a torque/moab server which directed jobs to the
internal torque / moab. The purpose of this was to allow users
to continue to work even when the Cray was not available.
However, this meant that there were now several torque/moab
configurations to maintain. Adaptive Computing modified the
Torque / Moab configuration in version 4.1 and 7.0
respectively in a way that allows the torque server and moab to
run external to the Cray. This also aligned things in torque
and moab to a more standard configuration. A detailed
description of the installation used at our site to install and
configure external Torque and Moab on the Cray provides a
basis for other sites to make use of the same framework.

Fairshare provides some additional methods for
determining which jobs should run. While this has been used at
NERSC for serial work for several years, it hasn’t been used on
multi-node jobs. This is an experiment to see how well it
balances the workload while allowing large jobs to run.

II. UNDERSTANDING THE COMPONENTS
A short description of the components of Torque, Moab,

and Alps will help to ensure the explanations provided in the
document are understood.

A. Torque
Torque is a resource manager. It’s primary function is to

manage jobs. Jobs are submitted to queues, monitored while
running and then the time and resources used are recorded. It
has several components, including the server, the moms, and in
this version an authentication daemon used for communication
between the components in the cluster. It also provides a
scheduing capability that is unused at our site.

• pbs_server - maintains all information about the
cluster, the moms, and the jobs. It essentially runs the
show.

• qmgr – interface used to configure and maintain queue
and server configuration.

• pbs_mom - tracks the job while it is running and does
the hand–off to alps. With the new version there is a
special mom called the alps_recorder. It tracks which
nodes are available for jobs and provides the
information to the server which in turn hands it off to
moab.

B. Moab
Moab is the job scheduler. It determines which job will
be the next to run and assigns available nodes to it. It has
many options to allow each site to to prioritize jobs as
they prefer. It also provide a reservation system that is
used both for scheduling jobs and for allowing manual
resource reservations.

C. Alps
Alps is Cray’s job launcher. It takes the information from
the mom and ensures the compute nodes are configured as
needed for the job and then maintains status of the job
while it is running.

III. DESCRIPTION OF TORQUE/MOAB CHANGES
Prior to the Torque 4.1 and Moab 7.0 update the

interaction with Alps was through a combination of Moab,
Torque, and scripts. This is different from the way Torque and

Moab work on other, non-Cray, systems. On those systems,
Moab gets it’s information about node availability from
Torque. This change allows Moab to work the same on all
systems.

Torque has been modified to run a special mom called the
alps_reporter mom that handles the interaction with Alps. It
gets information from Alps regarding configured and available
resources. This information is also used by Torque to create a
virtual node for each compute node. Previously only the login
(mom) nodes could be seen by Torque using the pbsnodes
command. With these modifications to Torque both the torque
server and Moab can be run external to the Cray. This has
several advantages including the ability to allow users to
continue to work on external nodes while the Cray is down
without running multiple instances of torque.

IV. INSTALLATION AND CONFIGURATION
This document assumes an understanding of a standard

Torque and Moab configuration. The intent is to provide
details about how the external configuration varies from the
standard Torque and Moab installation on a Cray system. The
Moab manual contains instructions for installing the new
Torque and Moab on the sdb (system data base) node. See the
documentation int Adaptives Moab manual [1]. Since the
external installation is slightly different there were some
modifications. The configuration at NERSC has external login
servers and uses Cray’s management server running Bright [2]
on the external nodes. On the Cray we have a fairly standard
configuration. The mom nodes are re-purposed compute nodes
and the sdb has an external 1 GE network connection. We use
a persistent var on the service nodes which makes it easier to
configure torque using the default configuration. Figure 1
shows our system configuration.

Figure 1. Edison System Configuration

Adaptive recommends that no jobs be running when you
upgrade to Torque 4.1.0. Jobs may be queued but not running.
If you are moving to external Torque, Adaptive doesn’t appear
to have a tool to move jobs so draining may be the best option.

A. Torque Server
One of the primary considerations for installing torque and

moab externally is ensuring a good communication path
between the external nodes and the sdb and mom nodes. If
your site uses multiple networks as ours does choosing the

name of your server is important. Torque prefers the name
returned by hostname and requires this for the mom nodes.
This is where most of the issues occurred on initial install. At
our site the connection to the sdb through its 1GB ethernet
interface was on a different network than the one used to
connect to the mom nodes via the network nodes. The
communication problem is easy to detect by checking the
server and mom logs.

The Torque configuration and installation remains the same
on external nodes as for the Cray. The installation was
completed on the Bright management server since an external
login node was used for the pbs_server node. Several
configuration options are available and should be evailuated
for your site. If you have previously iinstalled Torque the
same configuration parameters will likely work with the
exception of the –with-default-server which should be the
name of the external node. One additional configuration option
is now available: CFLAGS="-D
CRAY_MOAB_PASSTHRU". This allows use of the
“nodes=<num nodes>” notation vs mpp*. Our typical
configuration:

./configure --prefix=/opt/torque/4.1.4 --with-server-
home=/var/spool/torque --with-default-server=edison06 --
enable-syslog --disable-gcc-warnings --enable-maxdefault --
with-modulefiles=/opt/modulefiles

The server need to know where the alps_reporter and the
mom nodes are. The mom_nodes are called alps_login which
was initially slightly confusing. Although some sites may still
use internal login nodes as mom nodes but that hasn’t been the
case at our site for a while. Adaptive recommends you use the
sdb for your alps_reporter mom. This is the special mom that
handles communications with Alps. If Torque and Moab will
continue to run on the sdb vs externally, the alps_reporter mom
will be required with version 4.1 of Torque and 7.0 of Moab. In
that case both the pbs_server and pbs_mom will run on the sdb.
The pbs_server gets the information about these nodes though
the <server-home>/server_priv/nodes file. The nodes file will
look something like this:

sdb alps_reporter
nid00004 np=X alps_login
nid00005 np=X alps_login
nid00006 np=X alps_login
…
nid00xxx np=X alps_login
Verify the <server-home>/server_name file contains the

name of the pbs_server host. Some parameters that need to be
added to the pbs_server via the qmgr:

qmgr –c “set server cray_enabled=true”
qmgr –c “set server resources_default.partition=<clustername>”

where clustername is what you call the compute pool.
Adaptive also has a new authentication mechanism. Previously
it was via pbs_iff and is now a daemon called trqauthd. This
must be run on any node that torque needs to communicate
with. This includes any acl or submission hosts. At our site this
is the external login nodes, the sdb, and the mom nodes.

To ensure all the parts start at boot time you will need to
configure and install startup scripts. These are provided in the
Torque source code in the contrib/init.d directory. Always
verify these are configured correctly for your site before
copying to /etc/init.d.

in /var/spool/torque/server_logs/YYYYMMDD on the
server node and the mom logs in
/var/spool/torque/mom_logs/YYYYMMDD on the mom
nodes. On the mom nodes a different server name in the
/var/spool/torque/server_name file allowed this configuration
to work. The nid names of the mom nodes will most likely
need to be added to your /etc/hosts file as the first name.

You may need to set the torque qmgr server parameter
keep_completed = 300 for Moab to work correctly. Moab
wasn’t able to clear jobs if this was not set.

B. Mom Nodes and SDB
The next step is to install torque on the sdb and the mom

nodes. If the architecture on the external node is the same as
within the Cray you can use the packages created by “make
packages” in Torque to install on the boot node. If the
architecture is different you will have to re-configure and
install torque on the boot node. On the sdb node some
modifications to the /var/spool/torque/mom_priv/config file are
needed for the new configuration. The sdb should be defined
as the alps_reporter and the apbasil protocol and path may need
to be set:

$reporter_mom true
$apbasil_path <path to apbasil> *default is /usr/bin/apbasil
$apbasil_protocol 1.2 * default is 1.0

On the mom nodes the config file needs a few additions but
should otherwise be fine with the options used prior to this
version. The additions are:

$alps_login true
$apbasil_path <path to apbasil> *default is /usr/bin/apbasil
$apbasil_protocol 1.2 * default is 1.0

Then you can start the trqauthd and pbs_mom on each of
the mom nodes and the sdb. Verify you can access the pbs
server node from the mom nodes. Check the log files on the
mom nodes and the server node to ensure there are no errors.
The server_name on the mom nodes on our server uses an
interface name and is working (instead of edison06 it is
edison06-eth4).

C. Moab
Next configure and install moab on the pbs server node.

No special config options are necessary for the build. The
mom nodes need to be identified as a separate partition to the
moab.cfg file so jobs don’t get scheduled on them. The
additions to the moab.cfg file look like this:

NODECFG[nid0000x] Partition=login
NODECFG[nid0000x] Partition=login

…

NODECFG[nid0000x] Partition=login

Once it is installed and configured there it will need to be
installed on the sdb and mom nodes. Only the moab.cfg needs
to be in the /var/spool/moab directory.

V. FAIRSHARE
Sites like NERSC have hundreds of users from large

groups of projects contending for limited resources daily.
Under these circumstances, the right scheduling policies that
meet both the allocation obligations and users needs is a
challenge. This can be especially difficult because the concept
of scheduling fairness varies widely from person to person and
site to site.

MOAB provides a wide range of tools to assist site
managers in configuring scheduling to meet those diverse
requirements. Those tools include:

• Job Prioritization
• Throttling Policies
• Allocation Management
• Quality of Service
• Standing Reservations
• Class/Queue Constraints
• Fairshare

NERSC was using the first six methods until recently,

motivated by rather positive experiences with Fairshare based
scheduling in another scheduler on other resources at NERSC,
a decision was made to explore adding the Fairshare
component into the mix for Torque/Moab on Edison. Since
Edison is not included in the allocation pool yet it was possible
to modify scheduling without impacting production
commitments.

Moab has a rather transparent priority-weighting way of
including the Fairshare component in the priority calculation.
Contribution of each priority subcomponent is calculated as:
<COMPONENT WEIGHT> * <SUBCOMPONENT
WEIGHT> * <PRIORITY SUBCOMPONENT VALUE>.
This is then weighted over a time component.

The Fairshare contribution consists of five subcomponents:
ACCOUNT, CLASS, GROUP, USER, and QOS credentials.
The weights for both Fairshare and the subcomponents are set
independently in the MOAB configuration file. The
PRIORITY SUBCOMPONENT VALUE is calculated based
on utilization in intervals which depth (FSDEPTH) and width
(FSINTERVAL) is defined by the administrator. Contribution
of intervals decreases with FSDECAY factor over time.
Utilization accounting can be done in several ways
(FSPOLICY):

DEDICATEDPES Usage tracked by processor-equivalent seconds
dedicated to each job

DEDICATEDPS Usage tracked by processor seconds dedicated to
each job

UTILIZEDPS Usage tracked by processor seconds used by
each job

At NERSC we set up Fairshare data collecting with the
following values:

• FSDEPTH = 8
• FSINTERVAL = 12:00:00
• FSDECAY = 0.8

Since NERSC does not facilitate node sharing, we decided

to set the FSPOLICY to DEDICATEDPS, following the
recommendations in Adaptive Computing documentation.

At first we ran for a period of time with the FSWEIGHT
not set. This allowed us to track the <PRIORITY
SUBCOMPONENT VALUE> and estimate its impact on
priority, without actually impacting the priority itself. Lacking
a better tool we used the mdiag –v –f command to display data
collected by MOAB. After the initial period dedicated to just
tracking utilization, we set set targets per ACCOUNT (known
also as “repo” at NERSC) to meet our obligations towards
DARPA (25%).

However, altogether NERSC supports over 700 repos, so to
avoid calculating and setting very small shares per repo we
briefly set the default to 10%. Since this was hardly fair we
also started working towards implementing a more structured
fairshare tree. Total available resource was divided between
DARPA and the rest of NERSC (25:75). The 75% allocated to
the “non DARPA” was then subdivided between 6 Department
of Energy (DOE) offices and a small fraction given to staff for
benchmarking, development and evaluation. Shares given to
offices reflected their annual NERSC allocations. Each office
branch incorporates associated repos as members.

The resulting tree is shown below:

• FSTREE[root] SHARES=100
MEMBERLIST=darpa,nersc

• FSTREE[darpa] SHARES=25
MEMBERLIST=acct:darpa

• FSTREE[nersc] SHARES=75
MEMBERLIST=ascr,ber,bes,ccc,fes,hep,np

• FSTREE[ascr] SHARES=5
MEMBERLIST=acct:m888,acct:m945, +85 more

• FSTREE[ber] SHARES=17
MEMBERLIST=acct:m917,acct:m950, +126 more

• FSTREE[bes] SHARES=30
MEMBERLIST=acct:m881,acct:m894, +303 more

• FSTREE[ccc] SHARES=7
MEMBERLIST=acct:mpesnet,acct:mpccc, +10 more

• FSTREE[fes] SHARES=17
MEMBERLIST=acct:m908,acct:m916, +63 more

• FSTREE[hep] SHARES=13
MEMBERLIST=acct:m981,acct:m1067, +63 more

• FSTREE[np] SHARES=11
MEMBERLIST=acct:m1401,acct:m327, +44 more

However the switch from a flat distribution of shares

among accounts to this more structured tree resulted in the fair
share contribution disappearing altogether from the priority
calculations. This has been traced to default setting of

FSACCOUNTWEIGHT=1000 in the absence of the shares tree
and 0 with the tree. Once FSACCOUNTWEIGHT was
explicitly set (to 100 in our case) in the MOAB configuration
file the fairshare component re-appeared in the priority listings
(mdiag –p).

Figure 2. Fairshare Usage by DOE Office

Figure 3. DARPA Fairshare Usage

Relative use between offices shown in Fig 2. reflects
history of the aforementioned share changes. Fig 3 shows
DARPA usage. When we introduced shares into the mix of
priority calculations on March 1st all the non-DARPA accounts
were assigned a target share of 10% thus the usage per DOE
office was proportional to number of repos assigned to the
Offices. We started collecting share usage in February, thus
initially HEP access was suppressed by the CPU accumulated
from previously run jobs. However, towards the middle of
March FES and HEP offices with very similar number of repos
became equal. On March 16th in order to test impact of share
target settings we significantly boosted targets for 2 repos from
the BES office and the utilization followed. We switched data
collection from a flat ACCOUNT shares to a tree structure on
April 1st but due to the error mentioned earlier that was
corrected on April 9th the effect of that change became only
visible on that later date.

There are additional facts worth noticing. When an entity
with assigned share is not running, there is a very strong effect
favoring its priority once jobs are submitted (the HEP Office
around April 13th). Another aspect of the shares mechanism is
that when there were no jobs from one of the offices to utilize
its share, those with larger allocation profited more from this
situation (BES would be boosted more than others).

In addition to the goal of fairly managing the allocation
scheduling configuration has additional requirements:

• The queue wait time should make a difference
• A single user shouldn’t be able to take over most of the

system

• A single user should not use all shares for the repo
• We should be able to favor large jobs (or at least not

discriminate against)
• We need to maintain the ability to favor individuals or

repos when necessary.

We are at the beginning of exploring the fairshare
configuration. There exists a plethora of options (utilization
can be taken into account as a target, floor or celling; shares
could be evaluated as a fraction of delivered or available time,
etc). In addition to grouping utilization per ACCOUNT (repo)
we can do it by QoS (which would enable us to require that a
certain share of available resource will be allocated to large
jobs). In order to cope with exploration of this multi-
dimensional space we plan to harvest current workloads and
run MOAB in simulation mode.

REFERENCES
[1] http://docs.adaptivecomputing.com/mwm/help.htm#xtinstall.html
[2] Moab Workload Manager7.2.2Administrator Guide, 2013 Adaptive

Computing
[3] TORQUE Administrator Guide, version 4.2.2, 2013 Adaptive

Computing.

