
Production Experiences with the Cray-Enabled TORQUE Resource Manager

Matt Ezell and Don Maxwell
High Performance Computing Operations

Oak Ridge National Laboratory
Oak Ridge, TN

{ezellma,maxwellde}@ornl.gov

David Beer
Senior Software Engineer

Adaptive Computing
Provo, UT

dbeer@adaptivecomputing.com

Abstract—High performance computing resources utilize
batch systems to manage the user workload. Cray systems are
uniquely different from typical clusters due to Cray’s Applica-
tion Level Placement Scheduler (ALPS). ALPS manages binary
transfer, job launch and monitoring, and error handling. Batch
systems require special support to integrate with ALPS using
an XML protocol called BASIL.

Previous versions of Adaptive Computing’s TORQUE and
Moab batch suite integrated with ALPS from within Moab,
using PERL scripts to interface with BASIL. This would
occasionally lead to problems when all the components would
become unsynchronized. Version 4.1 of the TORQUE Resource
Manager introduced new features that allow it to directly inte-
grate with ALPS using BASIL. This paper describes production
experiences at Oak Ridge National Laboratory using the new
TORQUE software versions, as well as ongoing and future
work to improve TORQUE.

Keywords-TORQUE; Resource Manager; Adaptive Comput-
ing; Cray; ALPS; Moab; HPC; Titan; Gaea

I. INTRODUCTION

High performance computing resources utilize batch sys-
tems to manage the user workload. Job schedulers are
designed to intelligently determine when jobs should run,
optimizing for various goals such as high utilization or
minimal queue wait. Resource managers typically accept
job submissions and handle job launch. Cray systems are
uniquely different from typical clusters due to an additional
layer called Cray’s Application Level Placement Scheduler
(ALPS). ALPS manages binary transfer, job launch and
monitoring, and error handling. Batch systems require spe-
cial support to integrate with ALPS using an XML protocol
called BASIL.

Previous versions of Adaptive Computing’s TORQUE and
Moab batch suite integrated with ALPS from within Moab,
using PERL scripts to interface with BASIL. This would
occasionally lead to problems when all the components
would become unsynchronized. Additionally, TORQUE was
unaware of the Cray compute nodes. Version 4.1 of the
TORQUE Resource Manager introduced new features that
allow it to directly integrate with ALPS using the BASIL
protocol.

This paper describes early experiences with the newest
versions of the TORQUE resource manager. Early on,

software bugs related to the newly-introduced multithread-
ing features prevented successful deployment of the new
versions of TORQUE. Through close collaboration with
Adaptive Computing, the software improved significantly to
the point where it was acceptable for use on the Titan and
Gaea systems. Additionally, this paper describes production
experiences at Oak Ridge National Laboratory using the new
TORQUE software versions and describes future collabora-
tive work to improve Cray-enabled TORQUE.

II. CRAY APPLICATION LEVEL PLACEMENT SCHEDULER
(ALPS)

The term “resource manager” is overloaded in the batch
processing world, and the combination of systems needed
to effectively control batch processing on the Cray X-series
platform certainly supports the confusion. At the lowest level
in the Cray hierarchy sits the Cray Application Level Place-
ment Scheduler, commonly referred to as ALPS [1]. While
in most instances, a batch system is making scheduling
decisions based upon configuration of center policy, ALPS
is the piece of software at the lowest level that is handed
information from the batch system to ultimately launch the
job onto the compute nodes.

Not only does ALPS launch jobs, it maintains com-
pute node state and reservations to manage job placement
and resource utilization. Through a series of daemons that
typically run on the Cray boot or system database (sdb)
node, ALPS imports hardware configuration information
from the system database to provide memory, CPU and
GPU resources available on each compute node. Given a
heterogeneous system, this would be essential to providing
the user with a mechanism to request the resources needed
to run a particular application. Each compute node also has a
state and mode associated with it that informs ALPS whether
the node is up or down and whether it is in interactive or
batch mode. Up and down states are self-explanatory, and
there are a few other states that will not be discussed that
are in the end classified as up or down, but interactive or
batch mode requires some explanation.

ALPS can operate without a batch system sitting at a
higher level providing information. This is called interactive
mode, and it is basically a FIFO queue that requires users to



apbridge	
  apwatch	
  

Boot	
  Node	
  

apsched	
  

SDB	
  Node	
  

Shared	
  
Files	
  

SMW	
  Node	
  

erd	
  

Compute	
  Node	
  

apinit	
  

apsheperd	
  
PEs	
  

Compute	
  Node	
  

apinit	
  

apsheperd	
  
PEs	
  Moab	
  Node	
  

Moab	
   pbs_server	
  

apsys	
  

Login/Batch	
  

aprun	
  

apstat	
  
User	
  
Shell	
  

pbs_mom	
  
apbasil	
  

Figure 1. High-Level ALPS Design

run ALPS commands that sit and wait for available resources
to run jobs. How is this different from a batch system?
In a nutshell, batch systems provide a mechanism for the
user to submit a job to be run at a later time without the
burden of making sure the machine doesn’t reboot taking the
waiting ALPS command down with it. Batch systems also
allow a priority-based reordering of jobs based on policies
determined by the center. In contrast, batch mode simply
enables the use of a batch system for job launch ignoring
any user-supplied ALPS commands run outside of the batch
system.

Reservations are used to manage availability of nodes that
are in an up state. When a job is launched, it is assigned
to a set of nodes. Those nodes are exclusively reserved for
that job. When the job finishes, the reservation is destroyed,
and those nodes are available for the next job. Reservations
are simply the mechanism by which a job receives exclusive
access to the resources necessary to run the job.

All of the ALPS information must somehow get com-
municated to the batch system in order to provide the user
with the available resources on the system and to maintain
a consistent state for nodes, reservations, and jobs. ALPS
provides an API called apbasil - BASIL being an acronym
for Batch Application Scheduler Interface Layer. BASIL is
an XML-based protocol that provides batch systems with
the ability to retrieve inventories of compute nodes, their
states and reservations, and the ability to create, confirm,

and delete reservations. Using this interface, batch systems
are able to manage all aspects of job submission, scheduling,
placement and deletion by communicating with ALPS which
communicates directly with the compute nodes.

III. MOAB-ALPS INTEGRATION DESIGN

Prior to TORQUE version 4.1, the primary interaction
between the batch system and ALPS was managed by Moab.
Moab has the concept of a “native” interface that allows
external scripts to handle logic in user-configurable ways.
For Cray systems, Moab’s interaction with the TORQUE
resource manager and ALPS was setup as a native interface.
Multiple scripts were provided to manage resource invento-
ries, ALPS reservations, and job launch:

node.query.xt4.pl
This script queries BASIL to get the configuration
and state of all compute nodes on the system

job.query.xt4.pl
The job query script executes and parses TORQUE
commands to obtain a list of all jobs known to
the system, including details such as state, owner,
account, queue, and resource requests.

partition.query.xt4.pl
The partition query script talks to both ALPS and
TORQUE to determine what ALPS reservations
exist and if they correspond to a running job

partition.create.xt4.pl
This script interfaces with BASIL to create an



ALPS reservation based on the resource requests of
a job. It does not confirm the request, as this must
be done by TORQUE once the SID or PAGG is
known

job.start.xt4.pl
This script determines the best pbs mom to host
the job and forces execution on this node

partition.delete.xt4.pl
The partition delete script, as its name implies, is
used to remove ALPS reservations once jobs have
completed

Once TORQUE is signalled to start a job, it must spawn
a child process to run the job script. If enabled, it will use
the “job” interface to create a Process Aggregate (PAGG)
container for the process. TORQUE must then “confirm”
the ALPS reservation by supplying the PID or PAGG of the
job. ALPS is then able to use this information to distinguish
which processes belong to which reservation.

In this setup, TORQUE is only configured to know about
the batch nodes that are running the pbs mom daemon.
TORQUE is completely unaware of the compute nodes.
While this avoids some complexity, it obfuscates the process
a bit. All logging from TORQUE only knows about the batch
node used to start the job, not the computes nodes on which
the job was running. This could be problematic if TORQUE
accounting logs are used extensively.

Additionally, Moab must spend extra time performing
a “fork” and “exec” to run the perl scripts. It must then
process the string-based output to turn it into data structures
that can be ingested by Moab’s internal processing. This
can lengthen Moab’s average iteration duration, which has a
negative impact on interactive use of Moab’s command line
tools.

An issue would occasionally arise on production systems
that had a very negative impact on utilization. Certain cir-
cumstances could cause an ALPS reservation to remain after
the job had exited. These “orphan” reservations would block
system resources until manually removed. In an attempt to
avoid this, Moab added code to help find and destroy these
orphan reservations. By setting the MOABPARCLEANUP
environment variable, Moab would know to try to remove
reservations that it didn’t expect to be present at the expense
of extra processing each iteration.

IV. NEW DESIGN

The new TORQUE-ALPS design greatly simplifies the
implementation by reducing integration points and coupling
things where they naturally make sense. The minutiae of
creating, confirming, and releasing jobs doesn’t need to be
performed by a scheduler; moving this all to TORQUE
daemons allows Moab to do what it does best schedule.
TORQUE daemons already manage everything that has to
do with setting up jobs, starting them, and cleaning up after
them once completed, so the ALPS interactions naturally

Moab	
  

Normal	
  Status	
  

Normal	
  Status	
  

Normal	
  Status	
  

Normal	
  Status	
  
ALPS	
  In

ventor
y	
  

Actual	
  
Cray	
  

Compute	
  
Nodes	
  

Reporter	
  Mom	
  

Login	
  Mom	
  

Login	
  Mom	
  

Login	
  Mom	
  

Login	
  Mom	
  

PBS	
  
Server	
  

Figure 2. New Reporting Structure

belong here also. Finally, having all of the integration a
single daemon reduces integration points, making the code
easier to understand and maintain.

A. How It Works

All ALPS integration now takes place on the pbs mom
daemons as shown in Figure 2. Two different kinds of pbs -
mom daemons are run for this setup: a reporter mom and one
or more alps login moms. The reporter mom’s only function
is to report the inventory information to pbs server, which
then discovers all of the compute nodes.

The other mom daemon is the alps login type, which
manages job starts. The login mom creates and confirms
the reservations for the job before launching it. When the
job is done, the mom releases its ALPS reservation. The job
start process is diagramed in Figure 3.

Moab no longer knows anything about ALPS. From
Moab’s perspective, it is scheduling two different partitions
(clusters) - the login nodes in one partition and the com-
pute nodes in the other. Moab is only making scheduling
decisions, and so it is now only given information relevant
to scheduling. This is outlined in Figure 2. Moab maintains
the ability to schedule login-only jobs for the purpose of
compilation, data transfer, or other simple, short tasks.

The pbs server ties the two together. When a node status
is given, the reporter mom’s status is presented as the status
of all of the compute nodes, and the logins’ statuses are
given as any other pbs mom’s status appears. When Moab
runs a job, it only selects which compute nodes that job
will use, and pbs server uses a round robin method to select
which login daemon should be responsible for starting that
job.

B. Advantages

The new design simplifies configuration. No special bi-
naries for Moab, TORQUE’s server or mom daemons are
required, not even for the distinct types of mom daemons.
Less configuration makes for easier setup.



Figure 3. Job Starting

The whole model inherits superior support from Moab
because from Moab’s perspective, scheduling the Cray is
the same as scheduling any other cluster: it is no longer a
one-off. Additionally, the code path that was used for parsing
output from the scripts in significantly slower than the code
path for interfacing with TORQUE for two reasons: text
parsing happens faster and the interaction is now through
an API instead of a fork/pipe model.

Moab and pbs server can now be moved outside of the
Cray, allowing a number of benefits. You can install them
on as powerful of nodes as you like, and aren’t bound to
whatever you have already. If, after having the machine for
a while, you decide you need to upgrade the server and
scheduler nodes then you can do this without upgrading the
entire machine. This also gives you back whatever resources
on the Cray Moab and pbs server were occupying.

V. PRODUCTION EXPERIENCES

After initial conversations with Adaptive Computing dis-
cussing the transition of ALPS interactions from Moab to
TORQUE to provide better ALPS reservation synchroniza-
tion, an initial beta test at scale was undertaken on site
at ORNL in June 2012. The test was performed using
Jaguar and was fairly successful, but, as expected, pointed
out a few modifications that were needed. Some minor
modifications were needed to clean up reservations correctly
with some additional tweaks needed to support interactive
jobs. We continued the debugging cycle by running the new
batch architecture on two of our Cray test and development
systems (TDS) at ORNL.

A. Early Experiences on Gaea

The National Climate-Computing Research Center
(NCRC) at Oak Ridge National Laboratory houses and
operates high performance computing resources for the

National Atmospheric and Oceanic Administration (NOAA)
and its research partners. NCRC’s flagship system is named
Gaea, after the Greek goddess of earth. Gaea was delivered
and upgraded in phases, ultimately culminating in two
production partitions with a combined peak performance of
1.1 petaflops.

In July of 2012, the “c1” partition of Gaea was upgraded
from a Cray XT6 system with the SeaStar interconnect and
AMD “Magny Cours” processors to a Cray XE6 system with
the Gemini interconnect and AMD “Interlagos” processors.
The previous system used TORQUE 2.5.x. Moab was setup
in a grid; there was a central Moab that made scheduling
decisions and an instance of Moab on c1 that interfaced
with ALPS. The hardware upgrade also required an oper-
ating system software upgrade, and it was determined that
TORQUE version 4.1 should be installed and tested.

At the time, version 4.1.0 was the latest release available.
Several important bugs had already been identified and fixed,
so ORNL decided to pull souce from the 4.1-fixes branch in
subversion. Installation and initial testing were successful,
but it wasn’t long before problems were discovered.

The first problem encountered in the acceptance test was
missing PBS O * environment variables. The acceptance
harness used variables such as PBS O WORKDIR to setup
the correct environment prior to running a job. When those
were missing, the jobs would fail.

The most severe bug found early on was related to
improper handling of environment variables. When variables
were set without values, the qsub command would segfault
and fail to submit the job. Also, variable values that con-
tained comma or newline characters would be incorrectly
split and sent to the environment as multiple variables.
This behavior was not obvious at first glance, but it was
causing an acceptance application to fail due to a missing
environment variable that increased the thread stack size.

TORQUE 4.0 included a major architectural change: the
pbs server was made multi-threaded. While this is essential
for performance and scaling, it also introduces the possibility
of race conditions and deadlocks. Although the developers
were careful in their implementation, several deadlocks were
experienced.

Another bug caused Cray jobs to fail when the pbs server
was restarted. It was due to Cray nodes not being present
when the jobs were being recovered. X11 forwarding in
interactive jobs was not working correctly, preventing the
use of debuggers and GUI frontends. A problem was also
encountered where trying to delete a running job in the Cray
environment failed. The server was trying to communicate
with the cray compute node instead of the login node that
was running the job script.

As each major bug impacting system operation was
identified and fixed, ORNL pulled the latest source from
subversion and ran with that. TORQUE version 4.1.1 was
released on August 30, 2012, but there were no significant



relevant fixes above the version already in production. In late
October, the Gaea environment moved to TORQUE version
4.1.3. This version contained several fixes, including several
patches developed at ORNL.

B. Experiences on Titan

While Jaguar never ran the new architecture aside from
the beta test shot, Titan began its life in September 2012
running the new design. While many of the issues inherent in
a new design had already been discovered and fixed during
the beta, subsequent use on the TDSs, and production on
Gaea; the Titan acceptance team put the new software stack
through its paces at scale for true production. This transition
also provided a new opportunity to externalize both Moab
and TORQUE servers from the Cray platform to provide job
access for users even when the Cray was unavailable. Two
fundamental changes at once is generally not a good idea,
but all in all, things have went fairly well.

Overwhelmingly, the primary problem that has been seen
on Titan is deadlocks in the TORQUE server. Threading
the version 4 TORQUE server is clearly a step in the right
direction, but it has come with some growing pains. A
deadlocked TORQUE server causes issues for the entire
batch system from simple job submission failure to a hung
or at least very slow Moab server. Primarily due to the
fact that the end users were seeing job submission failures,
a script was created early in the acceptance period which
first determined the TORQUE server was deadlocked, gdb
attached to the server and generated a core file, and then
restarted the server. By running this script on a regular
schedule via cron, the pain felt by the users became much
more bearable until the deadlocks were found and fixed.
Through the efforts of both ORNL and Adaptive staff, all
known deadlocks have been fixed, and the batch system is
running well at this point.

The transition to an external Moab and TORQUE server
has certainly been well received by the users. Having the
ability to manipulate jobs when the Cray is unavailable
provides the user with everything needed for the job process
except the actual execution. Some effort had to be devoted
to finding a TORQUE server bug that prevented this from
working, but that has now been fixed as well.

Again, the transition to the new architecture and the
external servers has been a success in spite of a few
growing pains. Ultimately, the users have seen benefits from
both better synchronization with ALPS and the ability to
manipulate jobs while the Cray itself is unavailable.

VI. FUTURE WORK

Work is ongoing to improve the quality of TORQUE.
Unit testing coverage is improving, and it will continue to
improve over time. The TORQUE 4.2 series moved from a
C compiler to a C++ compiler, giving access to additional
language constructs as well as the Standard Template Library

(STL). Over time, some of the one-off TORQUE implemen-
tations of standard data structures will be replaced with their
counterparts from the STL. Work is ongoing to improve
large job start time and implement hostlist compression.
Additionally, there will be improvement on the Cray-specific
features. Some specific ideas include:

• Additional logging of interactions between TORQUE
and ALPS, including full XML at high log levels

• Taking advantage of new features in higher ALPS
BASIL versions, such as inventory changecount and
reservation release claim count. Version 1.3 supports
additional granularity for thread placement.

• More robust handling of reservation IDs and orphan
handling

VII. CONCLUSION

TORQUE’s quality has been somewhat spotty over the last
year as major architectural changes have been implemented.
Thanks to the diligent work of the TORQUE developers and
the community input, TORQUE has significantly improved.

Cray’s ALPS software is very unique, and it requires batch
systems to add special support to interoperate. Adaptive’s
original design that interfaced with ALPS from Moab was
effective, but the new TORQUE-based ALPS integration
is more straightforward and higher performing. The new
software provides benefits that are highly visible to end-
users.

ACKNOWLEDGMENT

The authors would like to thank the TORQUE developers
as well as the TORQUE community for constantly improv-
ing TORQUE.

REFERENCES

[1] M. Karo, R. Lagerstrom, M. Kohnke, and C. Albing, “The
application level placement scheduler,” Cray User Group, pp.
1–7, 2006.


