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Abstract—Given the growing popularity of accelerator-based
supercomputing systems, it is beneficial for applications soft-
ware programmers to have cognizance of the underlying
platform and its workings while writing or porting their
codes to a new architecture. In this work, the authors high-
light experiences and knowledge gained from porting such
codes as ENZO, H3D, GYRO, a BGK Boltzmann solver,
HOMME-CAM, PSC, AWP-ODC, TRANSIMS, and ASCAPE
to the Intel Xeon Phi architecture running on a Cray CS300-
ACTMCluster Supercomputer named Beacon. Beacon achieved
2.449 GFLOP/W in High Performance LINPACK (HPL) testing
and a number one ranking on the November 2012 Green500
list [1]. Areas of optimization that bore the most performance
gain are highlighted, and a set of metrics for comparison
and lessons learned by the team at the National Institute
for Computational Sciences Application Acceleration Center
of Excellence is presented, with the intention that it can give
new developers a head start in porting as well as a baseline
for comparison of their own code’s exploitation of fine and
medium-grained parallelism.
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I. INTRODUCTION

Given the growing popularity of accelerator-based super-
computing systems, it is beneficial for applications software
programmers to have cognizance of the underlying platform
and its workings while writing or porting their codes to a
new architecture [2]. This is becoming even more relevant
with the variety of “accelerator” architectures available today
which include GPGPUs, Intel R© Xeon PhiTM s, FPGAs,
and a plethora of other choices. In this work, the authors
highlight experiences and knowledge gained from porting
such codes as ENZO, H3D, GYRO, a BGK Boltzmann
solver, HOMME-CAM, PSC, AWP-ODC, TRANSIMS, and

Figure 1: The Intel Xeon Phi Coprocessor’s Wide Vector
Unit [5]

ASCAPE to the Intel R© May Integrated Core (MIC) architec-
ture running on a Cray CS300-ACTMCluster Supercomputer
named Beacon.

One reason why the Intel Xeon Phi coprocessor is chosen
for this work is that the lessons learned on it regarding
vectorization and memory alignment, among other things,
apply directly not just to other architectures but also to
bolstering performance on the Intel R© Xeon R© CPU itself.
For instance, while the vector width on an Intel Xeon Phi
is twice that of an Intel Xeon (512 bits vs 256 bits), the
method of harnessing the fused multiply add functionality
along with the vector processing functionality can still yield
eight times the performance on the Intel Xeon (and sixteen
times the performance on the Intel Xeon Phi ). For more
information on how this vector processing works, please see
Figure 1.

Additionally, the Intel MIC architecture is x86 based,
which means that third party libraries and conventional
languages port directly to the architecture, though further
optimization might be necessary to achieve the best per-
formance. This also allows users to run natively on the
Intel Xeon Phi itself, saving the need for using the PCIe
bus to transfer “kernels” over to the accelerator causing



Figure 2: The Intel Xeon Phi Coprocessor within System
Architecture [5]

Figure 3: The Intel Xeon Phi Coprocessor On-Chip Archi-
tecture [5]

latency over the bus to often outstrip the gains made with
the extra threads and cores of the Intel Xeon Phi (see
Figure 2 for full schematic of architecture). While this
offload method can still be employed where it has been
optimized on the Intel Xeon Phi , it is not the only model.
In fact, a heterogeneous approach with the Intel Xeon Phi
and Intel Xeon working simultaneously on different facets
of the problem and likely even employing hybrid MPI and
OpenMP parallelism seems to be one of the most promising
paths for applications programmers and uses the Intel Xeon
Phi to its greatest potential. The Intel Xeon Phi even has
an On Chip Interconnect (OCI) which allows MPI tasks to
be run across cores on the card along with threading (see
Figure 3.

II. THE BEACON PROJECT

Beacon, an experimental cluster within the University of
Tennessee Application Acceleration Center of Excellence
(AACE), was funded through a NSF Strategic Technolo-
gies for Cyberinfrastructre (STCI) grant and the State of
Tennessee. Beacon was first deployed in a 16 node cluster
with two MICs per node in August 2012. In April 2013,
the production Beacon machine was deployed, consisting

Figure 4: The Beacon Project System Specifications

of 48 compute nodes, 6 I/O nodes, 2 login nodes, and a
management node (see Figure 4). Each compute node is
based on two dual socket Intel Xeon E5-2670 processors
(with 256 GB of RAM) and four Intel Xeon Phi 5110P
coprocessors, each having 8 GB of memory. Beacon has
an FDR InfiniBand interconnect providing 56 Gb/s of bi-
directional bandwidth and contains 960 GB of SSD storage
per node; each I/O node provides access to an additional 4.8
TB of SSD storage. In total, Beacon has 768 conventional
cores and 11,520 coprocessor cores that provide over 210
TFLOP/s of combined computational performance, 12 TB of
system memory, 1.5 TB of coprocessor memory, and over 73
TB of SSD storage. This cluster is being used to prepare NSF
application teams and their applications for future systems
based on the Intel MIC architecture.

Additionally, Beacon has proven to be tops in the category
of green computing, which is one reason for the push be-
hind accelerator/coprocessor technologies. In October 2012,
Beacon achieved 2.449 GFLOP/W in High Performance
LINPACK (HPL) testing and a number one ranking on the
November 2012 Green500 list [1]. This represents a large
step forward in green computing from previous BlueGene
systems as well as an obvious call for programmers to em-
ploy accelerator and coprocessor friendly coding paradigms.

III. PORTED AND OPTIMIZED APPLICATIONS

The following applications have been being ported and
optimized over the first year of the Beacon project by
Dr. Robert Harkness (ENZO); Dr. Homayun Karimabadi
(H3D); General Atomics, Dr. Mark Fahey and Dr. Vincent



Figure 5: ENZO-R Thread Scaling vs walltime on an Intel
Xeon Phi Coprocessor running in Native Mode with 16 MPI
ranks

Betro (GYRO); Ryan Hulguin and Rob VanDerWingaart
(Boltzmann BGK). They represent a variety of optimizations
including hybrid MPI/OpenMP parallelism, MPI over the
coprocessor OCI, and memory alignment.

A. Enzo

The Enzo multi-physics hydrodynamic astrophysical code
is a freely-available, community-developed adaptive mesh
refinement simulation routine, designed for rich calculations
[6]. The Enzo code used in this paper was ported and
optimized for the Intel Xeon Phi Coprocessor by Dr. Robert
Harkness of the University of California at San Diego before
his untimely passing in January 2013 from a short bout with
cancer at age 56 [15].

Despite Enzo being over 1 million lines of code, it was
instantly ported to the Intel Xeon Phi with a simple addition
of “-mmic” to the compile line. Also, it was able to use
the HDF5 and HYPRE libraries that had been compiled
for the Intel Xeon Phi in the same manner. Then, hybrid
MPI/OpenMP parallelism was added in several routines,
allowing for scalability and optimization for the Intel Xeon
Phi .

By using multiple MPI tasks per processor and several
threads per MPI rank, Enzo was shown to scale well as
threads were increased, especially for larger problem sizes.
Information about zones/second and walltimes at each thread
count for each case run on 16 MPI ranks on one Intel Xeon
Phi coprocessor can be found in Figures 5 and 6.

B. H3D

The H3D magneto hydrodynamics code used in this
publication was ported and optimized by Dr. Homayun
Karimabadi at the University of California at San Diego

Figure 6: ENZO-R Thread Scaling vs zones/second on an
Intel Xeon Phi Coprocessor running in Native Mode with
16 MPI ranks

[7]. This was again done simply with adding “-mmic” to
the compile line and running in MPI across the OCI on the
Intel Xeon Phi coprocessor.

H3D is used in global modeling of solar wind interaction
with the Earth‘s magnetosphere. Currently global simula-
tions are generally based on single-fluid magnetohydrody-
namics (MHD). MHD simulations are useful in studies
of the global dynamics of the magnetosphere in so far
as predicting substorms and other global events. However,
spacecraft observations have established that most critical
plasma processes regulating mass and energy transfer in the
magnetosphere take place at thin boundaries/discontinuities
between regions of geospace where ion kinetic effects con-
trol the physics. Thus, it is desirable to retain the full ion
kinetic effects while treating the electrons as fluid, which
requires massively parallel computing; this is what H3D is
designed to do.

Fortunately, H3D scales nearly perfectly when run in
native MPI across the OCI of an Intel Xeon Phi as seen
in Figure 7. The problem can then be further decomposed
across Intel Xeon Phi coprocessors to make the largest of
simulations a possibility.

C. GYRO

The Gyro tokamak plasma simulation code used in this
paper has been optimized by the team at General Atomics
as well as Dr. Vincent Betro and Dr. Mark Fahey at the
National Institute for Computational Sciences (NICS). Gyro
was ported through the simple addition of the “-mmic”
compiler flag and optimized through the use of hybrid
MPI/OpenMP parallelism, and it only required the netcdf
and fftw/2.1.5 libraries to be recompiled for the Intel Xeon



Figure 7: Scaling of the H3D code run in native mode on
the Intel Xeon Phi coprocessor

Phi , since MKL was available for the normal calls to libsci
or tpsl.

Gyro numerically simulates tokamak plasma microturbu-
lence. It computes the turbulent radial transport of particles
and energy in tokamak plasmas and solves 5-D coupled
time-dependent nonlinear gyrokinetic Maxwell equations
with gyrokinetic ions and electrons. To do so, it utilizes
second-order implicit-explicit Runga-Kutta integration with
a fourth-order, explicit Eulerian algorithm. It can operate as a
flux-tube (local) code, or as a global code, with electrostatic
or electromagnetic fluctuations [4].

The MPI only scaling of Gyro seen in Figure 8 shows that
the speed of the Intel Xeon still far outweighs the number
of cores on the Intel Xeon Phi in so far as time to solution;
this is because the clock speeds of the cores of the Intel
Xeon (2.6 GHz) currently cannot be matched by the Intel
Xeon Phi (1.053 GHz). However, due to memory bandwidth
limitations that occur when packing 16 MPI ranks onto the
full 16 cores of Intel Xeon available, the Intel Xeon scaling
does not continue on the same trajectory as the Intel Xeon
Phi scaling does. So, the addition of more threads and better
vectorization to utilize those threads could yield walltimes
that are shorter than those observed for the same number of
MPI ranks on the Intel Xeon , just with less threads being
used on the Intel Xeon due to chip size limitations. This will
be the subject of future work on optimizing the Gyro code,
and one can see preliminary hybrid MPI/OpenMP results for
scaling on Intel Xeon Phi in Figure 9.

Figure 8: Number of time steps per second versus number
of MPI ranks for Gyro runs on the Intel Xeon Phi and Intel
Xeon on Beacon

Figure 9: Number of time steps per second versus number
of threads for Gyro runs on 64 and 128 MPI ranks on four
Intel Xeon Phi coprocessors

D. BGK Boltzmann Solver

The version of the Boltzmann BGK solver was opti-
mized by Ryan Hulguin (NICS) and Rob VanDerWingaart
(Intel), and it gets its speed from vector alignment (use
of #pragma SIMD and #pragma IVDEP), precision
switching, and low thread overhead as is seen in a previous
paper by the authors [9].

The Boltzmann BGK solver is a computational fluid dy-
namics solver based on the BGK model Boltzmann equation.
The BGK model Boltzmann equation is typically used to
solve non-continuum rarefied gas flow where the continuum
assumptions of the Navier-Stokes equations break down. The
BGK model Boltzmann equation could have hundreds of
thousands of state variables that need to be solved at each



Figure 10: Walltime versus number of threads for BGK
Boltzmann solver on one Intel Xeon Phi and one Intel Xeon
on Beacon

grid point, making it a great candidate for vectorization and
acceleration.

In this case, the solver was run on one Intel Xeon Phi
with differing numbers of threads. All runs were run with
KMP_AFFINITY="balanced". The physical case (which
is a canonical CFD case) has the right plate moving and the
left plate stationary and runs until the Argon gas in between
the plates reaches a steady state, which was considered to
be when the residual reached 10−6, which is approximately
30 pseudotimesteps.

As one can see, the best results were achieved when
approximately three threads per core were used, likely due to
the “balanced” logical core mapping giving enough wiggle
room for OS activity and memory latency to be obscured.
Additionally, the wide vector unit, fused multiply add func-
tionality, and single precision intrinsics were employed to
their fullest extent to get full performance out of the Intel
Xeon Phi . By doing these types of optimizations, the Intel
Xeon Phi was able to finish the computation faster than
the Intel Xeon by approximately 0.1 second at high thread
counts, as is seen in Figure 10, which shows the potential
for speed up if the coprocessor is used to its fullest extent.

IV. CODES PORTED SIMPLY THROUGH COMPILATION

It is a worthy discussion to briefly mention the following
codes which were ported to the Intel Xeon Phi simply by
adding “-mmic” to the compile line and recompiling third
party libraries using the “-mmic” compiler flag. This shows
the simplicity of porting, and it is inferred that the speedups
that are mentioned were garnered from simply recompiling
without optimization. A summary of these speedups can be
seen in Table I.

A. HOMME-CAM

The High Order Method Modeling Environment
(HOMME) is a scalable, global hydrostatic atmospheric

Table I: Scaling for Unoptimized Codes on one Intel Xeon
Phi on Beacon

Code MPI Ranks Walltime Speed Up % Peak

HOMME-CAM 32 82.65 s —- —-

HOMME-CAM 64 54.91 s 1.51 76%

PSC 16 894.41 s —- —-

PSC 32 679.58 s 1.32 66%

AWP-ODC 32 932 s —- —-

AWP-ODC 64 524 s 1.78 89%

AWP-ODC 128 287 s 3.25 81%

TRANSIMS 1 5904 s serial —-

ASCAPE 1 30.197 s serial —-

modeling framework [10], [11]. HOMME-CAM is
integrated into the Community Atmospheric Model (CAM),
the atmospheric component of the Community Climate
System Model (CCSM). HOMME-CAM relies on a
cubed-sphere grid, where the planet Earth is tiled with
quasi-uniform quadrilateral elements, free from polar
singularities. HOMME-CAM is the first ever dynamic code
to allow for full two-dimensional domain decomposition in
CAM. This was run on Beacon as 32 and 64 MPI ranks on
one Intel Xeon Phi , and it achieved 76% efficiency using
the OCI on the Intel Xeon Phi .

B. PSC

PSC is a particle-in-cell (PIC) code developed by Dr.
Kai Germascshewski at the University of New Hampshire
that simulates plasma kinetics by solving the collisionless
Vlasov-Maxwell PDE (or, with its collision operator, the
weakly collisional Fokker-Planck-Maxwell system which
describes weakly-coupled, classical plasmas) by tracking
the motion of a group of macroparticles (each of which
simulates a large number of physical particles). Then, the
electric currents due to the macroparticles are summed and
the electric and magnetic fields are evolved. Particle posi-
tions are updated using the relativistic equations of motion,
with particle acceleration specified by the Lorentz force. A
Boris-type method in the momentum update ensures that
the magnetic field does no work on the particle (to machine
precision). The current density is calculated from the charge
densities before and after the appropriate position update
for each particle in a way that exactly satisfies the discrete
continuity equation for charge and current. Fields are then
advanced using Maxwells equations and are represented
on a staggered Yee grid to maintain the divergence-free
constraint of the magnetic field. PSC implements a collision
operator, following a classical Monte-Carlo method, wherein
the operator simulates binary collisions, and random pairs
of particles are selected to represent the full ensemble of
collisions.



PSC is currently written mainly in C99, with some op-
tional modules still available in the original Fortran 90, and
it relies only on parallel HDF5 and MPI external libraries
[8]. When run on Beacon at 16 MPI ranks and 32 MPI ranks
on one Intel Xeon Phi coprocessor, it saw a speedup of 1.32,
yielding 66% efficiency.

C. AWP-ODC

The Anelastic Wave Propagation (AWP-ODC) code sim-
ulates dynamic rupture and wave propagation during an
earthquake. Dynamic rupture creates friction, traction, slip,
and slip rate information on the fault, and the moment
function is created from fault data and used to initialize
wave propagation. A finite difference, staggered-grid scheme
is used to approximate the 3D velocity-stress elastodynamic
equations. Dynamic rupture may be modeled with the Stress
Glut (SG) or the Staggered Grid Split Node (SGSN) method,
and there are two available external boundary conditions that
minimize artificial reflections back into the computational
domain: the absorbing boundary conditions (ABC) of Cerjan
and the Perfectly Matched Layers (PML) of Berenger. AWP-
ODC is written in Fortran 77 and Fortran 90 and utilizes MPI
and MPI-IO. [12]

On Beacon, AWP-ODC was used to solve a 3D problem
of size 512×512×512 using processor topologies of 4×4×2,
4×4×4, 4×4×8 for 32, 64, and 128 MPI ranks, respectively.
Of the run time, an average of 2% was spent in point-to-
point communication and an average of 13% was spent in
collective communication.

D. TRANSIMS

The Transportation Analysis and Simulation System
(TRANSIMS) is an agent-based cellular automata model that
creates activity-based travel demand models by individually
monitoring several drivers’ decisions over the course of
a simulation and tracking the routes each driver traverses
over the network. The physical act of driving is simulated
by having driver agents progress through a series of cells,
wherein if a vehicle is already in the approaching cell, traffic
jams and congestion can result and be modeled as two cars
cannot occupy the same space. [13]

The code is written in serial C++, though a parallel version
in MPI is expected soon, and the specific run was based on
a traffic model for Alexandria, VA. The main purpose of
discussing this serial code is that it is still portable to the
Intel Xeon Phi .

E. ASCAPE

Ascape is a Java code for developing and exploring all-
purpose agent-based models which offers a broad array of
modeling and visualization tools, which were inactive for
the runs on Beacon to save wall time that would be used for
X forwarding [14]. The model which was run on Beacon
was a canonical social science model called“The Prisoner’s

Dilemma,” wherein cooperation is rewarded but not always
chosen despite this fact. The results show how the decisions
of individual agents affect those of others based on proximity
and several other factors.

Ascape was run for 200,000 iterations with 100 agents,
a mutation rate 0.2, and the display set to off. The main
reason for mentioning Ascape is that it is a non-traditional
HPC tool that runs in an interpreted language. This is still
compatible with the Intel Xeon Phi , so long as one has a
version of Java compiled for the Intel Xeon Phi .

V. CONCLUSIONS AND FUTURE WORK

It is clear that accelerator based systems are the wave
of the future based both on their power consumption and
variety of programming paradigms to fit the needs of all
applications developers. In order to get the most out of this
hardware, programmers must be aware of where there code
is spending the most time so they may optimize this area;
this can be determined through profiling tools and scaling
studies, such as this one. In this study, areas of optimization
that bore the most performance gain were highlighted, and
a set of metrics for comparison and lessons learned by the
team at AACE were presented, with the intention that it can
give new developers a head start in porting as well as a
baseline for comparison of their own code’s exploitation of
fine and medium-grained parallelism.

The most beneficial optimizations noted in this work were
the use of hybrid MPI/OpenMP coding, which allows the
fast context switching of the Intel Xeon Phi , along with
its massive number of threads (240), to be utilized most
effectively. Also, vector memory alignment and the use
of #pragma SIMD and #pragma IVDEP allowed the
Boltzmann BGK solver to beat the performance of Intel
Xeon with two and a half times faster cores on an Intel
Xeon Phi . Finally, the use of thread affinity to assure that
memory access is as even as possible between threads and
that all cores of the Intel Xeon Phi are being utilized was
found to be important in achieving maximum performance.
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