
Larry Pezzaglia
NERSC Computational Systems Group
lmpezzaglia@lbl.gov

CUG 2013 (May 9, 2013)

Mendel at NERSC:

Multiple Workloads
on a Single Linux

Cluster

I Located at LBNL, NERSC is the production
computing facility for the US DOE Office of Science

I NERSC serves a large population of ~5000 users,
~400 projects, and ~500 codes

I Focus is on “unique” resources:
I Expert computing and other services
I 24x7 monitoring
I High-end computing and storage systems

I NERSC is known for:
I Excellent services and user support
I Diverse workload

Snapshot of NERSC

- 2 -

I Hopper: Cray XE6, 1.28 PFLOPS
I Edison: Cray XC30, > 2 PFLOPS once installation is

complete
I Three x86_64 midrange computational systems:

I Carver: ~1000 node iDataPlex; mixed parallel and
serial workload; Scientific Linux (SL) 5.5;
TORQUE+Moab

I Genepool: ~400 node commodity cluster
providing computational resources to the DOE JGI
(Joint Genome Institute). Mixed parallel and serial
workload; Debian 6; Univa Grid Engine (UGE)

I PDSF: ~200 node commodity cluster for High
Energy Physics and Nuclear Physics; exclusively
serial workload; SL 6.2 and 5.3 environments; UGE

NERSC Systems

- 3 -

I Each midrange system needed expanded
computational capacity

I Instead of expanding each system individually,
NERSC elected to deploy a single new hardware
platform (“Mendel”) to handle:

I Jobs from the “parent systems” (PDSF, Genepool,
and Carver)

I Support services (NX and MongoDB)
I Groups of Mendel nodes are assigned to a parent

system
I These nodes run a batch execution daemon that

integrates with the parent batch system
I Expansion experience must be seamless to users:

I No required recompilation of code (recompilation
can be recommended)

Midrange Expansion

- 4 -

Approaches

- 5 -

I One option: Boot Mendel nodes into modified
parent system images.

I Advantage: simple boot process
I Disadvantage: Many images would be required:

I Multiple images for each parent compute system
(compute and login), plus images for NX, MongoDB,
and Mendel service nodes

I Must keep every image in sync with system policy
(e.g., GPFS/OFED/kernel versions) and site policy
(e.g., security updates):

I Every change must be applied to every image
I Every image is different (e.g., SL5 vs SL6 vs Debian)
I All system scripts, practices, and operational

procedures must support every image

I This approach does not scale sufficiently from a
maintainability standpoint

Multi-image Approach

- 6 -

I A layered model requiring only one unified boot
image on top of a scalable and modular hardware
platform

I Parent system policy is applied at boot time
I xCAT (eXtreme Cloud Management Toolkit) handles

node provisioning and management
I Cfengine3 handles configuration management
I The key component is CHOS, a utility developed at

NERSC in 2004 to support multiple Linux
environments on a single Linux system

I Rich computing environments for users separated
from the base OS

I PAM and batch system integration provide a
seamless user experience

NERSC Approach

- 7 -

Unified Mendel Hardware Platform

Unified Mendel Base OS

Add-ons

PDSF
Add-ons

PDSF
xCAT Policy

PDSF
Cfengine Policy

PDSF
UGE

PDSF
sl62

CHOS

PDSF
sl53

CHOS

PDSF
SL 6.2
Apps

PDSF
SL 5.3
Apps

Genepool
Add-ons

Genepool
xCAT Policy

Genepool
Cfengine Policy

Genepool
UGE

Genepool
Compute

CHOS

Genepool
Login
CHOS

Genepool
Debian 6

Apps

Genepool
Debian 6

Logins

Carver
Add-ons

Carver
xCAT Policy

Carver
Cfengine Policy

Carver
TORQUE

Carver
Compute

CHOS

Carver
SL 5.5
Apps

Hardware/
Network

Base
OS

Boot-time
Differentiation

CHOS

User
Applications

The Layered Model

- 8 -

Implementation

- 9 -

I Vendor: Cray Cluster Solutions (formerly Appro)
I Scalable Unit expansion model

I FDR InfiniBand interconnect with Mellanox SX6518
and SX6036 switches

I Compute nodes are half-width Intel servers
I S2600JF or S2600WP boards with on-board FDR IB
I Dual 8-core Sandy Bridge Xeon E5-2670
I Multiple 3.5” SAS disk bays

I Power and airflow: ~26kW and ~450 CFM per
compute rack

I Dedicated 1GbE management network
I Provisioning and administration
I Sideband IPMI (on separate tagged VLAN)

Hardware

- 10 -

I Need a Linux platform that will support IBM GPFS
and Mellanox OFED

I This necessitates a “full-featured” glibc-based
distribution

I Scientific Linux 6 was chosen for its quality,
ubiquity, flexibility, and long support lifecycle

I Boot image is managed with NERSC’s image_mgr,
which integrates existing open-source tools to
provide a disciplined image building interface

I Wraps xCAT genimage and packimage utilities
I add-on framework for adding software at boot-time
I Automated versioning with FSVS

I Like SVN, but handles special files (e.g., device
nodes)

I Easy to revert changes and determine what
changed between any two revisions

I http://fsvs.tigris.org/

Base OS

- 11 -

http://fsvs.tigris.org/

I Cfengine rules are preferred
I They apply and maintain policy (promises)
I Easier than shell scripts for multiple sysadmins to

understand and maintain
I xCAT postscripts

I Mounting local and remote filesystems
I Changing IP configuration
I Checking that BIOS/firmware settings and disk

partitioning match parent system policy
I image_mgr add-ons add software packages at boot

time
I Essentially, each add-on is a cpio.gz file,

{pre-,post-}install scripts, and a MANIFEST file

Node Differentiation

- 12 -

I CHOS provides the simplicity of a “chroot”
environment, but adds important features.

I Users can manually change environments
I PAM and Batch system integration

I PAM integration CHOSes a user into the right
environment upon login

I Batch system integration: SGE/UGE
(starter_method) and TORQUE+Moab/Maui
(preexec or job_starter)

I All user logins and jobs are chroot’ed into /chos/, a
special directory managed by sysadmins

I Enabling feature is a /proc/chos/link contextual
symlink managed by the CHOS kernel module

I Proven piece of software: in production use on
PDSF (exclusively serial workload) since 2004.

CHOS

- 13 -

/chos/ when CHOS is not set:

/chos/bin → /proc/chos/link/bin → /bin/
/chos/etc → /proc/chos/link/etc → /etc/
/chos/lib → /proc/chos/link/lib → /lib/
/chos/usr → /proc/chos/link/usr → /usr/
/chos/proc → /local/proc/
/chos/tmp → /local/tmp/
/chos/var → /local/var/
/chos/dev/ # Common device nodes
/chos/gpfs/ # Mountpoint for a shared filesystem
/chos/local/ # Mountpoint for the real root tree

/chos/

- 14 -

/chos/ when CHOS is sl5:

/chos/bin → /proc/chos/link/bin → /os/sl5/bin/
/chos/etc → /proc/chos/link/etc → /os/sl5/etc/
/chos/lib → /proc/chos/link/lib → /os/sl5/lib/
/chos/usr → /proc/chos/link/usr → /os/sl5/usr/
/chos/proc → /local/proc/
/chos/tmp → /local/tmp/
/chos/var → /local/var/
/chos/dev/ # Common device nodes
/chos/gpfs/ # Mountpoint for a shared filesystem
/chos/local/ # Mountpoint for the real root tree

/chos/

- 15 -

/chos/ when CHOS is deb6:

/chos/bin → /proc/chos/link/bin → /os/deb6/bin/
/chos/etc → /proc/chos/link/etc → /os/deb6/etc/
/chos/lib → /proc/chos/link/lib → /os/deb6/lib/
/chos/usr → /proc/chos/link/usr → /os/deb6/usr/
/chos/proc → /local/proc/
/chos/tmp → /local/tmp/
/chos/var → /local/var/
/chos/dev/ # Common device nodes
/chos/gpfs/ # Mountpoint for a shared filesystem
/chos/local/ # Mountpoint for the real root tree

/chos/

- 16 -

I CHOS starter_method for UGE enhanced to
handle complex qsub invocations with extensive
command-line arguments (e.g., shell redirection
characters)

I UGE qlogin does not use the starter_method.
Reimplemented qlogin in terms of qrsh

I TORQUE job_starter was only used for the
launch of the first process of a job, not for
subsequent processes through Task Manager (TM)

I All processes need to run inside the CHOS
environment

I NERSC developed a patch to pbs_mom to use the
job_starter for processes spawned through TM

I Patch accepted upstream and is in 4.1-dev branch

CHOS Challenges

- 17 -

Base OS Image Management

- 18 -

I We needed an alternative to “traditional” image
management:

1. genimage (xCAT image generation)
2. chroot...vi...yum
3. packimage (xCAT boot preparation)
4. Repeat steps 2 and 3 as needed

I The traditional approach leaves sysadmins without
a good understanding of how the image has
changed over time.

I Burden is on sysadmin to log all changes
I No way to exhaustively track or roll back changes
I No programmatic way to reproduce image from

scratch

Image Management

- 19 -

I New approach: rebuild the image from scratch
every time it is changed

I image_mgr makes this feasible
I We modify the image_mgr script, not the image

I Standardized interface for image creation,
manipulation, analysis, and rollback.

I Automates image rebuilds from original RPMs
I Images are versioned in a FSVS repository
I “release tag” model for switching the production

image

image_mgr

- 20 -

/...The root directory of the repository

netboot/

SL6.3/..OS version

x86_64/...Architecture

mendel-core.prod/...........................Image name

tags/

2013-03-01-14-13-45-RELEASE-by-user/

rootimg/

add-ons/

kvm/

build-info/

image_mgr.shThe build script

statsBuild statistics

2013-02-27-11-10-02-RELEASE-by-user2/

trunk/

FSVS layout

- 21 -

image_mgr supports several subcommands: create,
tag, list-tags, and pack

I create: Build a new image and commit it to trunk/
(uses xCAT genimage and FSVS):

image_mgr create -p mendel-core.prod -o SL6.3 -a
x86_64 -m "Test build" -u user1

I tag: Create a new SVN tag of trunk/ at the current
revision, marking it as a potential production
release

image_mgr tag -p mendel-core.prod -o SL6.3 -a
x86_64 -u user1

image_mgr

- 22 -

I list-tags: List all tags

image_mgr list-tags -p mendel-core.prod -o SL6.3 -a
x86_64

2013-03-01-14-13-45-RELEASE-by-user1
2013-02-27-11-10-02-RELEASE-by-user2
...

I pack: Pack a tag as the production image (uses
xCAT packimage)

image_mgr pack -p mendel-core.prod -o SL6.3 -a
x86_64 -t 2013-03-01-14-13-45-RELEASE-by-user1

image_mgr

- 23 -

Feedback for CCS

- 24 -

Several areas for improvement. CCS is actively
working with NERSC to improve.

I Hardware supply chain issues
I Delays getting parts from upstream vendor

I Proper cabling is essential when hundreds of
cables are involved. We need to be able to service
all equipment.

I 24x7 really means 24x7
I NERSC users work around the clock, weekends, and

holidays
I The system is never “down for the weekend”
I Any outage, planned or unplanned, is severely

disruptive to our users
I We need detailed timelines for all work requiring

downtimes

CCS Feedback

- 25 -

Conclusion

- 26 -

I Doug Jacobsen
I Extensive Genepool starter_method and qlogin

changes
I Nick Cardo and Iwona Sakrejda

I Constructive feedback on the image_mgr utility
I Shane Canon

I Original CHOS developer. Provided significant
guidance for the Mendel CHOS deployment

I Zhengji Zhao
I Early software tests on the Mendel platform.

I Brent Draney, Damian Hazen, Jason Lee
I Integration of Mendel into the NERSC network

I This work was supported by the Director, Office of Science, Office of
Advanced Scientific Computing Research of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231.

Acknowledgements

- 27 -

200 300 400

HT on; Turbo on

HT on; Turbo off

HT off; Turbo on

HT off; Turbo off

347.50

314.54

277.65

246.05

Per-node HEPSPEC06 scores on SL6
on dual Xeon E5-2670 servers with
64 GB RAM.

NAMD STMV benchmark (1,066,628 atoms, periodic, PME) on dual Xeon E5-2670,
128 GB RAM.

Data provided by Zhengji Zhao, NERSC User Services Group

Performance Data

- 28 -

I FSVS: http://fsvs.sf.net/

I xCAT: http://xcat.sf.net/

I Original CHOS paper:
I http://indico.cern.ch/getFile.py/access?contribId=476&sessionId=

10&resId=1&materialId=paper&confId=0

I 2012 HEPiX presentation about CHOS on PDSF:
http://www.nersc.gov/assets/pubs_presos/chos.pdf

I CHOS GitHub repository: https://github.com/scanon/chos/

I PDSF CHOS User documentation:
I http://www.nersc.gov/users/computational-systems/pdsf/

software-and-tools/chos/

Additional Resources

- 29 -

http://fsvs.sf.net/
http://xcat.sf.net/
http://indico.cern.ch/getFile.py/access?contribId=476&sessionId=10&resId=1&materialId=paper&confId=0
http://indico.cern.ch/getFile.py/access?contribId=476&sessionId=10&resId=1&materialId=paper&confId=0
http://www.nersc.gov/assets/pubs_presos/chos.pdf
https://github.com/scanon/chos/
http://www.nersc.gov/users/computational-systems/pdsf/software-and-tools/chos/
http://www.nersc.gov/users/computational-systems/pdsf/software-and-tools/chos/

I The layered Mendel combined cluster model
integrates a scalable hardware platform, xCAT,
Cfengine, CHOS, and image_mgr to seamlessly
support diverse workloads from multiple “parent”
computational systems and support servers

I Nodes can be easily reassigned to different parent
systems

I Separation between the user and sysadmin
environments, which can each be architected
exclusively for their intended uses

I While this approach introduces additional
complexity, it results in an incredibly flexible and
maintainable system

Conclusion

- 30 -

National Energy Research Scientific Computing Center

	Introduction
	Approaches
	Implementation
	Base OS Image Management
	Feedback for CCS
	Conclusion

