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Abstract—Flash storage and other solid-state storage technolo-
gies are increasingly being considered as a way to address the
growing gap between computation and I/O. Flash storage has
a number of benefits such as good random read performance
and lower power consumption. However, it has a number of
challenges too, such as high cost and high-overhead for write
operations. There are a number of ways Flash can be integrated
into HPC systems. This paper will discuss some of the approaches
and show early results for a Flash file system mounted on a
Cray XE-6 using high-performance PCI-e based cards. We also
discuss some of the gaps and challenges in integrating flash into
HPC systems and potential mitigations as well as new solid state
storage technologies and their likely role in the future.
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I. INTRODUCTION

The effective use of large HPC systems depends greatly on
the effectiveness of the I/O subsystem. While the performance
of HPC systems has increased by several orders of magnitude
over the last few years due to increases in the number of
compute cores, system scale, and the use of accelerators, the
I/O systems have largely failed to keep pace, resulting in a
gap between computing and I/O, which is made only more
prominent by the advent of data centric computing models
that require greater amounts of I/O. Additionally, application
I/O on HPC systems does not always conform to a steady,
streaming pattern and may involve bursts of reading or writing
which tax the ability of the storage subsystem to meet these
requirements. Increasing the performance of the I/O subsystem
cannot be simply done by using traditional methods of scaling
up spinning disk storage, and so the use of Flash and other
solid-state storage technologies are being considered.

The present costs of solid-state storage technologies makes
it impractical as a drop-in replacement for traditional spinning
disk storage and thus, any use of high-performance storage
will require software solutions to effectively utilize them in
conjunction with traditional lower-performant storage. The
integration of a I/O path utilizing Flash-based storage is still
evolving, although in general, one may consider the addition
of the Flash-based storage to be one more tier in a storage
hierarchy of the I/O subsystem of an HPC system.

In this paper, we discuss some of these approaches and
present one example of a proof-of-concept deployment of a

Lustre filesystem built on high-performance PCI-e-based Flash
storage cards on a Cray XE-6. The system is architected not as
a hierarchy with higher performing storage in the path to lower
performing storage, but instead presents Flash-based and Disk-
based filesystems to the compute nodes and explicitly migrates
data between the two. We start by providing an introduction
to Flash technology in Section II. In Section III, we provide a
potential architecture using Flash. In Section IV, we explore
the performance of the Flash-based storage and compare it to
a concurrently available traditional ”scratch” storage system.
We then discuss the use of Flash and provide a cost analysis
in Section V. We close with some final thoughts and ideas for
Future work.

II. FLASH STORAGE INTRODUCTION

A. Flash Technology
While it is beyond the scope of this paper to provide an

exhaustive background on Flash storage, it is useful to summa-
rize some of its important characteristics and their implications
[1]. Flash is a short-hand name for NAND Flash storage
which is currently the most ubiquitous form of Solid State
Storage (SSS). NAND has certain characteristics that make
it advantageous over disk storage such as fast random read
access and low-power consumption (especially for data at rest).
However, compared to volatile DRAM, it suffers from high
overhead for writes, since storage cells must first be erased
before storing new data. This erase cycle can take several
hundred microseconds to perform for a single block. Flash
also suffers from ”wear” which causes the storage cells to fail
after a certain number of erase-write cycles. The susceptibility
to wear varies between technologies. Traditionally enterprise
devices have used Single Level Cell (SLC) chips since they
can typically provide over 1000x more write cycles versus
multi-level cell (MLC) chips. However, increasingly vendors
are using MLC chips, which are cheaper, and relying on
more sophisticated logic to hide some of these differences.
Furthermore, as manufacturers move to newer fabrication
technologies with smaller feature sizes (i.e. from 32 nm to
19 nm) to increase capacity, the ability to reliably store data
is decreasing. As a result, device manufacturers must utilize
increasingly sophisticated logic to provide the same reliability
as previous generations of devices. New solid-state storage



technologies such as Phase Change Memory (PCM) [2] or
Memristor [3] could potential address many of the deficiencies
of NAND Flash (both reliability and write penalties). However,
these technologies have yet to reach large scale production.

Solid State Storage can be connected in a variety of methods
to a system. Solid State Disks (SSDs) are perhaps the most
common since they are often found in laptops and are increas-
ingly used in high-end server systems. SSDs come in different
grades (consumer versus enterprise) that typically vary in
interface (SATA versus SAS), sophistication of the controller
logic, and Flash technology (SLC versus MLC). When using
SSDs, the controller the drives are attached are critical since
they can become a performance bottleneck. The controllers
also typically cannot account for failure characteristics within
the SSD. For example, the controller cannot easily shift data
from failing cells on one SSD to another SSD. Instead the
controller must simply view the SSD as healthy or unhealthy.

Direct attached PCI-e devices are another class of Flash
storage. These devices are typically more expensive com-
pared to SSD solutions, but often offer higher IO rates,
more sophisticated logic that is closely integrated with the
Flash components, and higher bandwidth. In many high-end
PCI-e Flash devices, the Flash Translation Layer (FTL) is
programmed into a field-programmable gate array (FPGA).
This enables the algorithm and control logic to modified over
time. These algorithms are responsible for activities such as
“garbage collection”, balancing data across cells, and detecting
failing cells. The ability to change this logic is important since,
in many cases, the best methods are still being determined.

The PCI-e cards often employ techniques to hide the high
impact of erase-write cycles by maintaining a pool of erased
blocks that can store in-coming writes. However, once this
pool is exhausted, the device will slow down new writes while
it aggressively starts to prune the storage. This behavior can
be clearly seen in sustained write tests. Eventually, the devices
typically reach a steady-state where new blocks are pruned and
consumed at a consistent rate. A plot of this behavior is seen
in Fig 1.

B. Integration of Flash into HPC Systems
There are a number of ways that Flash can be integrated

into HPC system. One model is to place Flash locally on
each compute node. The Flash could be used either to extend
the memory hierarchy or as a local block storage device.
The later is the most prevalent today, although there is on-
going research exploring how to use Flash in the memory
hierarchy. The are several ways the local block based Flash
storage could be used. It could be treated as a swap device
(again to extend the available memory for applications), treated
as a local buffer cache, or aggregated into a distributed file
system. Research projects are exploring how to utilize Flash
as local buffer cache [4]. One approach would be to utilize
checkpointing libraries like SCR [5] which already support
using local storage to store checkpointing files. Aggregated
local Flash storage can be accomplished with distributed file
systems like Ceph [6] or GPFS using its recently developed
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Fig. 1. A plot of the write bandwidth of a full device over time. Initially pre-
erased blocks are used to provide a high burst rate. Eventually these blocks
are exhausted and blocks must be erased as they are consumed.

“shared nothing” model [7]. The biggest strength to integrating
Flash into the compute node design is that the bandwidth and
the capacity scale linearly with the system and it can reduce
the pressure on the global interconnect. This is one of the
reasons that frameworks like Hadoop have championed this
approach [8]. Extending the memory hierarchy also allows
Flash to address potential challenges with providing sufficient
memory for applications. However, these approaches depend
on the systems having support for Node-local Flash storage
which is infeasible with most of todays blade-form factor
based HPC systems.

Another approach is to place the Flash in the storage
hierarchy and rely on the storage server or an intelligent
controller to manage its use. There are storage products on
the market that provide this capability such as NetApp’s
SANtricity SSD Cache [9]. In addition, some local file systems
such as ZFS support using solid-state storage to accelerate
logging and ingest. This approach is interesting because it is
the most transparent to the application. If the controller is
virtualizing the Flash storage, even the file system layer may
not need to be altered to take advantage of the Flash storage.
However, the application and, potentially, the file system lose
some control over how the Flash is utilized which may limit
its effectiveness.

A final approach is to use the Flash as a discreet storage
pool or file system and rely on the application or a service to
migrate the data between the Flash storage and disk storage.
For example, an application would write checkpointing files
to the Flash storage, then trigger a background migration
process while it continues to perform calculations. At the
beginning of the next checkpointing cycle, it would need to
insure that the previous checkpoint was successfully migrated.
Alternatively, it could perform the migrations on some longer
cycle to conserve disk bandwidth. A modified version of this
approach would be to utilize some out of band migration
service that would be triggered through an API or semaphore



files. This could be tightly integrated into the file system or
could be implemented as middle-ware. Some of the advantages
to this approach is it can provide a high-level of flexibility on
how the Flash storage is used. It also lends itself to simple
implementations for exploration.

III. FLASH STORAGE ARCHITECTURE

The evaluation was carried out using a small Cray XE-
6 test development system (TDS). This system already has
a small external disk-based Lustre file system consisting of
a single Object Storage Server (OSS) serving four Object
Storage Targets (OSTs). The server is a single Dell R710
with two LSI 8600 storage arrays. The server is attached to
a Quad Data Rate InfiniBand network via a 4x host adapter.
Two Lustre Network (LNET) Routers bridge the XE-6 Gemini
network and the InfiniBand network.

The Flash storage was configured as a separate Lustre
file system. A total of four Virident tachIOn cards were
configured on two IBM x3650 M2 Westmere-based Object
Storage Servers. Each Virident card has around 400 GB of
SLC-class NAND storage and are capable of delivering around
1.1 GB/s of read and write bandwidth and 160k Read IO
operations per second.

Figure 2 shows a schematic of the architecture of the
evaluation system.
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Fig. 2. Architecture Diagram for Evaluation Configuration.

IV. PERFORMANCE OF FLASH VS. TRADITIONAL STORAGE

We ran two kinds of tests on the traditional and Flash based
storage: a standard I/O benchmark (IOR) [10] using POSIX
I/O to gauge the baseline performance of the filesystems and
a benchmark designed to mimic a workload composed of both
I/O and compute. This benchmark (called flashio), consists
of a simple matrix-matrix multiplication done several times in
a loop (the amount of computation is adjustable). Additionally,
the benchmark performs I/O (designed to mimic a checkpoint
operation) from each task to a designated filesystem. For the
case when the I/O is performed to the Flash storage, we have

a ”migrator” process running that moves the files out of Flash
storage into standard storage in the background (see Figure
2).

The migrator is a small program that runs continuously
in the background and checks to see if a specifically named
”semaphore” file is written, indicating that the checkpoint is
complete. If the file exists, the migrator moves the correspond-
ing ”checkpoint” file from the Flash storage into the disk-
based filesystem. In its current form, the migrator process
is a per-user migration tool and is currently only single
threaded and moves files one by one. There are several obvious
optimizations we can perform to improve the performance of
the migrator depending on the I/O requirements of the users
of the Flash storage – for example, by multithreading the
program, addition of the ability to specify locations to move at
job run-time and make the migrator a more generic program
not requiring user intervention.

The migrator process can run on any node that has access
to both the Flash and the disk-based filesystems. In this case,
we ran it on an ”external” login node of the Cray XE-6 that
has access to the disk-based Lustre filesystem directly via
the InfiniBand network. For the case when I/O is performed
to traditional disk storage, no additional moves of files are
performed. Table I shows the results of IOR runs to the disk-
based ”scratch” and the Flash-storage filesystems on the Cray
XE-6. As can be seen, the disk subsystem performs at about
300-400 MB/sec for writes, while the Flash storage has a peak
of almost 4GB/sec for writes. (IOR results were obtained using
file-per-process access, sequential offsets for ordering and with
a transfer size of 4MiB and block size of 1GiB). Figure 3
shows a plot of these results.

TABLE I
IOR RUNS ON FLASH AND DISK STORAGE

Nodes Tasks/Node Aggregate Flash Write Disk Write
Filesize (GiB) B/W (MB/s) B/W (MB/s)

2 1 2 1132.44 406.46
2 2 4 1786.57 316.02
4 2 8 2066.55 326.52

12 2 24 3491.05 397.47
12 4 48 3520.62 401.62
12 5 60 3649.77 406.10
12 12 144 3781.97 377.39
12 24 288 3534.52 368.19

Table II shows the results of flashio runs at various
concurrencies with I/O performed to the Flash storage and
disk-based ”scratch” storage.

The flashio runs to both the disk-based storage and
Flash storage are adjusted to perform the same amount of
computation. In the case of I/O to disk, once the files are
written, no further I/O is performed. In the case of Flash
storage, once the files are written to the Flash filesystem, the
migrator process (which runs continuously in the background)
moves the files to a disk-based store. The computational loop
continues while this migration is in progress. It is therefore
possible that for small amounts of computation that the run
may complete before the migration is complete. The results



Fig. 3. IOR runs on Flash and Disk storage.

TABLE II
FLASHIO RUNS ON FLASH AND DISK STORAGE

Disk Filesystem Flash Filesystem
Tasks Write B/W Run time Write B/W Run time

(MB/s) (secs) (MB/s) (secs)
2 408.96 1436 1087.10 1435
4 479.72 1453 1760.29 1447
8 454.63 1478 1815.86 1452
24 418.40 1504 3572.85 1447
48 488.32 1567 3445.97 1467
60 437.68 1626 4289.22 1479

144 526.15 1841 4980.90 1524
288 476.56 2221 5588.29 1561

reported in table II, however, are from runs where the amount
of computation exceeds the time for I/O (to both disk-based
and Flash-based storage) and the compute cycles finish well
after the migration process is complete, and thus the longer
times for the disk-based runs are solely due to the slower I/O
performed to disk. Figures 4 and 5 show the time for runs of
varying concurrency to both Flash and disk-based storage.

Fig. 4. Flash and Disk storage benchmark I/O times

Fig. 5. Flash and Disk storage benchmark I/O times (detail of lower
concurrencies)

V. DISCUSSION

A. Cost Analysis Using Hybrid Flash Architecture

The fact that the the Flash file system is significantly
more powerful in terms of bandwidth relatively to the disk
space system is useful to explore a potential design point
for future systems. Using Flash storage to provide bandwidth,
while depending on disk to provide capacity is one proposed
approach for addressing the ever growing bandwidth gap.
In the evaluation configuration, the Flash system is around
10x faster than the disk based solution which is perhaps a
bit extreme. However, this could be a realistic model for
future systems as disk performance improvements continues
to lag. For example, let’s assume that an application needs to
checkpoint 1,200 TB ever hour. If the file system provided 1
TB/s of bandwidth, it would require 20 minutes to checkpoint.
Consequently, 33% of the run-time would be used to perform
checkpointing operations. However, if a hybrid approach was
employed which used Flash storage providing 2.25 TB/s, the
applications would require around 15% of the time to perform
checkpointing. Furthermore, the disk storage bandwidth could
potentially be reduced by approximately 60% since the entire
checkpoint period (1 hour) could be used to migrate the data
between the Flash storage and the disk storage.

A cost analysis helps illustrate the potential value of a
hybrid approach. While Flash capacity is still much more
costly than disk storage, on a bandwidth basis it can be
very competitive. Table III provides a current estimate of the
cost for bandwidth and capacity of Enterprise-class Flash and
disk storage. Obviously pricing can vary widely for different
vendors, models, and configuration, so these estimates are
mainly intended to provide an illustration of how Flash could
be a cost effective option. Using the example above and the
cost estimates in Table III, the hybrid and disk-only approaches
would be roughly equivalent in cost (see Table IV). However,
the hybrid approach would provide around 28% more compute
time since the checkpoints can complete more quickly. The



main drawback in this scenario is there is 62% less disk
capacity since it was in essence traded off for bandwidth
provided by the Flash storage. Assuming disk capacities
growth continues to outpace disk bandwidth improvements,
this potential trade-off may become more acceptable over time.
This analysis neglects some of the additional performance
advantages and power savings of Flash. Since Flash provides
superior random read performance to disk solutions, data can
be more efficiently reorganized before it is transferred to disk.
In addition, Flash storage requires significantly less energy
to deliver the equivalent bandwidth compared to disk-based
storage.

TABLE III
APPROXIMATE COST FOR ENTERPRISE CLASS FLASH STORAGE AND DISK

STORAGE ON A BANDWIDTH AND CAPACITY BASIS.

Storage Bandwidth Cost Capacity Cost
($ per GB/s ) ($ per TB)

Flash (Enterprise grade) $6,000 $6,000
Disk (Enterprise grade) $22,000 $400

TABLE IV
A COST COMPARISON BETWEEN A HYBRID BASED SOLUTION THAT

EMPLOYS BOTH FLASH AND DISK AND A DISK ONLY SOLUTION.

Hybrid Disk Only
Flash Storage Bandwidth (TB/s) 2.25 -
Disk Storage Bandwidth (TB/s) 0.39 1.00
Flash Storage Capacity (PB) 2.25 -
Disk Storage Capacity (PB) 20.9 53.3

Example Application
Checkpoint Volume (TB) 1200 1200
Checkpoint Iteration (seconds) 3600 3600
Time for Checkpoint (s) 533 1200
Time remaining for Compute (s) 3067 2400
Percentage of Time in I/O 15% 33%
Improvement in Compute Time 28% -

Cost
Flash Cost ($ Thousands) $13,500 -
Disk Cost ($ Thousands) $8,609 $22,000
Total Cost ($ Thousands) $22,109 $22,000

B. Trends in Solid State Storage Technology

Today the solid-state storage market is dominated by NAND
Flash. However, a number of technical hurdles stand in the
way of continuing improvements in NAND storage capacity
and performance. As the feature sizes decrease, the reliability
of the storage decreases. Consequently, more aggressive mea-
sures are required to maintain reliability and some predict that
NAND Flash will fail to maintain the rate of improvement
seen in the past [11]. For these reasons, new technologies
are expected to supplant NAND in the not too distant future.
Memristor storage which has been championed by HP and
Hynix allows the resistance of an element to be changed in a
persistent way which can then be read out to obtain the stored
value. One advantage of this technology is that it can use
conventional manufacturing techniques. However, challenges
still remain in perfecting the switching mechanisms. Perhaps

even closer to market is Phase-Change Memory (PCM) which
stores data by changing the material in the chip between a
crystalline and amorphous state. Both Memristor and PCM
are expected to address some of the most serious deficiencies
of NAND storage. For example, the expensive erase-cycle re-
quired in NAND Flash is avoided in the new technologies. This
should allow for better write performance. More importantly,
the wear issues of NAND are also avoided. This means the
new technologies should provide longer life-times and require
less sophisticated logic to manage the chips. It is possible
that these new technologies could replace both NAND Flash
and current DRAM technologies, thus potentially providing a
persistent general purpose RAM.

While these new technologies are promising, current chal-
lenges in transitioning to manufacturing and other technical
hurdles remain. Consequently, NAND Flash is expected to
remain the market leader for solid state storage for several
years to come. Several manufacturers of NAND storage have
recently announced products using fabrication processes in
the sub 20nm scale [12] and future products are already
anticipated at the 15nm feature size. In addition, 3D stacking
is being considered as a way to extend the roadmap for NAND
[13]. The most serious hurdles are expected as manufacturing
is scaled down to the 10nm scale and below. Consequently,
NAND Flash will likely remain a contender for the next several
years.

VI. CONCLUSION

Flash-based storage and other solid state storage technolo-
gies are promising tools to address the growing I/O challenges
encountered in large scale HPC systems. There are a number of
ways to integrate these technologies into the storage hierarchy.
In this evaluation, we have explored one such method –
the use of a discrete pool of very high-performance storage
and asynchronous staging of files to and from this storage
into larger pools of lower-performing storage. This approach
was chosen because it was straight forward to implement
and evaluate. One feature of this implementation is that it
requires the user to select what I/O to redirect to the Flash file
system. We believe that it is important that the user have some
explicit control over how the Flash is utilized and how the
movement of data between Flash and long-term disk storage
is managed. Methods that integrate Flash more seamlessly
into the storage hierarchy may have advantages in ease of
use, but may lead to inefficient use of the scarce capacity
provided by the Flash storage. This challenge is similar to what
is encountered in many hierarchical designs. As in memory
hierarchies, the use of the Flash-storage as a cache requires
consideration of coherency issues between various levels of
the cache. For storage caches, as the absolute timescale for
ensuring coherence is high, it is an additional reason to ensure
the users are not kept oblivious of the I/O path, and are able to
exercise some control over it. Another potential problem with
the approach we have demonstrated is that the Flash storage is
treated as a shared resource and, consequently, is susceptible
to contention from other users. This is no different than what



is typically encountered in disk-based file systems today. A
more ideal solution would allow users to either provision
bandwidth and capacity through a quality of service resource
or have private pools of Flash storage allocated to applications.
Another potential solution is to have Flash integrated into
the node design (i.e. Node Local storage) which opens up
other possible uses of the Flash. Regardless of the specific
implementation, having APIs or other mechanisms for users
to control the use of Flash and the migration of data would
be beneficial. We have also provided a simple cost analysis
which demonstrates that even today’s Flash storage is a cost
effective way to increase bandwidth if storage capacity can be
sacrificed. We expect industry trends may help reinforce this
calculus in the future, especially, if new solid state storage
technologies transition to market. We plan to pursue exploring
the use of Flash-based technologies for I/O acceleration by
expanding the scope of the current study. Additional, Flash
storage cards can be added to the Flash file system which
should increase the performance to over 20 GB/s. Scaling up
the test by integrating the Flash filesystem into a larger Cray
XE or XC based system is being looked at, as is improving
the performance of the migrator process. Additionally, we are
looking at ways of making I/O to the Flash filesystem more
seamless and predictable to the users.
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