May 9, 2013

BLUE WATERS SUSTAINED PETASCALE COMPUTING

Analysis of the Blue Waters File System Architecture for Application I/O Performance

<u>Robert Sisneros</u> Kalyana Chadalavada

- Goal: Investigate I/O tuning specific to Blue Waters
- Blue Waters file systems
 - Disk subsystem
 - Network connectivity
- Design implications
- Hypothesis testing
- Application of results to application
- Conclusion

Analysis of the Blue Waters File System Architecture for Application I/O Performance

BLUE WATERS FILE SYSTEMS OVERVIEW

Blue Waters File Systems

- Three distinct file systems
 - home, project, scratch
 - Three distinct metadata servers
 - Jobs and users don't interfere with each other
- home, project 98 GB/s, 2 PB each
- scratch 980 GB/s, >21 PB usable

- Cray Sonexion-1600 Lustre appliance
- Infiniband networking
- Two OSS units, one SSU per CS-1600
 - 84 disks per SSU (Scalable Storage Unit)
 - OSTs: 8x (8+2) RAID 6 volumes
 - Two disk RAID 1 volume for OSS failover

Blue Waters File System Connectivity

- LNET Lustre Networking subsystem
 - Routers route LNET packets between Gemini & IB
 - Cray system uses XIO nodes as LNET routers
 - Each LNET router provides 2GB/s
- 576 total LNET routers
 - scratch
 - 480 for OSS units, 2 for MDS units
 - home, project
 - 48 for OSS units, 2 for MDS units each

Typical Connectivity

- Lustre traffic exits Gemini HSN at the nearest XIO node
- Further switching happens on the dedicated storage fabric
- A compute node is at a uniform distance from any disk

Blue Waters File System Connectivity

- Secondary LNET groups for availability
- Peer takes over disks in case of OSS, network failures
- 4:3 LNET: OSS

- Compute node to OST traffic
 - Routed on the Gemini HSN to the primary LNET router group
 - Does not exit Gemini at the nearest XIO node
- LNET routers not 100% uniformly distributed across the HSN
- Disks are at varying distances from a compute node
- Layout changes possible, studies in progress

IN CRA

Distribution of LNET routers on Blue Waters

Implications of the File System Design

- Non-uniform disk access
 - Between runs, the distance between a process and a file varies
 - Does this impact overall I/O bandwidth?
- Concurrent MPI & I/O traffic on the Gemini HSN
 - Could contention between Lustre and MPI get ugly?
 - Ex: Large collectives or a large I/O bound job
- Yes to either leads to possible
 - Pronounced dependency on machine state
 - Inconsistent runtimes

NCSA

A Real (and possibly unfortunate) Layout

- HPC I/O best practices
 - Reduce OST contention
 - Align I/O operations
 - Stripe count + stripe size
- What about offset (lfs -o)?
 - The typical (always route through nearest LNET): won't help
 - What about on Blue Waters?

Analysis of the Blue Waters File System Architecture for Application I/O Performance

EXPERIMENTS & RESULTS

Experiments*: What We Used

IOR

- Customizable I/O Benchmark
- Common for HPC
- Developed at LLNL

Enzo

- Galaxy formation simulation
- Grid-based + AMR
- HDF5
- In use on Blue Waters

Experiments not designed to extract the best possible throughput, but focus on assessing the impact of OST distance in a typical use case

- Mimic default system OST selection
 - Utilization based, but random to user
 - Arbitrarily select 10
- Parallel 1GB reads/writes
 - I/O is unaligned
 - 64 cores (4 nodes)
- Vary striping from 1 to 10
- 10 iterations per test

I

NÊSA

Analysis of the Blue Waters File System Architecture for Application I/O Performance

NCSA

Single OST Read (100 total IOR runs)

Analysis of the Blue Waters File System Architecture for Application I/O Performance

NÊSA

Experiment 1: Conclusions

- Offset for throughput
 - No discernible relationship
 - I/O variability: outlier cases represent poor user experience
- Offset for consistency
 - Increasing stripe count increases throughput (as expected for parallel I/O)
 - Also increases variability (would be expected, if offset mattered)

- Serial I/O
 - Worst case (for seeing variability)
 - Root privilege necessary for specifying a group of OSTs (pool) rather than a single OST (offset)
- IOR runs from one node to every OST
 - Stripe count of 1
 - 1440 OSTs in total
 - 768MB reads/writes
 - 2 iterations per test

- Calculating distance between a node and an OST
 - Must find necessary LNET router
 - Must replicate system routing
- Our distance approximation
 - Assume primary LNET is always used, looked up from table
 - Unweighted node-to-node "hop count"
 - Simple Manhattan distance from node to primary LNET
 - Torus wrap-around is considered

Limitations of the Metric

- Primary LNET usage not a guarantee
- Not all torus dimensions are created equally
- Actual system routing algorithm more complex
 - Utilizes low-level situational information
 - "Same" cases handled in different ways

NÊSA

NCSA

Experiment 2: Conclusions

- Offset does not affect throughput
 - No correlation
 - Outliers *still* represent poor user experience
- Offset selection may
 - Improve consistency
 - Reduce outliers
- Metric may need improvement

Experiment 3: Enzo

- Compare two types of runs for a real application
 - Default offset
 - Optimized offset
 - Select OSTs per file based on writer location
 - Pre-configure striping, offset per file using lfs

Enzo Configuration

- Standard Input Set
 - Simulating dark matter with AMR
 - 128x128x128 Grid on 128 processes
- Output
 - ~11000 files
 - ~100 directories

Enzo Results

	Runtimes		%
	Default Offset	Tuned Offset	improvement
Run1	2571.37	2305.21	10.4%
Run2	2968.69	2355.28	20.7%
Run3	2594.47	2325.53	10.4%
Variability	223.02	25.18	88.7%

- More consistent runtimes
- Improvement in total runtime
- Minimal to no code modifications

Analysis of the Blue Waters File System Architecture for Application I/O Performance

CONCLUSIONS

Conclusions and Future Work

- Location-based offset selection appropriate target for I/O optimization on Blue Waters
 - Minimizes interference from/on other jobs
 - Minimizes network traversal
 - Provides boost to application performance
- Future work
 - Improve distance approximation
 - Control OST selection for larger stripe counts
 - Provide library to automate OST selection through API calls

Special Thanks

- Michelle Butler and Alex Parga from the Blue Waters storage team
- Manisha Gajbe from the Blue Waters Scientific & Engineering Applications team
- You (if you listened (or at least faked it at times))

Compliments?: <u>sisneros@illinois.edu</u> Questions/complaints?: <u>kalyan@illinois.edu</u>