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This Talk 

•  Goal: Investigate I/O tuning specific to Blue 
Waters 

•  Blue Waters file systems 
•  Disk subsystem 
•  Network connectivity 

•  Design implications 
•  Hypothesis testing 
•  Application of results to application 
•  Conclusion 
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BLUE WATERS FILE SYSTEMS 
OVERVIEW 

Analysis of the Blue Waters File System Architecture for Application 
I/O Performance 
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Blue Waters File Systems 

•  Three distinct file systems 
•  home, project, scratch 
•  Three distinct metadata servers 
•  Jobs and users don’t interfere with each other 

•  home, project – 98 GB/s, 2 PB each 
•  scratch – 980 GB/s, >21 PB usable 
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Blue Waters File System Disk Subsystem 

•  Cray Sonexion-1600 Lustre appliance 
•  Infiniband networking 
•  Two OSS units, one SSU per CS-1600 

•  84 disks per SSU (Scalable Storage Unit) 
•  OSTs: 8x (8+2) RAID 6 volumes  
•  Two disk RAID 1 volume for OSS failover 
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Blue Waters File System Connectivity 

•  LNET – Lustre Networking subsystem 
•  Routers route LNET packets between Gemini & IB 
•  Cray system uses XIO nodes as LNET routers 
•  Each LNET router provides 2GB/s  

•  576 total LNET routers 
•  scratch 

•  480 for OSS units, 2 for MDS units 
•  home, project 

•  48 for OSS units, 2 for MDS units each 
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Typical Connectivity 
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Storage	  Cluster	  
	  
	  
	  
	  
	  
	  
	  

IB	  or	  GigE	  

•  Lustre traffic exits Gemini HSN at the nearest XIO node 
•  Further switching happens on the dedicated storage fabric 
•  A compute node is at a uniform distance from any disk  



Blue Waters File System Connectivity 

•  Secondary LNET groups for availability 
•  Peer takes over disks in case of OSS, network failures 
•  4:3 LNET: OSS 
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Distribution of LNET Routers on Blue Waters 

•  Compute node to OST traffic 
•  Routed on the Gemini HSN to the primary LNET 

router group 
•  Does not exit Gemini at the nearest XIO node 

•  LNET routers not 100% uniformly distributed 
across the HSN 

•  Disks are at varying distances from a compute 
node 

•  Layout changes possible, studies in progress 
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Distribution of 
LNET routers on 
Blue Waters 
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Implications of the File System Design 

•  Non-uniform disk access  
•  Between runs, the distance between a process and a 

file varies 
•  Does this impact overall I/O bandwidth? 

•  Concurrent MPI & I/O traffic on the Gemini HSN 
•  Could contention between Lustre and MPI get ugly?   
•  Ex: Large collectives or a large I/O bound job 

•  Yes to either leads to possible 
•  Pronounced dependency on machine state 
•  Inconsistent runtimes 
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A Real  
(and possibly unfortunate) 

Layout 
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Lustre Tuning for Parallel I/O on Blue Waters 

•  HPC I/O best practices 
•  Reduce OST contention 
•  Align I/O operations 
•  Stripe count + stripe size 

•  What about offset (lfs -o)? 
•  The typical (always route through nearest LNET): 

won’t help 
•  What about on Blue Waters? 

14 
Analysis of the Blue Waters File System 

Architecture for Application I/O Performance 



EXPERIMENTS & RESULTS 

Analysis of the Blue Waters File System Architecture for Application 
I/O Performance 
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Experiments*: What We Used 

IOR 

•  Customizable I/O 
Benchmark 

•  Common for HPC 
•  Developed at LLNL 

Enzo 

•  Galaxy formation 
simulation 

•  Grid-based + AMR 
•  HDF5 
•  In use on Blue Waters 
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Experiments	  not	  designed	  to	  extract	  the	  best	  possible	  throughput,	  
but	  focus	  on	  assessing	  the	  impact	  of	  OST	  distance	  in	  a	  typical	  use	  case	  

* 



Experiment 1: Does OST Selection Really Matter?  

•  Mimic default system OST selection 
•  Utilization based, but random to user 
•  Arbitrarily select 10 

•  Parallel 1GB reads/writes 
•  I/O is unaligned 
•  64 cores (4 nodes) 

•  Vary striping from 1 to 10 
•  10 iterations per test 
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Writing to a Single OST (100 total IOR runs) 
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Varying Stripe Count (1000 total IOR runs) 

19 
Analysis of the Blue Waters File System 

Architecture for Application I/O Performance 

0	  

200	  

400	  

600	  

800	  

1000	  

1	   2	   3	   4	   5	   6	   7	   8	   9	   10	  

M
B/
s	  

Number	  of	  OSTs	  



Single OST Read (100 total IOR runs) 
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Varying Stripe Count (1000 total IOR runs) 
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Experiment 1: Conclusions 

•  Offset for throughput  
•  No discernible relationship 
•  I/O variability: outlier cases represent poor user 

experience 
•  Offset for consistency  

•  Increasing stripe count increases throughput (as 
expected for parallel I/O)  

•  Also increases variability (would be expected, if 
offset mattered) 
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Experiment 2: Offsets by Throughput and Distance 

•  Serial I/O  
•  Worst case (for seeing variability) 
•  Root privilege necessary for specifying a group of 

OSTs (pool) rather than a single OST (offset)  
•  IOR runs from one node to every OST 

•  Stripe count of 1 
•  1440 OSTs in total 
•  768MB reads/writes 
•  2 iterations per test 
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Experiment 2: Offsets by Throughput and Distance 

•  Calculating distance between a node and an OST 
•  Must find necessary LNET router 
•  Must replicate system routing 

•  Our distance approximation 
•  Assume primary LNET is always used, looked up 

from table 
•  Unweighted node-to-node “hop count” 

•  Simple Manhattan distance from node to primary 
LNET  

•  Torus wrap-around is considered 
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Limitations of the Metric 

•  Primary LNET usage not a guarantee 
•  Not all torus dimensions are created equally 
•  Actual system routing algorithm more complex 

•  Utilizes low-level situational information 
•  “Same” cases handled in different ways 
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Impact of OST-Node Distance, Single OST Write 
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Impact of OST-Node Distance, Single OST Read 
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Experiment 2: Conclusions 

•  Offset does not affect throughput 
•  No correlation 
•  Outliers still represent poor user experience 

•  Offset selection may 
•  Improve consistency 
•  Reduce outliers 

•  Metric may need improvement 
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Experiment 3:  Enzo 

•  Compare two types of runs for a real application 
•  Default offset 
•  Optimized offset 

•  Select OSTs per file based on writer location 
•  Pre-configure striping, offset per file using lfs  
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Enzo Configuration  

•  Standard Input Set 
•  Simulating dark matter with AMR 
•  128x128x128 Grid on 128 processes 

•  Output 
•  ~11000 files 
•  ~100 directories 
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Enzo Results 

Run9mes	   %	  
improvement	  Default	  Offset	   Tuned	  Offset	  

Run1	   2571.37	   2305.21	   10.4%	  

Run2	   2968.69	   2355.28	   20.7%	  

Run3	   2594.47	   2325.53	   10.4%	  

Variability	  	   223.02	   25.18	   88.7%	  
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•  More consistent runtimes 
•  Improvement in total runtime 
•  Minimal to no code modifications 



CONCLUSIONS 

Analysis of the Blue Waters File System Architecture for Application 
I/O Performance 
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Conclusions and Future Work 

•  Location-based offset selection appropriate target for 
I/O optimization on Blue Waters 
•  Minimizes interference from/on other jobs 
•  Minimizes network traversal 
•  Provides boost to application performance 

•  Future work 
•  Improve distance approximation 
•  Control OST selection for larger stripe counts 
•  Provide library to automate OST selection through API 

calls 
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