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This Talk

« Goal: Investigate I/O tuning specific to Blue
Waters

* Blue Waters file systems
* Disk subsystem
* Network connectivity

» Design implications

* Hypothesis testing

» Application of results to application
» Conclusion
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BLUE WATERS FILE SYSTEMS
OVERVIEW
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Blue Waters File Systems

* Three distinct file systems
* home, project, scratch
* Three distinct metadata servers
» Jobs and users don’t interfere with each other

* home, project — 98 GB/s, 2 PB each
 scratch — 980 GBY/s, >21 PB usable
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Blue Waters File System Disk Subsystem

* Cray Sonexion-1600 Lustre appliance

* Infiniband networking

* Two OSS units, one SSU per CS-1600
« 84 disks per SSU (Scalable Storage Unit)
* OSTs: 8x (8+2) RAID 6 volumes
* Two disk RAID 1 volume for OSS failover

Analysis of the Blue Waters File System
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Blue Waters File System Connectivity

 LNET — Lustre Networking subsystem
* Routers route LNET packets between Gemini & IB

* Cray system uses XIO nodes as LNET routers
« Each LNET router provides 2GB/s

« 576 total LNET routers

* scratch
» 480 for OSS units, 2 for MDS units
* home, project
« 48 for OSS units, 2 for MDS units each
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Typical Connectivity

/ Cray Mainframe \

/

Storage Cluster \

IB or GigE

 Lustre traffic exits Gemini HSN at the nearest XIO node
* Further switching happens on the dedicated storage fabric
« A compute node is at a uniform distance from any disk
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Blue Waters File System Connectivity

« Secondary LNET groups for availability
* Peer takes over disks in case of OSS, network failures

- 4:3 LNET: OSS

X10 Blade X10 Blade

LNET LNET LNET LNET LNET LNET LNET LNET
|

Infiniband Switch

Y — X
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Distribution of LNET Routers on Blue Waters

* Compute node to OST traffic

* Routed on the Gemini HSN to the primary LNET
router group

* Does not exit Gemini at the nearest XIO node

« LNET routers not 100% uniformly distributed
across the HSN

* Disks are at varying distances from a compute
node

« Layout changes possible, studies in progress
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Distribution of

LNET routers on
Blue Waters
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Implications of the File System Design

 Non-uniform disk access

- Between runs, the distance between a process and a
file varies

* Does this impact overall /O bandwidth?
« Concurrent MPI & /O traffic on the Gemini HSN
* Could contention between Lustre and MPI get ugly?
« Ex: Large collectives or a large 1/0O bound job
* Yes to either leads to possible
* Pronounced dependency on machine state
* Inconsistent runtimes

Analysis of the Blue Waters File System
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Lustre Tuning for Parallel I/O on Blue Waters

« HPC |I/O best practices
* Reduce OST contention
* Align I/O operations
 Stripe count + stripe size
- What about offset (1fs -0)?

* The typical (always route through nearest LNET):
won’t help

 What about on Blue Waters?

Analysis of the Blue Waters File System
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Experimenis*: What We Used

IOR Enzo

» Customizable 1/0O  Galaxy formation
Benchmark simulation

« Common for HPC * Grid-based + AMR

* Developed at LLNL  HDF5

 |n use on Blue Waters

Experiments not designed to extract the best possible throughput,
but focus on assessing the impact of OST distance in a typical use case

Analysis of the Blue Waters File System

Architecture for Application /O Performance
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Experiment 1: Does OST Selection Really Matter?

Mimic default system OST selection
- Utilization based, but random to user
* Arbitrarily select 10

Parallel 1GB reads/writes
* 1/O is unaligned
* 64 cores (4 nodes)

Vary striping from 1 to 10

10 iterations per test

Analysis of the Blue Waters File System
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Writing to a Single OST (100 total IOR runs)
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Varying Stripe Count (1000 total IOR runs)
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Single OST Read (100 total IOR runs)
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Varying Stripe Count (1000 total IOR runs)
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Experiment 1: Conclusions

 Offset for throughput
* No discernible relationship

* 1/O variability: outlier cases represent poor user
experience

+ Offset for consistency

* Increasing stripe count increases throughput (as
expected for parallel 1/O)

 Also increases variability (would be expected, if
offset mattered)

Analysis of the Blue Waters File System
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Experiment 2: Offsets by Throughput and Distance

« Serial I/0O
» Worst case (for seeing variability)
* Root privilege necessary for specifying a group of
OSTs (pool) rather than a single OST (offset)
* |OR runs from one node to every OST
» Stripe count of 1
* 1440 OSTs in total
« 768MB reads/writes
2 iterations per test

Analysis of the Blue Waters File System

Architecture for Application /O Performance
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Experiment 2: Offsets by Throughput and Distance

 Calculating distance between a node and an OST
* Must find necessary LNET router
* Must replicate system routing

 QOur distance approximation

- Assume primary LNET is always used, looked up
from table

+ Unweighted node-to-node “hop count”

- Simple Manhattan distance from node to primary
LNET

 Torus wrap-around is considered

Analysis of the Blue Waters File System

Architecture for Application /O Performance
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Limitations of the Metric

* Primary LNET usage not a guarantee
* Not all torus dimensions are created equally
* Actual system routing algorithm more complex

 Utilizes low-level situational information
+ “Same” cases handled in different ways
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Impact of OST-Node Distance, Single OST Read
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Experiment 2: Conclusions

» Offset does not affect throughput

* No correlation

 Qutliers still represent poor user experience
« Offset selection may

* Improve consistency

* Reduce outliers
» Metric may need improvement

Analysis of the Blue Waters File System

Architecture for Application /O Performance
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Experiment 3: Enzo

- Compare two types of runs for a real application
 Default offset

* Optimized offset
» Select OSTs per file based on writer location
 Pre-configure striping, offset per file using Ifs

Analysis of the Blue Waters File System

Architecture for Application /O Performance
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Enzo Configuration

« Standard Input Set

« Simulating dark matter with AMR

» 128x128x128 Grid on 128 processes
* Output

* ~11000 files

* ~100 directories

Analysis of the Blue Waters File System
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Enzo Results

Runtimes %
Default Offset | Tuned Offset | LAt
Runl 2571.37 2305.21 10.4%
Run2 2968.69 2355.28 20.7%
Run3 2594.47 2325.53 10.4%
Variability 223.02 25.18 88.7%

* More consistent runtimes
* Improvement in total runtime
 Minimal to no code modifications
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Conclusions and Future Work

* Location-based offset selection appropriate target for
/O optimization on Blue Waters

» Minimizes interference from/on other jobs
* Minimizes network traversal
* Provides boost to application performance

» Future work
* Improve distance approximation
» Control OST selection for larger stripe counts

* Provide library to automate OST selection through API
calls

Analysis of the Blue Waters File System

Architecture for Application /O Performance



BLUE WATERS S SR CrRase

SUSTAINED PETASCALE COMPUTING

Special Thanks

* Michelle Butler and Alex Parga from the Blue
Waters storage team

- Manisha Gajbe from the Blue Waters Scientific &
Engineering Applications team

* You (if you listened (or at least faked it at times))

Compliments?: sisneros@illinois.edu
Questions/complaints?:  kalyan@illinois.edu
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