
Analysis of the Blue Waters File System Architecture for Application I/O

Performance

Kalyana Chadalavada and Robert Sisneros

National Center for Supercomputing Applications

University of Illinois at Urbana-Champaign

Urbana, IL USA

Email: {kalyan, sisneros}@illinois.edu

Abstract—The NCSA Blue Waters features one of the fastest
file systems for scientific applications. Using the Lustre file
system technology, Blue Waters provides over 1 TB/s of
usable storage bandwidth. The underlying storage units are
connected to the compute nodes in a unique fashion. The
Blue Waters file system connects a subset of storage units
to the high speed torus network at distinct points. Utilizing
standard benchmarks and scientific applications, we examine
the impact of this architecture on application I/O performance.
Given the size of the system and its intended applications,
scaling I/O performance will be a challenge. Identifying the
optimal I/O methodology can help alleviate a large number
of application performance issues. All exercises are done in a
production environment to ensure that beneficial results are
directly applicable to Blue Waters users.

Keywords-File systems

I. INTRODUCTION

The NCSA Blue Waters features one of the fastest file

systems for scientific applications. Using the Lustre file

system technology, Blue Waters provides over 1 TB/s of

usable storage bandwidth. Due to the size of the system and

the intended applications, scaling I/O performance will be a

challenge. Identifying the optimal I/O methodology can help

alleviate a large number of application performance issues.

The underlying storage units of Blue Waters are connected

to the compute nodes in a unique fashion; the file system

connects a subset of storage units to the high speed torus

network at distinct points. This means that any given node

on the system is not at a uniform distance from the disks,

routers, and servers that make up the file system. It is

foreseeable that in such an architecture the node allocation

for a job, the location of the processes performing I/O,

and the target disk on the torus network could affect I/O

throughput. In case of striped files, a process may experience

variation in I/O throughput due to the distribution of the file

stripes among available disks.

Utilizing standard benchmarks and scientific applications,

we explore the impact of a jobs node allocation as well as

the location of its files on an application’s performance and

runtime consistency. We present results from experiments

with varying Lustre stripe settings for applications targeted

for Blue Waters. We then apply the results and observa-

tions our experiments to a real world scientific application

appropriate for the Blue Waters system. All experiments

take place in a normal production environment to ensure

the results are collected under conditions representative of

those a user would experience on the system. That is, our

resulting experimental outcomes are not altered through the

use of dedicated resources or optimized configurations.

II. OVERVIEW OF THE BLUE WATERS I/O SUBSYSTEM

Blue Waters provides users with three distinct file sys-

tems: home file system for user home areas, project file

system for group level file sharing and collaboration, and

a scratch file system for applications. All are implemented

using the Cray Sonexion Lustre storage technology and each

has its own metadata and object storage servers. Separating

the metadata services eliminates interference among file

systems thereby providing interactive users as well as batch

applications with the best possible metadata performance

within their respective file systems. The scratch file system

is the fastest of the three and provides approximately 980

GB/s peak throughput.

Cray Sonexion 1600 (CS-1600) units form the basis for

storage on the Blue Waters system. Each CS-1600 enclosure

hosts two Lustre Object Storage Servers (OSSs). Each OSS

has an associated disk storage unit, the Scalable Storage

Unit (SSU). Lustre Object Storage Targets (OSTs) carved

out from the SSU are assigned to OSSs within the CS-

1600 enclosure. Also, a CS-1600 hosts a Metadata unit hard-

ware configuration to provide the Lustre Metadata Services

(MDS).

Cray provides a Lustre Network Driver (LND) for its

Gemini high-speed network (HSN). Using this LND, com-

pute nodes mount Lustre file systems over the Gemini

network. File system operations from the clients are routed

to the appropriate Lustre device using the Cray XIO nodes.

The XIO nodes implement the LNET routing services and

handle packet routing between different networks. Currently,

the compute nodes use Lustre version 1.8.6. The Lustre

connectivity and software stack of Blue Waters is illustrated

in Figure 1.



Figure 1: The Lustre connectivity and software stack.

For the remainder of this paper, we focus discussions and

experiments on the Blue Waters scratch file system. The

scratch file system consists of 1400 OSTs providing over

20PB of usable disk space. There are 482 LNET routers, 480

for OSS traffic and the remaining for MDS. These provide

the connectivity from the Blue Waters Gemini HSN to the

scratch file system.

Typically, LNET routers and Lustre devices are intercon-

nected with a separate Infiniband or Ethernet network. On

Blue Waters, LNET routers are organized into groups of

four and each group is connected to three OSSs. A set of

four LNET routers are configured as the primary routers for

OSTs on these OSS units. A second group of LNETs act as

a backup ensuring alternate routes to any OST in the event

of failures. An overview schematic is given in Figure 2.

With this design, file system requests from compute

nodes are routed on the Gemini network to the specific

LNET routers that are configured as the primary routers

for the target Lustre device. These unique characteristics of

the Blue Waters file system present new opportunities for

fine tuning low-level system software. Evaluation of how

design consequences affect I/O performance may lead to

the pinpointing of those components to leverage as well as

those to minimize to increase performance. We hypothesize

that the following are optimization targets with potential:

• Distance to various Lustre devices from a given point on

the Blue Waters Gemini torus network varies, can this

be leveraged to configure job/file layouts to improve

performance?

• Application and Lustre traffic are concurrently routed

on the same HSN. Will this cause undesirable inter-

ference among MPI and I/O operations? If so, is it

avoidable?

Current layout of the LNET routers is shown in Figure 3.

Each rectangle represents a Blue Waters rack populated with

the multiple blades. A rack with one or more XIO blades is

shaded with a light green color. A rack with no XIO blades

is shaded in blue.

III. EVALUATION

The Lustre file system allows a user to customize certain

file parameters via a command line utility (lfs) as well

as the provided API. These parameters include the number

of OSTs to stripe a file across, the size of each stripe, and

the OST on which to start striping (offset). Changing these

values from the system defaults can have significant impacts

on I/O for an application. The effects of stripe count and size

are well known and are routinely targeted for performance

increases and are documented by HPC centers to illustrate

optimal use for their specific systems. Attention is rarely

directed toward OST offset for performance increase in that

for many systems is it unlikely (or impossible) for offset

Figure 2: Blue Waters LNET connections. Each OSS is

colored to match its primary group of LNETs and annotated

with a circle colored to match its secondary.



Figure 3: The machine room layout of Blue Waters’ racks.

Racks with one or more XIO blades are shaded light green,

those with none are shaded blue

changes to affect performance. However, given the unique

design of Blue Waters (Section II), it is unclear that this

holds true. In this section we investigate the possibility

that OST offset can improve I/O performance. To this end,

we elicit illustrative data through system tests with an I/O

benchmark.

A. IOR

The Interleaved or Random (IOR) I/O Benchmark [1] was

developed at Lawrence Livermore National Laboratory for

measuring read/write performance of parallel file systems.

There are a number high-level customizable parameters that

may be set; these include file size, I/O transaction size,

sequential vs. random access, and single shared file vs. file-

per-process. There are also several flags for fine tuning a

particular run that allow a user to have IOR perform tasks

such as consume system memory (in addition to measured

I/O tasks) or keep temporary files created and written for

tests. In addition, the diverse repertoire of configurations

may be applied to any of IOR’s supported APIs: POSIX,

MPIIO, HDF5, and NCMPI. These features make IOR an

ideal benchmark for an HPC facility and it is indeed widely

used in that community [2], [3], [4].

B. Performance

We performed two tests: the first to gain insight into the

effects of default system OST selection and the second to

formulate the performance expectations of OST selection.

For both tests, IOR mimics a typical application using the

POSIX API with an I/O transaction size of 16MB that con-

sume 50% of the memory of each allocated node. The output

files are always created in directories with 12MB stripe sizes

which results in misaligned I/O operations coinciding with

typical usage. Each test consists of multiple IOR runs via

separate aprun calls as well as multiple reads and writes

within a single IOR run for averaging. To maximize the

equality of runs, we flush file system buffers between aprun

calls, using sync, and have IOR wait 0.1 seconds between

test iterations.

These tests are not designed to benchmark overall I/O

throughput of the Blue Waters scratch file system. Rather,

they are intended only to characterize the impact of OST

distance/selection from a given fixed point on the network.

1) Parallel Variation: In this test, we aim to characterize

the effects of OST selection on I/O performance. We do this

by comparing runs that utilize parallel I/O while altering

both OST offsets as well as the number of OSTs written to

(file striping). Our test job consists of 64 cores on 4 nodes

with each responsible for 16MB of a 1GB shared file. From

a user’s perspective an OST offset is assigned at random.

To emulate this we arbitrarily selected 10 OSTs to serve as

our different offsets (1,101,201, . . . ,901). We perform I/O

with these offsets for files of a single stripe on up to files

striped across 10 OSTs. Each of the 100 tests is written

to a unique directory on Blue Waters’ scratch file system

where the Lustre parameters have been appropriately set

(files created in a directory inherit the striping specifications

of that directory). Also, each IOR run performs 10 reads

and writes for averaging for a total of 1000 measurements

of each.

Figures 4, 5, and 6 contain the results from these IOR

(a) writes

(b) reads

Figure 4: IOR variation test: single OST, differing offset.



(a) writes

(b) reads

Figure 5: IOR variation test: 10 OSTs, differing offsets.

runs compiled into box-and-whisker plots (each box from

bottom: minimum value, first quartile, median, third quartile,

maximum value) with the points of the connecting line

lying on each run’s average value. We selected this plot

style because both the throughput (average lines and boxes)

and consistency (max/min error bars) are represented. In

Figures 4 and 5 each “column” is calculated from 10 values,

whereas for Figure 6 each is over all runs that share the same

file striping (100 values).

In Figure 6 we see the expected increase in performance

from moving from a single to multiple OSTs, but overall,

there appears to be no appreciable difference in throughput

connected to the selection of OSTs. There is however, a

large variation of observed results that could be related to

OST selection or interference from other jobs. We believe

Figure 5 displays one such example of some combination

of these factors severely degrading performance, the OST

pool starting with OST 501. On the whole, these figures

illustrate the benefit of increasing consistency in that there

are many cases where in lieu of the obvious trend of multiple

OSTs increasing throughput, increasing them may actually

decrease throughput for the unlucky user.

In Section III-B2 we directly measure the effects of OST

offset selections. We chose to have IOR only perform serial

I/O for that test. From Figure 6(a) it is clear that the least

(a) writes

(b) reads

Figure 6: Averages of all runs sorted by number of OSTs.

variation occurs when writing to a single OST. Therefore,

a serial I/O operation to a single OST represents the most

difficult case in which to detect a basis for I/O improvement.

Furthermore, a user without root privilege is currently unable

to create a pool of OSTs, which we see as a necessity

for definitive tests of multiple OST selection. However,

serial measurable increase in I/O performance would provide

rationale for enabling this functionality and lead to future

tests.

2) OST Selections: For this test the Lustre utility was

used to create 1440 directories each with a unique offset

corresponding to one of the 1440 available OSTs. These di-

rectories are also located on Blue Waters’ scratch filesystem.

From the same compute node, IOR writes/reads a 768MB

file (twice) to each of the 1440 directories. The 3000 I/O

operations are then sorted by a simple routing approximation

metric. This metric is simply the unweighted, torus-aware

Manhattan distance (hop count) from the compute node

to the primary LNET group associated with each OST. In

addition to the omission of any intricacies of the system’s

actual routing algorithm that there is also no guarantee

that I/O is actually routed through the primary LNET.

These considerations motivate our use of the phrase “simple

routing approximation.”

Figure 7 shows the I/O performance of writes (a) and



(a) writes (b) reads

Figure 7: I/O from one compute node to each of the 1440 OSTs.

reads (b) of the 16 different distance values (unique routing

approximates). First, we verified what was suggested in

Section III-B1 regarding OST selection and I/O throughput;

the calculation of Pearson’s correlation coefficient reveals

no correlation among them. We find this to be an excellent

result in that it lends credence to the unique design of Blue

Waters’ I/O subsystem. We do, however, in Figure 7 notice

that writing to the nearest for all save one distance provides

the most consistent performance.

While there is no direct proportionality between offset

distance and consistency, we still find inspiration to believe

a wise selection of offset exists, and that making this choice

can improve I/O consistency. First, refinement to our metric

will provide updated and more accurate results. The wave

patterns in Figure 7 hint that our metric may be mishandling

at least part of the calculations around the 3D torus or

incorrectly weighting torus dimensions. Fixing this may

very well unravel the wave into a distribution with a more

pronounced relationship between offset and consistency. On

the other hand, if our metric is perfect the data in Figure 7(a)

may still be reasonably interpreted as a write to the nearest

LNET node will offer consistent performance 93.33% more

often than not. That is, doing so is more consistent than 14

of the other 15 possibilities.

IV. TOWARD THE IMPROVEMENT OF APPLICATION I/O

In this section we provide results toward verifying that

distance from I/O performing compute nodes to LNET nodes

is a heuristic worth minimizing to achieve consistent I/O

performance.

Based on the results from the IOR experiments in section

III, we applied the same approach to a scientific application,

Enzo [5], [6]. Enzo is an adaptive mesh refinement (AMR),

grid-based hybrid code (hydro + N-Body) which is designed

to do simulations of cosmological structure formation. Enzo

was chosen as it is in currently in use on Blue Waters. Enzo

version 2.1.0 was used for the following results.

Enzo reads in initial conditions files and outputs simula-

tion data using the HDF5 structured data format. Output

data is then identified with a dump number, NNNN. The

combination of dump number and a base name is used to

create directories for each data dump. Each process writes

its own file with the process rank cpuNNNN appended to

the directory name. The size of these files remains constant

across all processes per data dump but increases as the

simulation progresses.

For the purposes of this paper, we used standard input pa-

rameter files, AMR dark matter cosmology simulation from

the Enzo code base. This input set uses a grid size of 1283

and was run using 128 processes on 8 Blue Waters compute

nodes. The run generated a total of approximately 11000

files across 64 Data output directories and 17 RedShift data

directories.

Using Lustre user space utilities, the output files were

individually assigned specific OSTs, with a stripe count of

1 and a stripe size of 5MB. The OST offset selection was

made so that the process writing data to that file was as close

as possible to the OST, as calculated by the metric referenced

in Section III-B2. Enzo uses the HDF API call H5Fcreate

with the H5F_ACC_TRUNC access flag to create the output

files. Creating the files before the simulation starts will not

adversely impact the behavior of the H5Fcreate call.

The Enzo code was run three times using both specifically

selected OSTs and the default file system allocation. Wall-

clock times in each case were compared and are summarized

in Table I. The results indicate a more consistent runtime

for the earlier case while the latter shows a large runtime

variance. The runtime variance is heavily influenced by the

state of the machine. When the system has a high utilization,

there is a higher probability of interference from other

jobs. For a non I/O bound application or with low system

utilization, the benefit from specifically picking closer OST

offsets may not be significant.

This data affirms our expected increase in I/O consistency

through the heuristic of simply selecting “close” offsets.



Runtimes Decrease

Default Offset Selected Offset
Run 1 2571.37 2305.21 10.4%
Run 2 2968.69 2355.28 20.7%
Run 3 2594.47 2325.53 10.4%

Variability 223.02 25.18 88.7%

Table I: Enzo results. Tests were run with default as well as

hand-picked offsets.

However, contrary to our metric suggesting no correlation

between distance and throughput, we see faster runtimes

when selecting close offsets as well. We are hopeful that

tuning our calculations will lead to a more direct exposition

of the relationship between offset selections and consistency

as well as throughput.

V. CONCLUSION

In this paper we present the groundwork analysis toward

understanding the Blue Waters file system architecture with

regard to application runtime consistency and performance.

Specifically, our tests were tailored to quantify the relation-

ship between the variability of an application’s I/O with the

changes in distances to various file system components. Our

results suggest, and our initial tests confirm, that exerting

currently accessible fine-grained control over network loca-

tions can enhance I/O performance.

We are encouraged having achieved performance gains

with such a limited estimation of routing protocols. We

believe refining this metric is the next logical step in better

defining and measuring the advantage of controlling the

locations of I/O operations. Furthermore, it should be noted

that in our IOR testing the metric calculations show the

assigned compute node is no nearer than eight hops to

any LNET router. Given that it is possible for a compute

node to be only a single hop away, there are interesting

extreme-case tests left to perform. Also, we were limited

in our experiments by not being able to control striping

on multiple OSTs; we are addressing the implementation

of a workaround to expand our testing. Finally, we intend to

ensure future research remains complementary to scientific

applications running at larger scales.

ACKNOWLEDGMENT

The authors gratefully acknowledge Michelle Butler and

Alex Parga from the Blue Waters Storage team as well as

Manisha Gajbe from the Blue Waters Scientific & Engi-

neering Applications team. Their expertise and guidance was

invaluable over the course of this work. This research is part

of the Blue Waters sustained-petascale computing project,

which is supported by the National Science Foundation

(award number OCI 07-25070) and the state of Illinois. Blue

Waters is a joint effort of the University of Illinois at Urbana-

Champaign and its National Center for Supercomputing

Applications.

REFERENCES

[1] “IOR: interleaved or random hpc benchmark.” [Online].
Available: https://github.com/chaos/ior

[2] H. Shan and J. Shalf, “Using IOR to analyze the I/O per-
formance for HPC platforms,” in Cray Users Group Meeting
(CUG) 2007, Seattle, Washington, May 2007.

[3] P. Wauteleta and P. Kestener, “Parallel io performance and
scalability study on the prace curie supercomputer,” Partnership
For Advanced Computing in Europe (PRACE), Tech. Rep.,
September 2009.

[4] Demonstrating lustre over a 100Gbps wide area network of
3,500km, Salt Lake City, Utah, 11/2012 2012.

[5] “The enzo project.” [Online]. Available: http://enzo-project.org/

[6] B. O’shea, G. Bryan, J. Bordner, M. Norman, T. Abel, R. Hark-
ness, and A. Kritsuk, “Introducing Enzo, an AMR Cosmology
Application,” 2005, pp. 341–349.


