Debugging and Optimizing Programs Accelerated with Intel® Xeon® Phi™ Coprocessors

Chris Gottbrath, Principal Product Manager
May 7th, 2013

CUG 2013, Napa, CA
Rogue Wave Today

The largest independent provider of cross-platform software development tools and embedded components for the next generation of HPC applications.

Highlights
- Pioneers in C++/object-oriented development
- Leading the way in cross-platform, parallel development

History
- Founded: 1989
- Acquired by Audax Group: 2012
- Acquired:
 - Visual Numerics: 2009
 - TotalView Technologies: 2009
 - Acumem: 2010
 - IBM ILOG Views C++: 2012
- 40 years of experience in HPC

Customers
- 3,000+ customers in 36 countries
- Multiple sectors:
 - Financial services
 - Telecom
 - Oil and gas
 - Government and aerospace
 - Research and academic
Rogue Wave Solution Portfolio

Developing parallel, data-intensive applications is hard.

We make it easier.
What is TotalView?

- Application Analysis and Debugging Tool: Code Confidently
 - Debug and Analyze C/C++ and Fortran on Linux, Unix or Mac OS X
 - Laptops to supercomputers (Cray, BG, BullX, etc..)
 - Makes developing, maintaining and supporting critical apps easier and less risky

- Major Features
 - Easy to learn graphical user interface with data visualization
 - Parallel Debugging
 - MPI, Pthreads, OpenMP, GA, UPC
 - CUDA and OpenACC, Xeon Phi (early access)
 - Includes a Remote Display Client freeing you to work from anywhere
 - Memory Debugging with MemoryScape
 - Deterministic Replay Capability Included on Linux/x86-64
 - Non-interactive Batch Debugging with TVScript and the CLI
 - TTF & C++View to transform user defined objects
TotalView for Xeon Phi

- Support Multiple Intel Xeon Phi configurations
 - Native Mode
 - With MPI
 - Offload Directives
 - Similar to GPU
 - Multi-device
 - Multi-node
 - Certain configurations
 - CS300-AC, Future XC30

- User Interface
 - MPI Debugging Features
 - Process Control
 - View Across
 - Shared Breakpoints
 - Heterogeneous Debugging
 - Debug Both Xeon and Xeon-Phi Processes
Spectrum of Execution Models

CPU-Centric
- Multi-core Hosted
 - General purpose serial and parallel computing
 - Main()
 - Foo()
 - MPI_*()

Intel® MIC-Centric
- Many-Core Hosted
 - Codes with highly-parallel phases
 - Main()
 - Foo()
 - MPI_*()
 - Codes with balanced needs
 - Main()
 - Foo()
 - MPI_*()
 - Highly-parallel codes
 - Main()
 - Foo()
 - MPI_*()

Productive Programming Models Across the Spectrum
Remote Debugging of Applications on Xeon Phi

- Just run as `totalview -r mic0 <program>`
- Attach to running application
- See thread private data
- Investigate individual threads
- Kill stuck processes on MIC-coprocessor
Debugging MPI Applications

- Attach to subset of processes on MIC coprocessor
- Set breakpoints
- Debug “as usual” MPI
Debugging Applications with Offloaded Code

Xeon side

Xeon Phi side

One debugging session for MIC-accelerated code
What’s New in TotalView 8.12

- Xeon Phi Support
- Formal support for Cray XC
- AVX Instruction Support (phase 1)
- Cray ATP Support

- Mac OS X Lion and Mountain Lion support
- Sessions Manager
- STL support for set, multi-set, multi-map
- Improvements for specifying addresses in C++ template breakpoints
- Updated OS and Compiler Support
Multi-phase R&D Projects Underway

• Massive Scalability
 – Collaboration with LLNL and Tri-lab partners
 – Targeting Cray, Blue Gene and Linux Clusters

• Shiny new GUI
 – Sleek, Modern and Fast
 – Configurable
 – Improved Usability
 – Provides aggregation capabilities for big data and scale
 – Leveraging math and stat expertise from IMSL

• Working with customers through early access programs
 – Customer input is key to the success of both programs
TotalView debugs 786,432 cores. Climb with Rogue Wave towards exacale.
Some more details on the 786,432 core test

- The test was performed on 48 racks of Sequoia
- The test code
 - Implements a Jacobi Linear Equation Solver
 - The test code is a hybrid MPI + OpenMP code
 - 16 threads per process, one process per node
- The test operations
 - Start up
 - Setting breakpoints / removing breakpoints
 - Single stepping all threads
- Tests performed at a variety of scales to understand scalability
Second test - Oversubscription

• Same framework
 – same code
 – same machine

• Oversubscription
 – Scheduled more than one thread per physical core
 – This is a reasonable use case since the BG/Q supports 4 logical threads per core

• TotalView Debugged 1,048,576 threads
What is ThreadSpotter?

• Runtime Cache Performance Optimization Tool: Tune into the Multi-Core Era
 – Realize More of the Performance Offered by Multi/Many-Core Chips
 – Quickly Detects and Prioritizes Issues -- and then Provides Usable Advice!
 • Brings Cache Performance Into Reach for Every Developer
 • Makes Experienced Cache Optimizers Hyper-Efficient

• Features
 – Supports Linux x86/x86-64 & Windows
 – Any compiled code
 – Runtime Analysis
 • Low overhead
 – Cache Modeling
 • Prioritizes Issues
 • Identifies Problem Lines of Code
 – Provides Advice
 • Explanations
 • Examples
 • Detailed statistics (if desired)
Simple modifications can make a big difference

<table>
<thead>
<tr>
<th>Program A</th>
<th>Program B</th>
</tr>
</thead>
<tbody>
<tr>
<td>struct DATA</td>
<td>struct DATA</td>
</tr>
<tr>
<td>{</td>
<td>{</td>
</tr>
<tr>
<td>int a;</td>
<td>int a;</td>
</tr>
<tr>
<td>int b;</td>
<td>int b;</td>
</tr>
<tr>
<td>int c;</td>
<td>int c;</td>
</tr>
<tr>
<td>int d;</td>
<td>int d;</td>
</tr>
<tr>
<td>}</td>
<td>}</td>
</tr>
<tr>
<td>DATA * pMyData;</td>
<td>DATA * pMyData;</td>
</tr>
<tr>
<td>for (long i=0; i<1010241024; i++)</td>
<td>for (long i=0; i<1010241024; i++)</td>
</tr>
<tr>
<td>{</td>
<td>{</td>
</tr>
<tr>
<td>pMyData[i].a = pMyData[i].b;</td>
<td>pMyData[i].a = pMyData[i].b;</td>
</tr>
<tr>
<td>}</td>
<td>}</td>
</tr>
</tbody>
</table>

Partially Used Structures
Partially Used Structures

Defined data structure includes a, b, c, d... but only uses a & b

Redefined data structure includes a, b, a, b, a, b... c, d are elsewhere.
Other opportunities for optimization include

- Alignment Problems
- False Sharing
- Excessive communication (cache coherence) traffic
- Temporal locality issues
- Spatial locality issues
- Loop fusion
Recent improvements to ThreadSpotter

• Improved parallel support
 – Support for sampling all MPI processes in an MPI job
 – Cray XT, XE, XK Support
 • ALPS, SLURM and Torque
 – Continued additions to the processor library
 • Including cross-processor analysis
Next release: Improving ThreadSpotter MPI support

• Launchmon
 – Provides scalable mechanism for launching the tool in HPC clusters
 – Allows for coordination and synchronization of sampler activity
 • Will reduce “load balancing” bias that might otherwise be introduced by uncoordinated burst sampling with ThreadSpotter
 – Parallel framework can also be used for post-sampling processing

• Clustering Analysis
 – Some level of variability in sample results across the run
 • However the bulk of the results will be similar
 – Identify clusters of similar performance data
 – Present a small number (2-5) of reports that represent those clusters
 – Cluster analysis is done in parallel right after the sampling is completed
ThreadSpotter work towards supporting the Xeon Phi

- Xeon Phi has an interesting cache architecture
 - L1 & L2 caches for each core
 - The set of all the L2 sometimes described as “shared”
 - L2 caches organized around a ring-shaped bus
 - Duplication of data referenced by more than one
 - Successful cache utilization is important to achieving performance
- Modeling and analysis of this cache architecture
- Sampler
 - Updated for Xeon Phi vector instructions
 - Scaling up the sampler for many-core thread parallelism
- Project is still ongoing
Thanks!

• Talk to us here at CUG

• Contact me at: chris.gottbrath@roguewave.com
 – Sign up for the TotalView 8.12 beta (Xeon Phi)
 – Learn more about ThreadSpotter
 – Feedback, suggestions, use cases

• Learn more at: www.roguewave.com
 – White papers
 – Product Documentation
 – Videos
 – Product evaluation