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Abstract— Intel® Xeon® Phi™ coprocessors present an exciting 
opportunity for Cray users to take advantage of many-core 
processor technology. Since the Intel Xeon Phi coprocessor 
shares many architectural features and much of the 
development tool chain with multi-core Intel Xeon processors, 
it is generally fairly easy to migrate a program to the Intel 
Xeon Phi coprocessor. However, to fully leverage the Intel 
Xeon Phi coprocessor, a new level of parallelism needs to be 
expressed which may require significantly re-thinking 
algorithms. Scientists need tools that support debugging and 
optimizing hybrid MPI/OpenMP parallel applications that 
may have dozens or even hundreds of threads per node.  

This paper will discuss how recent upgrades to TotalView® and 
ThreadSpotter™ are setting the stage for Cray users to adopt 
the Intel Xeon Phi coprocessor with confidence. 
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I. INTRODUCTION 
The Intel Xeon Phi coprocessor is a new environment in 

which Cray users may find themselves debugging and 
optimizing. The Intel Xeon Phi is an instance of what Intel 
calls the Many Integrated Core (MIC) architecture. As its 
name suggests the Xeon Phi is a many-core (rather than 
multi-core) processor and it sports >50 separate processor 
cores each of which is capable of executing up to 4 thread 
contexts. Programs can be written either to run directly on 
the Intel Xeon Phi coprocessor, treating it as a >50 core 
node, or on the host processor with which computationally 
intense code is offloaded to one or more Intel Xeon Phi 
coprocessor cards through the use of offloading extensions, 
such as Intel’s LEO (Language Extensions for Offloading).  

With Cray’s adoption of the Intel Xeon Phi coprocessor 
as an accelerator on the Cray XC, users will be looking at a 
wide range of codes and considering the challenges of 
migrating applications to run on the Intel Xeon Phi 
coprocessor. This paper will review Rogue Wave’s key 
debugging and optimization technologies in the context of 
the Cray XC and with respect to the Intel Xeon Phi 
processor.  

The TotalView debugger supports source-code 
debugging of C, C++, and Fortran across the many nodes of 
Cray XT, XE, XK, and XC series supercomputers. Previous 

versions of TotalView are still supported on Cray X1 
supercomputers. The paper will highlight how Rogue Wave 
has adapted TotalView to work with the Intel Xeon Phi 
coprocessor, which is offered on the Cray XC.  

ThreadSpotter provides users with a detailed view of how 
their programs’ execution interacts with the CPU cache, 
which resides between the main memory and CPU. Even 
relatively slow processors can perform many computational 
operations in the same amount of time that it takes to request 
one bit of data from the memory, therefore efficient use of 
the cache memory is vital in achieving high performance 
across a wide range of supercomputer architectures. This 
paper will briefly introduce ThreadSpotter and discuss work 
that is being undertaken to allow ThreadSpotter to analyze 
programs’ cache memory on the Intel Xeon Phi coprocessor.  

II. DEBUGGING ON THE CRAY XC WITH TOTALVIEW 

A. TotalView for the Cray XT, XE, and XC 
TotalView provides a powerful and intuitive graphical 

source code debugging environment for a variety of different 
supercomputing architectures including the Cray XT, XE, 
and XC. TotalView gives users control over and visibility 
into program execution.  

TotalView provides users control over the program 
through a single debugger interface. Process and thread 
control features allow users to easily synchronize all the 
threads and to exert nuanced control over large parallel jobs. 
The debugger also provides exceptional capabilities for 
controlling thread execution. Breakpoints can be set with 
thread width so that users can more easily work with thread 
parallelism constructs, such as OpenMP parallel for loops.  

TotalView features the ability to attach to an arbitrary 
subset of a parallel job and change that subset on the fly. 
TotalView gracefully handles MPMD parallel jobs – with 
automatically generated groups that span the entire job and 
other groups that operate only on the subsets that share 
executable images. 

Variables and complex data structures can be examined 
and navigated with an intuitive variable display, data 
visualization, and exploration capability. This display 
capability makes type casting, working with pointers, and 
nested aggregate data types extremely easy and 
straightforward.  



Since many scientific codes feature very important array-
type data, TotalView provides a powerful array display. 
Arrays can be sliced and displayed using arbitrary striding 
using Fortran slice notation (even in C). Array data can be 
displayed in three ways. 

 
1. As memory-ordered elements in list form; 
2. 2D slices displayed in “spreadsheet” format; and 
3. Represented graphically with line plots and surfaces.  

 
TotalView excels in working with arrays of aggregate 

data types. The user interface features a “dive-in-all” 
capability that makes extracting numerical fields from array- 
of-aggregate type structures very easy.  

Data abstraction with tools like C++ template libraries 
can be a great thing, but it can also serve to unintentionally 
obfuscate what is happening in a program when being 
debugged. Rogue Wave provides TotalView with automatic 
translation support for STL List, Map, Vect, and String 
classes. Support for Set, Multi-set, and Multi-map are in the 
8.12 version, which is currently available for beta preview. 
These objects are transformed automatically into easy to 
work with array-, structure-, or array-of-structure type 
objects. Furthermore TotalView provides the user with the 
ability to transform their custom data types in the same 
manner. 

 
1) MPI debugging 

TotalView is integrated with the Cray aprun command. 
The user manual provides greater details, but for a high level 
overview, users can simply use qsub to create an interactive 
partition on the Cray system and then run:  

  
 TotalView aprun –a –n<num> a.out 
   

The debugger queries aprun for information about all the 
MPI tasks that make up the mpi job and then attaches to all 
of them.  

Rogue Wave Software is currently collaborating with 
specific customers on a scalability project. The project team 
members implemented a server tree network using the 
MRnet technology. The tree allows for scalable broadcast 
and reduction techniques to be used on communication 
between the debugger and debug agent processes.  

This work is being done across three platforms: the IBM 
Blue Gene, Cray XE, and x86 based Linux + Infiniband. The 
MRnet infrastructure is already in place and users can 
receive a technical preview of TotalView that includes the 
MRnet capability by contacting the author. MRnet will be 
fully folded into the product with documentation in a future 
release.  

Optimization of TotalView operational performance 
using the new infrastructure is ongoing. Rogue Wave is 
working with a range of different applications and tuning the 
debugger’s performance with respect to those applications.  

While a variety of different tests has been run at different 
scales and on different architectures, TotalView has already 
been able to debug more than 1 million threads on the Blue 
Gene/Q.  

2) Memory Debugging 
TotalView includes the MemoryScape memory 

debugger that gives users the ability to detect memory leaks, 
heap memory allocation overruns, and execute heap 
memory analysis and optimization. MemoryScape is 
integrated into TotalView and supports performing memory 
analysis across the many tasks of an MPI job.  

3) Reverse Debugging 
One of the most unique features of TotalView is its 

reverse debugging feature. Reverse debugging allows 
running the program backwards from the point where the 
failure appears to the root cause of that failure.  

TotalView’s reverse debugging feature is called 
ReplayEngine, which allows users to step backwards 
through the program’s execution history utilizing a record 
and deterministic replay technique. As the program runs, the 
tool operates in a record mode in which program execution 
is recorded, with particular attention paid to non-
deterministic inputs such as I/O, thread context switches, 
and operating system calls. If at any point the user wishes to 
see the previous state of the process, the tool arranges to 
place a synthetic unix process in that same state. It does this 
by creating a copy of the code and data state that was saved 
earlier and then re-executing the code deterministically 
along exactly the same execution trajectory that the program 
took during the record phase.  

All of this is managed behind the scenes by 
ReplayEngine. The user interface simply shows “backwards 
step” and “backwards continue” commands that can be used 
to take the process back to earlier states. Once the process 
has been replayed to the desired state all the usual process 
and thread inspection capabilities are usable. Any variable 
or data (even those that the user did not previously know 
would be important) can be inspected during this replay 
process.  

The deterministic nature of this replay process makes it 
especially helpful to track down hard to reproduce or 
intermittent bugs. These defects, which might otherwise 
take days or weeks to diagnose without TotalView, can 
sometimes be resolved within a single session with 
ReplayEngine. 

4) Scripting with TVScript 
TotalView is most often used for interactive graphical 

debugging, but it also is completely scriptable with a TCL 
based CLI. This can be used to automate repetitive tasks and 
drive completely non-interactive debugging sessions.  

TVScript is a simple way to drive such non-interactive 
debugging sessions. It is a driver script, written in the 
TotalView TCL command line interface language, which 
takes a target executable and a set of instructions about 
where to set breakpoints and then drives the target program 
towards completion. TVScript has an event-action model. 
An event is triggered each time that a program hits a 
breakpoint. Other events occur when the program reaches 
certain other specifically defined states, such as program 
completion, segmentation violations, or memory errors. 



TVScript driver program can take a variety of different 
actions in response to these events.  

The most frequent action is to report information to a 
debugging logfile, which can be parsed after the fact to 
diagnose the behavior of the program. TVScript merges 
some of the benefits and conveniences of “print” style 
debugging with the power and capabilities of a powerful 
interactive debugger.  

MemoryScape, ReplayEngine, and TVScript are fully 
supported for Cray XT, XE, and XC environments.  

B. TotalView Support for the Intel Xeon Phi Coprocessor 
Intel Xeon Phi coprocessors can be used either in an 

accelerator-like mode or in a mode that more closely 
resembles separately addressable multi-core nodes. The 
workflows are a bit different, as are the ways that the Intel 
Xeon Phi coprocessor appears in the user interface. 

Each of those modes of use is briefly discussed below. 
 

1) Treating the Intel Xeon Phi coprocessor as a hosted 
multi-core node 

There are a couple of ways that users can utilize the Intel 
Xeon Phi coprocessor as a multi-core Linux node. The Intel 
Xeon Phi coprocessor runs a separate OS instance, usually a 
special version of Linux, from the OS running on the host 
node. It is usually possible to log directly into that Linux 
instance and run applications there. Code can generally be 
cross-compiled on the host system using the Intel compilers 
by specifying that the desired target architecture is MIC (the 
Intel compiler uses the -mmic flag for this mode). An 
application compiled this way can be manually run in the 
traditional fashion on the Intel Xeon Phi coprocessor. 

Alternately, if a system is set up correctly users can 
utilize mpiexec to run a parallel job. Again, the job will be 
compiled with the -mmic flag and users may need to direct 
the MPI or resource management system to run the MPI 
tasks specifically on the Intel Xeon Phi coprocessors.  

TotalView supports remote debugging and is compatible 
with a variety of MPI launcher programs. Rogue Wave 
needed to adapt TotalView to display the instructions and 
registers used on the MIC architecture. In addition, Rogue 
Wave compiled a variant of the TotalView debug server so 
that it would run on the Intel Xeon Phi coprocessor and to 
provide MPI and remote-system, cross-debugging support 
for MPI. TotalView’s main executable runs on the host 
Linux-x86-64 environment when users are debugging Intel 
Xeon Phi coprocessors. 

Users will need to ensure that their program executable is 
accessible from the host environment. They also need to 
confirm that TotalView is accessible from both the host 
processor and the Intel Xeon Phi coprocessor node. This 
software can be placed on a file-system volume that is 
mounted both on the host and on the Intel Xeon Phi 
coprocessor device. This is not an unusual configuration.  

Then users need to verify that they can directly address 
the Intel Xeon Phi coprocessor device/s on which the 
processes that will be debugged are running.  Users need to 
do this from the machine in which they are planning on 

running TotalView. A user’s debugging session, right now, 
will be limited to the set of Intel Xeon Phi coprocessors that 
they can directly address from the host node. Rogue Wave is 
examining what it might take to support situations in which a 
cluster of host nodes exists, each of which can only address 
its own Intel Xeon Phi coprocessors.   

The final condition is licensing. Those interested can 
contact Rogue Wave to find out if additional tokens are 
needed to debug on Intel Xeon Phi coprocessors.  

If those conditions are met, users can simply direct 
TotalView to debug a remote process, which happens to be 
running on the Intel Xeon Phi coprocessor, or they can 
launch an MPI parallel job on the host machine  

Launching TotalView to debug a native, non-MPI 
application uses a command line such as: 

 
totalview -r <name> ./a.out 
 

The -r flag simply tells the debugger that the target program 
is remotely running on the host named in the name 
parameter. 

Launching TotalView to debug an MPI job uses a 
command line in the form of:  

 
totalview -args mpiexec <mpiexec args> ./a.out  

 
This is the same concept as with many non-Intel Xeon Phi 
coprocessor launch scenarios. Users are starting up mpiexec 
under TotalView and when the parallel job is launched an 
interface is used between the debugger and mpiexec so that 
mpiexec tells the debugger the location of the tasks that 
comprise the job. (Please see the TotalView documentation 
for more example launch strings.) 

In either case the debugging experience that users receive 
on the Intel Xeon Phi coprocessor is very much what would 
be expected while debugging native code on the host 
processor. In the likely event that the program running on the 
Intel Xeon Phi coprocessor uses OpenMP or some other 
threading discipline, users will want to take advantage of 
TotalView’s thread control capabilities.  

 
2) Treating the Intel Xeon Phi coprocessor as an 

accelerator 
The other way that users are encouraged to utilize Intel 

Xeon Phi coprocessors, especially when adapting large 
programs that already run on the host processor, is to take the 
already existing code and simply add directives that provide 
the compiler with hints on how to act if an Intel Xeon Phi 
coprocessor is present, then certain units of work could be 
offloaded to the coprocessor. These extensions are supported 
by the Intel compilers. Other similar models, based on 
language extensions such as OpenACC, OpenCL, and 
OpenMP, are being developed by a variety of vendors.  

TotalView was extended to handle this situation by 
having the capability to recognize when the host program is 
dispatching a new routine to the coprocessor. When it 
recognizes that this is happening, users need to pause the 
application and start up a debug agent on the Intel Xeon Phi 
coprocessor. Behind the scenes, the debugging process is 



almost exactly like the native, non-mpi scenario outlined 
above, except that TotalView ends up attached to both a 
local process (the host process that dispatched the work to 
the Intel coprocessor) and a process running on the 
coprocessor (the one that resulted from the dispatch of 
work). The host process and offload process will show up in 
the debugger as separate processes running on distinct nodes.  

The Intel compiler will generally create two copies of 
code designated to be offloaded to the Intel Xeon Phi 
coprocessor. One copy is compiled for the host Xeon 
processor and is used in the event that the code is run on a 
machine without an Intel Xeon Phi coprocessor. The other 
copy is compiled to run on the Intel Xeon Phi coprocessor. 
These two distinct function implementations (for two 
different processor architectures) are conceptually the same 
to the user.  

TotalView recognizes this fact by ensuring that 
breakpoints are shared across both function instances. 
Therefore, users can set breakpoints on offloaded functions 
in the host process even before work is dispatched. When the 
program later runs and the function is loaded on the Intel 
Xeon Phi coprocessor, TotalView recognizes that these 
functions are the same and will automatically apply a 
corresponding breakpoint to the program running in the 
coprocessor.  

In terms of features, there really is not a lot of difference 
between offload and remote native mode debugging with 
TotalView on the Intel Xeon Phi coprocessor, except that 
users may end up actively debugging both on the host and 
offload processes.  

TotalView support for Intel Xeon Phi coprocessors was 
provided in an early access form in 8.11 and is a fully-
available feature in 8.12, which is now in beta. The 
following describes the current level of functionality; 
however, this is an area where Rogue Wave is putting a fair 
amount of effort, so future versions are likely to have 
additional capability. 

 There are a few limitations for debugging with 
TotalView on the Intel Xeon Phi coprocessor. Two major 
features are not available: ReplayEngine and MemoryScape. 
MemoryScape should be delivered within the next few 
releases, but ReplayEngine support is yet to be determined. 

Conditional watchpoints are not yet supported for the 
Intel Xeon Phi coprocessor. Users can utilize watchpoints 
and conditional evaluation points, but not yet conditional 
watchpoints. Finally, there are a few Intel Xeon Phi 
coprocessor specific instructions and registers that are not 
being disassembled and displayed correctly at this time. See 
the release notes and product documentation for details. 

 
  

III. OPTIMIZING ON THE CRAY XC WITH 
THREADSPOTTER 

A. ThreadSpotter for the Cray XE and XC 
ThreadSpotter is a CPU cache analysis tool that monitors 

the memory access pattern of a running program and 
generates a rich and detailed report that can be used to guide 

cache memory optimization. ThreadSpotter provides a more 
detailed analysis of programs’ behavior than what is 
generally provided by hardware-counter driven techniques. 
A profiler will tell users where there is code that consumes 
wall-clock time without indicating why, similarly a hardware 
counter tool will tell users which lines are causing cache 
misses, but not why.  

ThreadSpotter carries this analysis to the next level by 
showing users places in code where different categories of 
problems are occurring. It will, for example, flag sections of 
the code in which a heavily accessed data structure contains 
unused fields. It will clearly tell users if a significant fraction 
of the memory bandwidth is being consumed to move data 
into the cache simply because it lays adjacent to critical data.  

1) Cache Coherency 
Caches become involved in data movement between 

threads. Caches in multicore and many-core processors, such 
as on Xeon host CPUs and on the Intel Xeon Phi coprocessor 
ensure that data written to a given cache line (which 
represents a memory location) will be read when another 
core subsequently tries to read data associated with that same 
memory location.  

This is done through a status field and a coherency 
protocol. Each processor has its own L1 cache and a shared 
L2 cache. If two threads running on different cores (cores A 
and B) read the same data at address X, then both A and B 
L1 caches will have copies of the cache line containing 
copies of the data at address X. If one of those processors, 
i.e. processor A, overwrites the value at address X, then the 
cache line which contains X will exist in A’s L1 cache with 
the new value and it will have a status field that reflects that 
the cache now contains unique data. This in turn causes a 
message to be sent out to the other cache. This message tells 
the L1 cache belonging to core B that the cache data it has 
for the line containing X is now invalid. The only 
authoritative record of the value at X exists in L1’s cache.  

ThreadSpotter analyzes these situations and can highlight 
thread communication hotspots (in which there is a lot of 
coherency traffic on the cache), as well as more subtle 
effects, such as false sharing. False sharing can occur when 
two threads are not modifying the same data, but are actually 
modifying two distinct variables that simply happen to reside 
on the same cache line. 

2) ThreadSpotter and Multi-node Parallelism  
Since the CPU cache operates between the CPU and the 

main memory, ThreadSpotter is primarily designed to 
provide analysis of on-node performance issues. However, it 
is frequently useful for developers to use ThreadSpotter to 
try to understand cache behavior in HPC applications that 
run across multiple nodes of a cluster-style supercomputer. 
In order to support this, Rogue Wave has been working on 
improving the support for sampling and analyzing multiple 
processes.  

The first stage of that work, which was delivered in 
ThreadSpotter 2012.2, was to provide scripts and 
documentation to support sampling of multi-node, 
distributed MPI applications on a variety of different 
architectures, including the Cray XE. Each instance of the 
ThreadSpotter sampler program is functionally distinct, and 



the challenge was to ensure that many of the samplers could 
execute at the same time without overwriting temporary 
files. Rogue Wave also made minor changes to make it easy 
to generate uniquely named sample files for later analysis. In 
addition, Rogue Wave provided documentation, with 
examples, of how ThreadSpotter is to be used with mpirun 
on a vanilla Linux cluster, apron, and either Torque PBS or 
Slurm.  

The second stage of this work includes two components: 
First, Rogue Wave is implementing a distributed solution for 
launching and controlling the sampling mechanism using 
launchMON. This will give Rogue Wave a way to 
coordinate sample gathering across the entire parallel 
application. Second, Rogue Wave is developing and 
implementing a way to analyze thousands of distinct sample 
files to identify a small number of equivalence sets. These 
are sets of sample files that appear to share a lot of the same 
information. This will allow developers to effectively 
optimize cache - even with datasets that can only be run at 
large scale.  

B. Adapting ThreadSpotter for the Intel Xeon Phi 
coprocessor 
Rogue Wave is working to adapt ThreadSpotter for the 

Intel Xeon Phi coprocessor and is looking forward to 
demonstrating early versions of this work at ISC 2013. The 
work involves two distinct modifications. First, Rogue Wave 
adapted the sampling mechanism that ThreadSpotter uses to 
work natively on the Intel Xeon Phi coprocessor. Second, 
Rogue Wave extended the cache model that ThreadSpotter 
uses to be able to properly accommodate the Intel Xeon Phi 
coprocessor’s cache architecture.  

Adapting the sampler involved overcoming several 
different challenges. Originally designed for use on Xeon 
host processors, the sampler takes advantage of some vector 

instructions that are not included in the set of vector 
instructions available on the Intel Xeon Phi coprocessor. 
Rogue Wave is also investigating the implications of scaling 
up the sampler to be able to sample a large number of 
threads, which is expected to be common on the Intel Xeon 
Phi coprocessor. When a multithreaded program runs, there 
are data-structures in ThreadSpotter that need to be updated 
from more than one thread. While this is currently done via 
atomic operations, there are still scaling issues with data 
structure access that need to be overcome.  

ThreadSpotter uses a statistical model of data flow 
through the cache architecture during program execution in 
order to perform analysis and issue detection. The Intel Xeon 
Phi coprocessor has >50 cores and each core has a private L1 
cache and a shared L2 cache. The L2 caches work almost 
like a single shared L2 cache, in that information found in 
any core’s L2 cache can be quickly transmitted to any core. 
However, unlike a more traditional shared L2 cache, this L2 
cache has the property of allowing duplication. The same 
cache line might be duplicated across more than one of the 
L2 caches. ThreadSpotter needs to model this behavior to 
avoid over-estimating the effective capacity of the L2 cache.  

IV. CONCLUSION 
TotalView provides a seamless and polished Intel Xeon 

Phi coprocessor debugging experience on the Cray XC. 
ThreadSpotter is currently being enhanced for the Intel Xeon 
Phi coprocessor and will give users visibility into what is 
happening as data flows through the many-core 
coprocessor’s unique distributed cache architecture. These 
tools allow Cray users to more easily and efficiently port and 
maintain scientific codes for the Cray XE, Cray XC, and for 
any machine accelerated with an Intel Xeon Phi coprocessor.  

 

 
 
 
 

   
 

 


