
Debugging and Optimizing Programs Accelerated with Intel® Xeon® Phi™
Coprocessors

Chris Gottbrath
Rogue Wave Software

Boulder, CO
Chris.Gottbrath@roguewave.com

Abstract— Intel® Xeon® Phi™ coprocessors present an exciting
opportunity for Cray users to take advantage of many-core
processor technology. Since the Intel Xeon Phi coprocessor
shares many architectural features and much of the
development tool chain with multi-core Intel Xeon processors,
it is generally fairly easy to migrate a program to the Intel
Xeon Phi coprocessor. However, to fully leverage the Intel
Xeon Phi coprocessor, a new level of parallelism needs to be
expressed which may require significantly re-thinking
algorithms. Scientists need tools that support debugging and
optimizing hybrid MPI/OpenMP parallel applications that
may have dozens or even hundreds of threads per node.

This paper will discuss how recent upgrades to TotalView® and
ThreadSpotter™ are setting the stage for Cray users to adopt
the Intel Xeon Phi coprocessor with confidence.

Keywords—Debugging, Optimization

I. INTRODUCTION
The Intel Xeon Phi coprocessor is a new environment in

which Cray users may find themselves debugging and
optimizing. The Intel Xeon Phi is an instance of what Intel
calls the Many Integrated Core (MIC) architecture. As its
name suggests the Xeon Phi is a many-core (rather than
multi-core) processor and it sports >50 separate processor
cores each of which is capable of executing up to 4 thread
contexts. Programs can be written either to run directly on
the Intel Xeon Phi coprocessor, treating it as a >50 core
node, or on the host processor with which computationally
intense code is offloaded to one or more Intel Xeon Phi
coprocessor cards through the use of offloading extensions,
such as Intel’s LEO (Language Extensions for Offloading).

With Cray’s adoption of the Intel Xeon Phi coprocessor
as an accelerator on the Cray XC, users will be looking at a
wide range of codes and considering the challenges of
migrating applications to run on the Intel Xeon Phi
coprocessor. This paper will review Rogue Wave’s key
debugging and optimization technologies in the context of
the Cray XC and with respect to the Intel Xeon Phi
processor.

The TotalView debugger supports source-code
debugging of C, C++, and Fortran across the many nodes of
Cray XT, XE, XK, and XC series supercomputers. Previous

versions of TotalView are still supported on Cray X1
supercomputers. The paper will highlight how Rogue Wave
has adapted TotalView to work with the Intel Xeon Phi
coprocessor, which is offered on the Cray XC.

ThreadSpotter provides users with a detailed view of how
their programs’ execution interacts with the CPU cache,
which resides between the main memory and CPU. Even
relatively slow processors can perform many computational
operations in the same amount of time that it takes to request
one bit of data from the memory, therefore efficient use of
the cache memory is vital in achieving high performance
across a wide range of supercomputer architectures. This
paper will briefly introduce ThreadSpotter and discuss work
that is being undertaken to allow ThreadSpotter to analyze
programs’ cache memory on the Intel Xeon Phi coprocessor.

II. DEBUGGING ON THE CRAY XC WITH TOTALVIEW

A. TotalView for the Cray XT, XE, and XC
TotalView provides a powerful and intuitive graphical

source code debugging environment for a variety of different
supercomputing architectures including the Cray XT, XE,
and XC. TotalView gives users control over and visibility
into program execution.

TotalView provides users control over the program
through a single debugger interface. Process and thread
control features allow users to easily synchronize all the
threads and to exert nuanced control over large parallel jobs.
The debugger also provides exceptional capabilities for
controlling thread execution. Breakpoints can be set with
thread width so that users can more easily work with thread
parallelism constructs, such as OpenMP parallel for loops.

TotalView features the ability to attach to an arbitrary
subset of a parallel job and change that subset on the fly.
TotalView gracefully handles MPMD parallel jobs – with
automatically generated groups that span the entire job and
other groups that operate only on the subsets that share
executable images.

Variables and complex data structures can be examined
and navigated with an intuitive variable display, data
visualization, and exploration capability. This display
capability makes type casting, working with pointers, and
nested aggregate data types extremely easy and
straightforward.

Since many scientific codes feature very important array-
type data, TotalView provides a powerful array display.
Arrays can be sliced and displayed using arbitrary striding
using Fortran slice notation (even in C). Array data can be
displayed in three ways.

1. As memory-ordered elements in list form;
2. 2D slices displayed in “spreadsheet” format; and
3. Represented graphically with line plots and surfaces.

TotalView excels in working with arrays of aggregate

data types. The user interface features a “dive-in-all”
capability that makes extracting numerical fields from array-
of-aggregate type structures very easy.

Data abstraction with tools like C++ template libraries
can be a great thing, but it can also serve to unintentionally
obfuscate what is happening in a program when being
debugged. Rogue Wave provides TotalView with automatic
translation support for STL List, Map, Vect, and String
classes. Support for Set, Multi-set, and Multi-map are in the
8.12 version, which is currently available for beta preview.
These objects are transformed automatically into easy to
work with array-, structure-, or array-of-structure type
objects. Furthermore TotalView provides the user with the
ability to transform their custom data types in the same
manner.

1) MPI debugging

TotalView is integrated with the Cray aprun command.
The user manual provides greater details, but for a high level
overview, users can simply use qsub to create an interactive
partition on the Cray system and then run:

 TotalView aprun –a –n<num> a.out

The debugger queries aprun for information about all the
MPI tasks that make up the mpi job and then attaches to all
of them.

Rogue Wave Software is currently collaborating with
specific customers on a scalability project. The project team
members implemented a server tree network using the
MRnet technology. The tree allows for scalable broadcast
and reduction techniques to be used on communication
between the debugger and debug agent processes.

This work is being done across three platforms: the IBM
Blue Gene, Cray XE, and x86 based Linux + Infiniband. The
MRnet infrastructure is already in place and users can
receive a technical preview of TotalView that includes the
MRnet capability by contacting the author. MRnet will be
fully folded into the product with documentation in a future
release.

Optimization of TotalView operational performance
using the new infrastructure is ongoing. Rogue Wave is
working with a range of different applications and tuning the
debugger’s performance with respect to those applications.

While a variety of different tests has been run at different
scales and on different architectures, TotalView has already
been able to debug more than 1 million threads on the Blue
Gene/Q.

2) Memory Debugging
TotalView includes the MemoryScape memory

debugger that gives users the ability to detect memory leaks,
heap memory allocation overruns, and execute heap
memory analysis and optimization. MemoryScape is
integrated into TotalView and supports performing memory
analysis across the many tasks of an MPI job.

3) Reverse Debugging
One of the most unique features of TotalView is its

reverse debugging feature. Reverse debugging allows
running the program backwards from the point where the
failure appears to the root cause of that failure.

TotalView’s reverse debugging feature is called
ReplayEngine, which allows users to step backwards
through the program’s execution history utilizing a record
and deterministic replay technique. As the program runs, the
tool operates in a record mode in which program execution
is recorded, with particular attention paid to non-
deterministic inputs such as I/O, thread context switches,
and operating system calls. If at any point the user wishes to
see the previous state of the process, the tool arranges to
place a synthetic unix process in that same state. It does this
by creating a copy of the code and data state that was saved
earlier and then re-executing the code deterministically
along exactly the same execution trajectory that the program
took during the record phase.

All of this is managed behind the scenes by
ReplayEngine. The user interface simply shows “backwards
step” and “backwards continue” commands that can be used
to take the process back to earlier states. Once the process
has been replayed to the desired state all the usual process
and thread inspection capabilities are usable. Any variable
or data (even those that the user did not previously know
would be important) can be inspected during this replay
process.

The deterministic nature of this replay process makes it
especially helpful to track down hard to reproduce or
intermittent bugs. These defects, which might otherwise
take days or weeks to diagnose without TotalView, can
sometimes be resolved within a single session with
ReplayEngine.

4) Scripting with TVScript
TotalView is most often used for interactive graphical

debugging, but it also is completely scriptable with a TCL
based CLI. This can be used to automate repetitive tasks and
drive completely non-interactive debugging sessions.

TVScript is a simple way to drive such non-interactive
debugging sessions. It is a driver script, written in the
TotalView TCL command line interface language, which
takes a target executable and a set of instructions about
where to set breakpoints and then drives the target program
towards completion. TVScript has an event-action model.
An event is triggered each time that a program hits a
breakpoint. Other events occur when the program reaches
certain other specifically defined states, such as program
completion, segmentation violations, or memory errors.

TVScript driver program can take a variety of different
actions in response to these events.

The most frequent action is to report information to a
debugging logfile, which can be parsed after the fact to
diagnose the behavior of the program. TVScript merges
some of the benefits and conveniences of “print” style
debugging with the power and capabilities of a powerful
interactive debugger.

MemoryScape, ReplayEngine, and TVScript are fully
supported for Cray XT, XE, and XC environments.

B. TotalView Support for the Intel Xeon Phi Coprocessor
Intel Xeon Phi coprocessors can be used either in an

accelerator-like mode or in a mode that more closely
resembles separately addressable multi-core nodes. The
workflows are a bit different, as are the ways that the Intel
Xeon Phi coprocessor appears in the user interface.

Each of those modes of use is briefly discussed below.

1) Treating the Intel Xeon Phi coprocessor as a hosted
multi-core node

There are a couple of ways that users can utilize the Intel
Xeon Phi coprocessor as a multi-core Linux node. The Intel
Xeon Phi coprocessor runs a separate OS instance, usually a
special version of Linux, from the OS running on the host
node. It is usually possible to log directly into that Linux
instance and run applications there. Code can generally be
cross-compiled on the host system using the Intel compilers
by specifying that the desired target architecture is MIC (the
Intel compiler uses the -mmic flag for this mode). An
application compiled this way can be manually run in the
traditional fashion on the Intel Xeon Phi coprocessor.

Alternately, if a system is set up correctly users can
utilize mpiexec to run a parallel job. Again, the job will be
compiled with the -mmic flag and users may need to direct
the MPI or resource management system to run the MPI
tasks specifically on the Intel Xeon Phi coprocessors.

TotalView supports remote debugging and is compatible
with a variety of MPI launcher programs. Rogue Wave
needed to adapt TotalView to display the instructions and
registers used on the MIC architecture. In addition, Rogue
Wave compiled a variant of the TotalView debug server so
that it would run on the Intel Xeon Phi coprocessor and to
provide MPI and remote-system, cross-debugging support
for MPI. TotalView’s main executable runs on the host
Linux-x86-64 environment when users are debugging Intel
Xeon Phi coprocessors.

Users will need to ensure that their program executable is
accessible from the host environment. They also need to
confirm that TotalView is accessible from both the host
processor and the Intel Xeon Phi coprocessor node. This
software can be placed on a file-system volume that is
mounted both on the host and on the Intel Xeon Phi
coprocessor device. This is not an unusual configuration.

Then users need to verify that they can directly address
the Intel Xeon Phi coprocessor device/s on which the
processes that will be debugged are running. Users need to
do this from the machine in which they are planning on

running TotalView. A user’s debugging session, right now,
will be limited to the set of Intel Xeon Phi coprocessors that
they can directly address from the host node. Rogue Wave is
examining what it might take to support situations in which a
cluster of host nodes exists, each of which can only address
its own Intel Xeon Phi coprocessors.

The final condition is licensing. Those interested can
contact Rogue Wave to find out if additional tokens are
needed to debug on Intel Xeon Phi coprocessors.

If those conditions are met, users can simply direct
TotalView to debug a remote process, which happens to be
running on the Intel Xeon Phi coprocessor, or they can
launch an MPI parallel job on the host machine

Launching TotalView to debug a native, non-MPI
application uses a command line such as:

totalview -r <name> ./a.out

The -r flag simply tells the debugger that the target program
is remotely running on the host named in the name
parameter.

Launching TotalView to debug an MPI job uses a
command line in the form of:

totalview -args mpiexec <mpiexec args> ./a.out

This is the same concept as with many non-Intel Xeon Phi
coprocessor launch scenarios. Users are starting up mpiexec
under TotalView and when the parallel job is launched an
interface is used between the debugger and mpiexec so that
mpiexec tells the debugger the location of the tasks that
comprise the job. (Please see the TotalView documentation
for more example launch strings.)

In either case the debugging experience that users receive
on the Intel Xeon Phi coprocessor is very much what would
be expected while debugging native code on the host
processor. In the likely event that the program running on the
Intel Xeon Phi coprocessor uses OpenMP or some other
threading discipline, users will want to take advantage of
TotalView’s thread control capabilities.

2) Treating the Intel Xeon Phi coprocessor as an

accelerator
The other way that users are encouraged to utilize Intel

Xeon Phi coprocessors, especially when adapting large
programs that already run on the host processor, is to take the
already existing code and simply add directives that provide
the compiler with hints on how to act if an Intel Xeon Phi
coprocessor is present, then certain units of work could be
offloaded to the coprocessor. These extensions are supported
by the Intel compilers. Other similar models, based on
language extensions such as OpenACC, OpenCL, and
OpenMP, are being developed by a variety of vendors.

TotalView was extended to handle this situation by
having the capability to recognize when the host program is
dispatching a new routine to the coprocessor. When it
recognizes that this is happening, users need to pause the
application and start up a debug agent on the Intel Xeon Phi
coprocessor. Behind the scenes, the debugging process is

almost exactly like the native, non-mpi scenario outlined
above, except that TotalView ends up attached to both a
local process (the host process that dispatched the work to
the Intel coprocessor) and a process running on the
coprocessor (the one that resulted from the dispatch of
work). The host process and offload process will show up in
the debugger as separate processes running on distinct nodes.

The Intel compiler will generally create two copies of
code designated to be offloaded to the Intel Xeon Phi
coprocessor. One copy is compiled for the host Xeon
processor and is used in the event that the code is run on a
machine without an Intel Xeon Phi coprocessor. The other
copy is compiled to run on the Intel Xeon Phi coprocessor.
These two distinct function implementations (for two
different processor architectures) are conceptually the same
to the user.

TotalView recognizes this fact by ensuring that
breakpoints are shared across both function instances.
Therefore, users can set breakpoints on offloaded functions
in the host process even before work is dispatched. When the
program later runs and the function is loaded on the Intel
Xeon Phi coprocessor, TotalView recognizes that these
functions are the same and will automatically apply a
corresponding breakpoint to the program running in the
coprocessor.

In terms of features, there really is not a lot of difference
between offload and remote native mode debugging with
TotalView on the Intel Xeon Phi coprocessor, except that
users may end up actively debugging both on the host and
offload processes.

TotalView support for Intel Xeon Phi coprocessors was
provided in an early access form in 8.11 and is a fully-
available feature in 8.12, which is now in beta. The
following describes the current level of functionality;
however, this is an area where Rogue Wave is putting a fair
amount of effort, so future versions are likely to have
additional capability.

 There are a few limitations for debugging with
TotalView on the Intel Xeon Phi coprocessor. Two major
features are not available: ReplayEngine and MemoryScape.
MemoryScape should be delivered within the next few
releases, but ReplayEngine support is yet to be determined.

Conditional watchpoints are not yet supported for the
Intel Xeon Phi coprocessor. Users can utilize watchpoints
and conditional evaluation points, but not yet conditional
watchpoints. Finally, there are a few Intel Xeon Phi
coprocessor specific instructions and registers that are not
being disassembled and displayed correctly at this time. See
the release notes and product documentation for details.

III. OPTIMIZING ON THE CRAY XC WITH
THREADSPOTTER

A. ThreadSpotter for the Cray XE and XC
ThreadSpotter is a CPU cache analysis tool that monitors

the memory access pattern of a running program and
generates a rich and detailed report that can be used to guide

cache memory optimization. ThreadSpotter provides a more
detailed analysis of programs’ behavior than what is
generally provided by hardware-counter driven techniques.
A profiler will tell users where there is code that consumes
wall-clock time without indicating why, similarly a hardware
counter tool will tell users which lines are causing cache
misses, but not why.

ThreadSpotter carries this analysis to the next level by
showing users places in code where different categories of
problems are occurring. It will, for example, flag sections of
the code in which a heavily accessed data structure contains
unused fields. It will clearly tell users if a significant fraction
of the memory bandwidth is being consumed to move data
into the cache simply because it lays adjacent to critical data.

1) Cache Coherency
Caches become involved in data movement between

threads. Caches in multicore and many-core processors, such
as on Xeon host CPUs and on the Intel Xeon Phi coprocessor
ensure that data written to a given cache line (which
represents a memory location) will be read when another
core subsequently tries to read data associated with that same
memory location.

This is done through a status field and a coherency
protocol. Each processor has its own L1 cache and a shared
L2 cache. If two threads running on different cores (cores A
and B) read the same data at address X, then both A and B
L1 caches will have copies of the cache line containing
copies of the data at address X. If one of those processors,
i.e. processor A, overwrites the value at address X, then the
cache line which contains X will exist in A’s L1 cache with
the new value and it will have a status field that reflects that
the cache now contains unique data. This in turn causes a
message to be sent out to the other cache. This message tells
the L1 cache belonging to core B that the cache data it has
for the line containing X is now invalid. The only
authoritative record of the value at X exists in L1’s cache.

ThreadSpotter analyzes these situations and can highlight
thread communication hotspots (in which there is a lot of
coherency traffic on the cache), as well as more subtle
effects, such as false sharing. False sharing can occur when
two threads are not modifying the same data, but are actually
modifying two distinct variables that simply happen to reside
on the same cache line.

2) ThreadSpotter and Multi-node Parallelism
Since the CPU cache operates between the CPU and the

main memory, ThreadSpotter is primarily designed to
provide analysis of on-node performance issues. However, it
is frequently useful for developers to use ThreadSpotter to
try to understand cache behavior in HPC applications that
run across multiple nodes of a cluster-style supercomputer.
In order to support this, Rogue Wave has been working on
improving the support for sampling and analyzing multiple
processes.

The first stage of that work, which was delivered in
ThreadSpotter 2012.2, was to provide scripts and
documentation to support sampling of multi-node,
distributed MPI applications on a variety of different
architectures, including the Cray XE. Each instance of the
ThreadSpotter sampler program is functionally distinct, and

the challenge was to ensure that many of the samplers could
execute at the same time without overwriting temporary
files. Rogue Wave also made minor changes to make it easy
to generate uniquely named sample files for later analysis. In
addition, Rogue Wave provided documentation, with
examples, of how ThreadSpotter is to be used with mpirun
on a vanilla Linux cluster, apron, and either Torque PBS or
Slurm.

The second stage of this work includes two components:
First, Rogue Wave is implementing a distributed solution for
launching and controlling the sampling mechanism using
launchMON. This will give Rogue Wave a way to
coordinate sample gathering across the entire parallel
application. Second, Rogue Wave is developing and
implementing a way to analyze thousands of distinct sample
files to identify a small number of equivalence sets. These
are sets of sample files that appear to share a lot of the same
information. This will allow developers to effectively
optimize cache - even with datasets that can only be run at
large scale.

B. Adapting ThreadSpotter for the Intel Xeon Phi
coprocessor
Rogue Wave is working to adapt ThreadSpotter for the

Intel Xeon Phi coprocessor and is looking forward to
demonstrating early versions of this work at ISC 2013. The
work involves two distinct modifications. First, Rogue Wave
adapted the sampling mechanism that ThreadSpotter uses to
work natively on the Intel Xeon Phi coprocessor. Second,
Rogue Wave extended the cache model that ThreadSpotter
uses to be able to properly accommodate the Intel Xeon Phi
coprocessor’s cache architecture.

Adapting the sampler involved overcoming several
different challenges. Originally designed for use on Xeon
host processors, the sampler takes advantage of some vector

instructions that are not included in the set of vector
instructions available on the Intel Xeon Phi coprocessor.
Rogue Wave is also investigating the implications of scaling
up the sampler to be able to sample a large number of
threads, which is expected to be common on the Intel Xeon
Phi coprocessor. When a multithreaded program runs, there
are data-structures in ThreadSpotter that need to be updated
from more than one thread. While this is currently done via
atomic operations, there are still scaling issues with data
structure access that need to be overcome.

ThreadSpotter uses a statistical model of data flow
through the cache architecture during program execution in
order to perform analysis and issue detection. The Intel Xeon
Phi coprocessor has >50 cores and each core has a private L1
cache and a shared L2 cache. The L2 caches work almost
like a single shared L2 cache, in that information found in
any core’s L2 cache can be quickly transmitted to any core.
However, unlike a more traditional shared L2 cache, this L2
cache has the property of allowing duplication. The same
cache line might be duplicated across more than one of the
L2 caches. ThreadSpotter needs to model this behavior to
avoid over-estimating the effective capacity of the L2 cache.

IV. CONCLUSION
TotalView provides a seamless and polished Intel Xeon

Phi coprocessor debugging experience on the Cray XC.
ThreadSpotter is currently being enhanced for the Intel Xeon
Phi coprocessor and will give users visibility into what is
happening as data flows through the many-core
coprocessor’s unique distributed cache architecture. These
tools allow Cray users to more easily and efficiently port and
maintain scientific codes for the Cray XE, Cray XC, and for
any machine accelerated with an Intel Xeon Phi coprocessor.

