

CUG 2013 Proceedings 1 of 9

Tesla vs. Xeon Phi vs. Radeon

A Compiler Writer’s Perspective

Brent Leback, Douglas Miles, and Michael Wolfe

The Portland Group (PGI)

ABSTRACT: Today, most CPU+Accelerator systems incorporate NVIDIA GPUs. Intel
Xeon Phi and the continued evolution of AMD Radeon GPUs make it likely we will soon
see, and want to program, a wider variety of CPU+Accelerator systems. PGI already
supports NVIDIA GPUs, and is working to add support for Xeon Phi and AMD Radeon.
Here we explore the features common to all three types of accelerators, those unique to
each, and the implications for programming models and performance portability from a
compiler writer's and application writer’s perspective.

KEYWORDS: Compiler, Accelerator, Multicore

1. Introduction

Today’s high performance systems are trending
towards using highly parallel accelerators to meet
performance goals and power and price limits. The most
popular compute accelerators today are NVIDIA GPUs.
Intel Xeon Phi coprocessors and AMD Radeon GPUs are
competing for that same market, meaning we will soon be
programming and tuning for a wider variety of host +
accelerator systems.

We want to avoid writing a different program for
each type of accelerator. There are at least three current
options for writing a single program that targets multiple
accelerator types. One is to use a library, which works
really well if the library contains all the primitives your
application needs. Solutions built on class libraries with
managed data structures are really another method to
implement libraries, and again work well if the primitives
suit your application. The potential downside is that you
depend on the library implementer to support each of your
targets now and in the future.

A second option is to dive into a low-level, target
independent solution such as OpenCL. There are
significant upfront costs to refactor your application, as
well as additional and continuing costs to tune for each
accelerator. OpenCL, in particular, is quite low-level, and
requires several levels of tuning to achieve high
performance for each device.

A third option is to use a high-level target
independent programming model, such as OpenMP or

OpenACC directives. OpenMP has had great success for
its target domain, shared-memory multiprocessor and
multicore systems. OpenACC has shown some initial
success for a variety of applications [1, 2, 14, 15, 16, 17].
It is just now being targeted for multiple accelerator types,
and our early experience is that it can be used to achieve
high performance for a single program across a range of
accelerator systems.

Using directives for parallel and accelerator
programming divides the programming challenges
between the application writer and the compiler. Defining
an abstract view of the target architecture used by the
compiler allows a program to be optimized for very
different targets, and allows programmers to understand
how to express a program that can be optimized across
accelerators.

PGI has been delivering directive-based Accelerator
compilers since 2009. The current compilers implement
the OpenACC v1.0 specification on 64-bit and 32-bit
Linux, OS/X and Windows operating systems, targeting
NVIDIA Tesla, Fermi and Kepler GPUs. PGI has
demonstrated initial functionality on AMD Radeon GPUs
and APUs, and Intel Xeon Phi co-processors. The PGI
compilers are designed to allow a program to be compiled
for a single accelerator target, or to be compiled into a
single binary that will run on any of multiple accelerator
targets depending on which is available at runtime. They
are also designed to generate binaries that utilize multiple
accelerators at runtime, or even multiple accelerators from
different vendors. To make all these cases truly useful,
the program must be written in a way that allows the

CUG 2013 Proceedings 2 of 9

compiler to optimize for different architectures that have
common themes but fundamentally different parallelism
structures.

2. Accelerator Architectures Today

Here we present important architectural aspects of

today’s multi-core CPUs and the three most common

accelerators designed to be coupled to those CPUs for

technical computing: NVIDIA Kepler GPU [11], Intel

Xeon Phi [13] and AMD Radeon GPU [12]. There are

other accelerators in current use, such as FPGAs for

bioinformatics and data analytics, and other possible

accelerator vendors, such as DSP units from Texas

Instruments and Tilera, but these have not yet achieved a

significant presence in the technical computing market.

2.1 Common Multi-core CPU
For comparison, we present an architectural summary

of a common multi-core CPU. An Intel Sandy Bridge
processor has up to 8 cores. Each core stores the state of
up to 2 threads. Each core can issue up to 5 instructions
in a single clock cycle; the 5 instructions issued in a single
cycle can be a mix from the two different threads. This is
Intel’s Hyperthreading, which is an implementation of
Simultaneous Multithreading. In addition to scalar
instructions, each core has SSE and AVX SIMD registers
and instructions. An AVX instruction has 256-bit
operands, meaning it can process 8 single-precision
floating point operations or 4 double-precision floating
point operations with a single instruction. Each core has a
32KB level-1 data cache and 32KB level-1 instruction
cache, and a 256KB L2 cache. There is a L3 cache shared
across all cores which ranges up to 20MB. The CPU
clock rate ranges between 2.3GHz to 4.0GHz (in Turbo
mode). The core is deeply pipelined, about 14 stages.

The control unit for a modern CPU can issue
instructions even beyond the point where an instruction
stalls. For instance, if a memory load instruction misses in
the L1 and L2 cache, its result won’t be ready for tens or
hundreds of cycles until the operand is fetched from main
memory. If a subsequent add instruction, say, needs the
result of that load instruction, the control unit can still
issue the add instruction, which will wait at a reservation
station until the result from the load becomes available.
Meanwhile, instructions beyond that add can be issued
and can even execute while the memory load is being
processed. Thus, instructions are executed out-of-order
relative to their appearance in the program.

The deep, two- or three-level cache hierarchy reduces
the average latency for memory operations. If a memory
data load instruction hits in the L1 cache, the result will be
ready in 4-5 clock cycles. If it misses in the L1 cache but

hits in the L2 cache, the result will take 12 cycles. An L3
cache hit will take 35-45 clock cycles, while missing
completely in the cache may take 250 or more cycles.
There is additional overhead to manage multicore cache
coherence for the L1 and L2 caches.

GPU marketing literature often uses the term “GPU
core” or equivalent. This is essentially a single precision
(32-bit) ALU or equivalent. By this definition, an 8-core
Sandy Bridge with AVX instructions has 64 GPU core-
equivalents.

2.2 NVIDIA Kepler GPU
An NVIDIA Kepler GPU has up to 15 SMX units,

where each SMX unit corresponds roughly to a highly
parallel CPU core. The SMX units execute warp-
instructions, where each warp-instruction is roughly a 32-
wide SIMD instruction, with predication. The warp is a
fundamental unit for NVIDIA GPUs; all operations are
processed as warps. The CUDA programming model uses
CUDA threads, which are implemented as predicated,
smart lanes in a SIMD instruction stream. In this section,
we use the term thread to mean a sequence of warp-
instructions, not a CUDA thread. The SMX units can
store the state of up to 64 threads. Each SMX unit can
issue instructions from up to four threads in a single cycle,
and can issue one or two instructions from each thread.
There are obvious structural and data hazards that would
limit the actual number of instructions issued in a single
cycle. Instructions from a single thread are issued in-
order. When a thread stalls while waiting for a result from
memory or other slow operation, the SMX control unit
will select instructions from some other active thread.
The SMX clock is about 1.1 GHz. The SMX is also
pipelined, with 8 stages.

Each execution engine of the Kepler SMX has an
array of execution units, including 192 single precision
GPU cores (for a total of 2880 GPU cores on chip), plus
additional units for double precision, memory load/store
and transcendental operations. The execution units are
organized into several SIMD functional units, with a
hardware SIMD width of 16. This means that it takes two
cycles to initiate a 32-wide warp instruction on the 16-
wide hardware SIMD function unit.

There is a two-level data cache hierarchy. The L1
data cache is 64KB per SMX unit. The L1 data cache is
only used for thread-private data. The L1 data cache is
actually split between a normal associative data cache and
a scratchpad memory, with 25%, 50% or 75% of the
64KB selectively used as scratchpad memory. There is an
additional 48KB read-only L1 cache, which is accessed
through special instructions. The 1.5MB L2 data cache is
shared across all SMX units. The caches are small,
relative to the large number of SIMD operations running
on all 15 SMX units. The device main memory ranges up
to 6GB in current units and 12GB in the near future.

CUG 2013 Proceedings 3 of 9

2.3 AMD Radeon GPU
An AMD Radeon GPU has up to 32 compute units,

where each compute unit corresponds roughly to a simple
CPU core with attached vector units. Each compute unit
has four SIMD units and a scalar unit, where the scalar
unit is used mainly for control flow. The SIMD units
operate on wavefronts, which roughly correspond to
NVIDIA warps, except wavefronts are 64-wide. The
SIMD units are physically 16-wide, so it takes four clock
cycles to initiate a 64-wide wavefront instruction. With
32 compute units, each with 4 16-wide SIMD units, the
AMD Radeon has up to 2048 single precision GPU cores.
In this section, I use the term thread to mean a sequence
of scalar and wavefront instructions.

A thread is statically assigned to one of the four
SIMD units. As with NVIDIA Kepler, the AMD Radeon
issues instructions in-order per thread. Each SIMD unit
stores the state for up to 10 threads, and uses
multithreading to tolerate long latency operations. The
compute units operate at about 1GHz.

There is a 64KB scratchpad memory for each
compute unit, shared across all SIMD units. There is an
additional 16KB L1 data cache per compute unit, and a
16KB L1 read-only scalar data cache shared across the
four SIMD units. A 768KB L2 data cache is shared
across all compute units. The device main memory is
3GB in current devices.

2.4 Intel Xeon Phi Coprocessor
The Intel Xeon Phi Coprocessor (IXPC) is designed

to appear and operate more like a common multicore
processor, though with many more cores. An IXPC has
up to 61 cores, where each core implements most of the
64-bit x86 scalar instruction set. Instead of SSE and AVX
instructions, an IXPC core has 512-bit vector instructions,
which perform 16 single precision operations or 8 double
precision operations in a single instruction. Each core has
a 32KB L1 instruction cache and 32KB L1 data cache,
and a 512KB L2 cache. There is no cache shared across
cores. The CPU clock is about 1.1GHz. With 61 cores
and 16-wide vector operations, the IXPC has the
equivalent of 976 GPU cores.

The control unit can issue two instructions per clock,
though instructions are issued in-order and those two
instructions must be from the same thread (unlike Intel
Hyperthreading). Each core stores the state of up to four
threads, using multithreading to tolerate cache misses.

The IXPC is packaged as an IO device, similar to a
GPU. It has 8GB memory in current devices. The big
advantage to the IXPC is its programmability. In many if
not most cases, you really can just recompile your
program and run it natively on an IXPC using MPI and/or
OpenMP; however, to get the best performance, you will
likely have to tune or refactor your application.

2.5 Common Accelerator Architecture Themes
There are several common themes across the Tesla,

Radeon and Xeon Phi accelerators.

Separate device memory: The current devices are
all packaged as an IO device, with separate memory from
the host. This makes memory management key to
achieving high performance. Partly this is because the
transfer rates across the IO bus are so slow relative to
memory speeds, but partly this is because the device
memory is not paged and is only a few GB. When a
workstation or single cluster node typically has 64GB or
more of physical memory, having less memory on the high
throughput accelerator presents a challenge. The limited
physical memory sizes and relatively slow individual core
speeds on today’s accelerators also limits their ability to
be viewed or used as standalone compute nodes. They are
only viable when coupled to and used in concert with very
fast mainstream CPUs.

Many cores: Our definition of core here is a
processor that issues instructions across one or more
functional units, and shares resources closely amongst
those units. An NVIDIA SMX unit or Radeon Compute
unit is a core, by this definition. With 15, 32 or 61 cores,
your program needs enough parallelism to keep these
units busy.

Somewhat unique to each device is how each
organizes the cores and functional units within each core.
The Radeon GPU has up to 32 compute units where each
core has four SIMD units. One could argue that this
should be treated as 128 cores. PGI has chosen to treat
this like 32 cores, where each core can issue four
instructions per clock, one to each SIMD unit. Similarly,
PGI treats the Kepler SMX as a single core which can
issue many instructions in a single cycle to many
functional units.

Multithreading: All three devices use
multithreading to tolerate long latency operations,
typically memory operations. This is a trade-off between
storing more thread state on board instead of
implementing a more complex control unit. This means
your application will have to expose an additional degree
of parallelism to fill the multithreading slots, in addition to
filling the cores.

The degree of multithreading differs across the
devices. The IXPC has a lower degree (4) than Kepler
(64) or Radeon (40), largely because the IXPC depends
more on caches to reduce the average memory latency.

Vectors: All three devices have wide vector
operations. The physical SIMD parallelism in all three
designs happens to be the same (16), though the
instruction set for Kepler and Radeon are designed with
32- and 64-wide vectors. Your application must deliver
both SIMD and MIMD parallelism to achieve peak
performance.

CUG 2013 Proceedings 4 of 9

In-order instruction issue: This is really one of
several common design issues that highlight the simpler
control units on these devices relative to commodity CPU
cores. If a goal is higher performance per transistor or per
square nanometer, then making the control unit smaller
allows the designer to use more transistors for the
functional units, registers or caches. However,
commodity cores benefit from the more complex control
units, so clearly there is value to them. As a result, the
cores used in accelerators may prove insufficient on the
workloads where a commodity CPU thrives, or on the
serial portions of workloads that overall are well-suited to
an accelerator.

Memory strides matter: The device memories are
optimized for accesses to superwords, a long sequence of
adjacent words; a superword essentially corresponds to a
cache line. If the data accesses are all stride-1, the
application can take advantage of the high hardware
memory bandwidth. With indexed accesses or high
strides, the memory still responds with 256- or 384- or
512-bit superwords, but only a fraction of that data
bandwidth is used.

Smaller caches: The cache memories are smaller per
core than today’s high performance CPUs. The
applications where accelerators are used effectively
generally operate on very large matrices or data structures,
where cache memories are less effective. The trade-off
between smaller cache and higher memory bandwidth
targets this application space directly.

At PGI, we represent these common elements in an
abstracted CPU+Accelerator architecture that looks as
follows:

Figure 1: CPU+Accelerator Abstract Machine Architecture

3. Exploiting Accelerator Performance

Here we review and discuss the various means to
program for today’s accelerators, focusing on how the
various important architectural aspects are managed by
the programming model. A programming model has
several options for exploiting architectural features: hide
it, virtualize it, or expose it.

The model can hide a feature by automatically
managing it. This is the route taken for register
management for classical CPUs, for instance. While the C
language has a register keyword, modern compilers
ignore that when performing register allocation. Hiding a
feature relieves the programmer from worrying about it,
but also prevents the programmer from optimizing or
tuning for it.

The model can virtualize a feature by exposing its
presence but virtualizing the details. This is how
vectorization is classically handled. The presence of
vector or SIMD instructions is explicit, and programmers
are expected to write vectorizable inner loops. However,
the native vector length, the number of vector registers
and the vector instructions themselves are all virtualized
by the compiler. Compare this to using SSE intrinsics and
how that affects portability to a future architecture (with,
say, AVX instructions). Virtualizing a feature often
incurs some performance penalty, but also improves
productivity and portability.

Finally, a model can expose a feature fully. The
classical example is how using MPI exposes the separate
compute nodes, distributed memory and network data
transfers within a program. The C language exposes the
linear data layout, allowing pointer arithmetic to navigate
a data structure. Exposing a feature allows the
programmer to tune and optimize for it, but also requires
the programmer to do the tuning and optimization.

The programming models we will discuss are
OpenCL [7], CUDA C and Fortran, Microsoft’s C++AMP
[3], Intel’s offload directives [4] (which are turning into
the OpenMP 4.0 target directives [5]), and OpenACC [6].

3.1 Memory Management
Memory management is the highest hurdle and

biggest obstacle to high performance on today’s
accelerators. Memory has to be allocated on the device,
and data has to be moved between the host and the device.
This is essentially identical across all the current devices.
All attempts to automatically manage data movement
between devices or nodes of a cluster result in great
performance for simple stunt cases, but disappointing
results in general. The costs of a bad decision are simply
too high. For that reason, all of these programming
models delegate some aspects of memory management to
the programmer.

CUDA C [9] and Fortran [8] require the programmer
to allocate device memory and explicitly copy data
between host and device. CUDA Fortran allows the use
of standard allocate and array assignment statements to
manage the device data.

Similarly, OpenCL requires the programmer to
allocate buffers and copy data to the buffers. It hides
some important details, however, in that it doesn’t expose
exactly where the buffer lives at various points during the
program execution. A compliant implementation may

CUG 2013 Proceedings 5 of 9

(and may be required to) move a buffer to host memory,
then back to device memory, with no notification to the
programmer.

C++AMP uses views and arrays of data. The
programmer can create a view of the data that will be
processed on the accelerator. As with OpenCL, the actual
point at which the memory is allocated on the device and
data transferred to or from the device is hidden.
Alternatively, the programmer may take full control by
creating an explicit new array, or create an array with
data copied from the host.

The Intel offload directives and OpenACC allow the
programmer to rely entirely on the compiler for memory
management to get started, but offer optional data
constructs and clauses to control and optimize when data
is allocated on the device and moved between host and
device. The language, compiler and runtime cooperate to
virtualize the separate memory spaces by using the same
names for host and device copies of data. This is
important to allow efficient implementations on systems
where data movement is not necessary, and to allow the
same program to be used on systems with or without an
accelerator.

3.2 Parallelism Scheduling
These devices have three levels of compute

parallelism: many cores, multithreading on a core, and
SIMD execution.

CUDA and OpenCL expose the many-core
parallelism with a three-level hierarchy. A kernel is
written as a scalar thread; many threads are executed in
parallel in a rectangular block or workgroup on a single
core; many blocks or workgroups are executed in parallel
in a rectangular grid across cores. The number of scalar
threads in a block or workgroup, and the number of blocks
or workgroups are chosen explicitly by the programmer.
The fact that consecutive scalar threads are actually
executed in SIMD fashion in warps or wavefronts on a
GPU is hidden, though tuning guidelines give advice on
how to avoid performance cliffs. The fact that some
threads in a block or workgroup may execute in parallel
using multithreading on the same hardware, or that
multiple blocks or workgroups may execute in parallel
using multithreading on the same hardware is also hidden.
The programming model virtualizes the multithreading
aspect, using multithreading for large blocks or
workgroups, or many blocks or workgroups, until the
resources are exhausted.

C++AMP does not expose the multiple levels of
parallelism, instead presenting a flat parallelism model.
The programmer can impose some hierarchy by explicitly
using tiles in the code, but the mapping to the eventual
execution mode is still implicit.

Intel’s offload directives use OpenMP parallelism
across the cores and threads on a core. The number of

threads to launch can be set by the programmer using
OpenMP clauses or environment variables, or set by
default by the implementation. SIMD execution on a core
is implemented with loop vectorization.

OpenACC exposes the three levels of parallelism as
gang, worker and vector parallelism. A programmer can
use OpenACC loop directives to explicitly control which
loop indices are mapped to each level. However, a
compiler has some freedom to automatically map or
remap parallelism for a target device. For instance, the
compiler may choose to automatically vectorize an inner
loop. Or, if there is only a single loop, the compiler may
remap the programmer-specified gang parallelism across
gangs, workers and vector lanes, to exploit all the
available parallelism. This allows the programmer to
worry more about the abstract parallelism, leaving most of
the device-specific scheduling details to the compiler.

OpenACC also allows the programmer to specify how
much parallelism to instantiate, similar to the
num_threads clause in OpenMP, with num_gangs,
num_workers and vector_length clauses on the parallel
directive, or with explicit sizes in the kernels loop
directives. The best values to use are likely to be
dependent on the device, so these should usually be left to
the compiler or runtime system.

3.3 Multithreading
All three devices require oversubscription to keep the

compute units busy; that is, the program must expose extra
(slack) parallelism so a compute unit can swap in another
active thread when a thread stalls on memory or other
long latency operations. This slack parallelism can come
from several sources. Here we explore how to create
enough parallelism to keep the devices busy.

In CUDA and OpenCL, slack parallelism comes from
creating blocks or workgroups larger than one warp or
wavefront, or from creating more blocks or workgroups
than the number of cores. Whether the larger blocks or
workgroups are executed in parallel across SIMD units or
time-sliced using multithreading is hidden by the
hardware.

C++AMP completely hides how parallelism is
scheduled. The programmer simply trusts that if there is
enough parallelism, the implementation will manage it
well on the target device.

Intel’s offload model doesn’t expose multithreading
explicitly. Multithreading is used as another mechanism
to implement OpenMP threads on the device. The
programmer must create enough OpenMP threads to
populate the cores, then create another factor to take
advantage of multithreading for latency tolerance.

 OpenACC worker-level parallelism is intended to
address this issue directly. On the GPUs, iterations of a
worker-parallel loop will run on the same core, either
simultaneously using multiple SIMD units in the same

CUG 2013 Proceedings 6 of 9

core, or sharing the same resources using multithreading.
As mentioned earlier, an OpenACC implementation can
also use longer vectors or more gangs and implement
these using multithreading, similar to the way OpenCL or
CUDA would.

3.4 SIMD operations
All three current architectures have vector or SIMD

operations, but they are exposed differently. The IXPC
has a classical core, with scalar and vector instructions.
The Kepler is programmed in what NVIDIA calls SIMT
fashion, that is, as a number of independent threads that
happen to execute in lock-step as a warp; the SIMD
implementation is virtualized at the hardware level. The
Radeon also has scalar and vector units, but the scalar unit
is limited; the Radeon is actually programmed much like
the Kepler, with thread-independent branching relegated
to the scalar unit.

As mentioned above, CUDA and OpenCL hide the
SIMD aspect of the target architecture, except for tuning
guidelines. C++AMP also completely hides how the
parallelism of the algorithm is mapped onto the
parallelism of the hardware.

Intel’s offload model uses classical SIMD
vectorization within a thread. New directives also allow
more control over which loops are vectorized. The SIMD
length is (obviously) limited to the 512-bit instruction set,
for the current IXPC, but any specification of vector
length is not part of the model.

An OpenACC compiler can treat all three machines
as cores with scalar and vector units. For Kepler, vector
operations are spread over the CUDA threads of a warp or
thread block; scalar operations are either executed
redundantly by each CUDA thread, or, where redundant
execution is invalid or inefficient, executed in a protected
region only by CUDA thread zero. Code generation for
Radeon works much the same way. The native SIMD
length for Kepler is 32 and for Radeon is 64, in both
single and double precision. The compiler has the
freedom to choose a longer vector length, multiples of 32
or 64, by synchronizing the warps or wavefronts as
necessary to preserve vector dependences. Thus the
OpenACC programming model for all three devices is
really multicore plus vector parallelism. The compiler
and runtime manage the differences between the device
types.

3.5 Memory Strides
All three devices are quite sensitive to memory

strides. The memories are designed to deliver very high
bandwidth when a program accesses blocks of contiguous
memory.

In OpenCL and CUDA, the programmer must write
code so that consecutive OpenCL or CUDA threads

access consecutive or contiguous memory locations.
Since these threads execute in SIMD fashion, they will
issue memory operations for consecutive locations in the
same cycle, to deliver the memory performance we want.

In C++AMP, the mapping of parallel loop iterations
to hardware parallelism is virtualized. If the index space
is one dimensional, the programmer can guess that
adjacent iterations will be executed together and should
then access consecutive memory locations.

The Intel offload model has no need to deal with
strides. The programmer should write the vector or SIMD
loops to access memory in stride-1 order.

Similarly, using OpenACC, the programmer should
write the vector loops with stride-1 accesses. When
mapping a vector loop, the natural mapping will assign
consecutive vector iterations to adjacent SIMD lanes,
warp threads or wavefront threads. This will result in
stride-1 memory accesses, or so-called coalesced memory
accesses.

3.6 Caching and Scratchpad Memories
All three devices have classical cache memories. For

the IXPC, classical cache optimizations should be as
effective as for commodity multicore systems, except
there is no large shared L3 cache. For the GPUs, the
small hardware cache coupled with the amount of
parallelism in each core makes it much less likely that the
caches will be very effective for temporal locality. These
devices have small scratchpad memories, which operate
with the same latency as the L1 cache.

In CUDA and OpenCL, the programmer must
manage the scratchpad memory explicitly, using CUDA
__shared__ or OpenCL __local memory. The size

of this memory is quite small, and it quickly becomes a
critical resource that can limit the amount of parallelism
that can be created on the core.

C++AMP has no explicit scratchpad memory
management, but it does expose a tile optimization to take
advantage of memory locality. The programmer depends
on the implementation or the hardware to actually exploit
the locality.

Intel’s offload model has no scratchpad memory
management, since the target (the IXPC) has no such
feature.

OpenACC has a cache directive to allow the
programmer to tell the implementation what data has
enough reuse to cache locally. An OpenACC compiler
can use this directive to store the specified data in the
scratchpad memory. The PGI OpenACC compilers also
manage the scratchpad memory automatically, by
analyzing the program to find temporal or spatial data
reuse within and across workers and vector lanes in the
same gang to choose to store data in the scratchpad
memory.

CUG 2013 Proceedings 7 of 9

3.7 Portability
There are three levels of portability. First is language

portability, meaning a programmer can use the same
language to write a program for different targets, even if
the programs must be different. Second is functional
portability, meaning a programmer can write one program
that will run on different targets, though not all targets will
get the best performance. Third is performance
portability, meaning a programmer can write one program
that gives good performance across many targets. For
standard multi-core processors, C, C++ and Fortran do a
pretty good job of delivering performance portability, as
long as the program is written to allow vectorization and
with appropriate memory access patterns. For portability
on accelerators, the problems are significantly more
difficult.

CUDA provides reasonable portability across
NVIDIA devices. Each new architecture model adds new
features and extends the programming model, so while old
programs will likely run well, retuning or rewriting a
program will often give even better performance. PGI has
implementations of CUDA C and Fortran to run on an x86
multicore, but there is no pretense that these provide
cross-vendor portability, or even performance portability
of CUDA source code.

OpenCL is designed to provide language and
functionality portability. Research has demonstrated that
even across similar devices, like NVIDIA and AMD
GPUs, retuning or rewriting a program can have a
significant impact on performance [10]. In both CUDA
and OpenCL, since the memory management is explicit in
the program, data will be allocated and copied even when
targeting a device like a multicore which has no split
device memory.

C++AMP is intended to provide performance
portability across devices. It is designed to do this by
hiding or virtualizing aspects of the program that a
programmer would tune for a particular target.

Intel’s offload model makes no attempt to provide
portability to other targets. Even when targeting a
multicore, the mechanism is to ignore the offload
directives entirely, using the embedded OpenMP for
parallelism on the device. The successor, the OpenMP
4.0 target directives, are promoted to be portable across
devices, but it is unlikely to be fully supported except on
targets that can implement full OpenMP, such as a many
core or DSP.

OpenACC is also intended to provide performance
portability across devices, and there is some initial
evidence to support this claim. The OpenACC parallelism
model is more abstract than any of the others discussed
here, except C++AMP, yet allows the programmer to
expose different aspects of the parallel execution. An
implementation can use this to exploit the different
parallel features of a wide variety of target architectures.

4. Accelerator Architectures Tomorrow

Today’s devices will be replaced in the next 12-24
months by a new generation, and we can speculate or
predict what some of these future devices will look like.

AMD already has APU (Accelerated Processing
Units) with a CPU core and GPU on the same die, sharing
the same memory interface. Future APUs will allow the
GPU to use the same virtual address space as the CPU
core, allowing true shared memory. Current CPU memory
interfaces do not provide the memory bandwidth
demanded for high performance GPUs. Future APUs will
have to improve this memory interface, or the on-chip
GPU performance will be limited by the available memory
bandwidth. This improvement could use new memory
technology, such as stacked memory, to give both CPU
and GPU very high memory bandwidth, or by using
separate but coherent memory controllers for CPU-side
and GPU-side memory.

NVIDIA has already announced plans to use stacked
memory on future GPU dies. This should improve the
memory bandwidth significantly. NVIDIA has also
announced plans to allow the GPU to access system
memory directly. If the GPU sits on the IO bus, such
memory access will be quite slow relative to on-board
memory, so this will not be a very broad solution.
However, NVIDIA also has plans to package an NVIDIA
GPU with ARM cores, which may give it many of the
same capabilities as the AMD APU.

While Intel has not published a roadmap, one can
imagine a convergence of the Intel Xeon Phi Coprocessor
with the Intel Xeon processor line. Current IXPC
products sit on the IO bus, but Intel presentations have
shown diagrams with future IXPC and Xeon chips as peer
processors on a single node.

In all three cases, it is possible or likely that the need
to manage memory allocation and movement will
diminish somewhat. However, we don’t know how the
accelerator architecture itself will evolve. The core count
may increase, vectors may get longer (or not), other
capabilities may be added. The clock speed may vary
within a defined envelope as we prove out the most
successful accelerator architectures. Other vendors may
become viable candidates, such as the Texas Instruments
or Tilera products. A successful programming model and
implementation must effectively support the important
accelerators available today, and be ready to support the
accelerators we are likely to see tomorrow.

5. Our Conclusion

NVIDIA Tesla, Intel Xeon Phi and AMD Radeon have
many common features that can be leveraged to create an
Accelerator programing model that delivers language,

CUG 2013 Proceedings 8 of 9

functional and performance portability across devices –
separated and relatively small device memories, stream-
oriented memory systems, many cores, multi-threading,
and SIMD/SIMT. Features we would all like to see in
such a model are many:

 Addresses a suitable range of applications
 Allows programming of CPU+Accelerator

systems as an integrated platform
 Is built around standard C/C++/Fortran without

sacrificing too much performance
 Integrates with the existing, proven, widely-used

parallel programming models – MPI, OpenMP
 Allows incremental porting and optimization of

existing applications
 Imposes little or no disruption on the standard

code/compile/run development cycle
 Is interoperable with low-level Accelerator

programming models
 Allows for efficient implementations on each of

Tesla, Xeon Phi and Radeon

Admittedly, any programming model that meets most

or all of these criteria is likely to short-change certain
features of each of the important targets. However, in
deciding which models to implement, compiler writers
like those at PGI have to maximize those goals across all
targets rather than maximizing them for a particular target.
Likewise, when deciding which models to support and
use, HPC users need to consider the costs associated with
re-writing applications for successive generations of
hardware and of potentially limiting the diversity of
platforms from which they can choose.

To be successful, an Accelerator programming model
must be low-level enough to express the important aspects
of parallelism outlined above, but high-level and portable
enough to allow an implementation to create efficient
mappings of these aspects to a variety of accelerator
hardware targets.

Libraries are one solution, and can be a good solution
for applications dominated by widely-used algorithms.
CUDA and OpenCL give control over all aspects of
Accelerator programming, but are low-level, not very
incremental, and come with portability issues and a
relatively steep learning curve. C++ AMP may be a good
solution for pure Windows programmers, but relies
heavily on compiler technology to overcome abstraction,
is not standardized or portable, and for HPC programmers
offers no Fortran solution. The OpenMP 4.0 target and
simd extensions are attractive on the surface, but come
with the Achilles heel of requiring support for all of
OpenMP 3.1 on devices which are ill-suited to support it.

In our view, OpenACC meets the criteria for long-term
success. It is orthogonal to and interoperable with MPI
and OpenMP. It virtualizes into existing languages the

concept of an accelerator for a general-purpose CPU
where these have potentially separated memories. It
exposes and gives the programmer control over the
biggest current performance bottleneck – data movement
over a PCI bus. It virtualizes the mapping of parallelism
from the program onto the hardware, giving both the
compiler and the user the freedom to create optimal
mappings for specific targets. And finally, it was
designed from the outset to be portable and performance
portable across CPU and accelerator targets of a canonical
form − a MIMD parallel dimension, a SIMD/SIMT
parallel dimension, and a memory hierarchy that is
exposed to a greater or lesser degree and which must be
accommodated by the programmer or compiler.

About the Authors

Brent Leback is an Engineering Manager for PGI. He
has worked in various positions over the last 25 years in
HPC customer support, math library development,
applications engineering and consulting at QTC, Axian,
PGI and STMicroelectronics. He can be reached by e-
mail at brent.leback@pgroup.com.

Douglas Miles is the Director of PGI; prior to joining
PGI, he was an applications engineer at Cray Research
Superservers and Floating Point Systems. He can be
reached by e-mail at douglas.miles@pgroup.com.

Michael Wolfe joined PGI as a compiler engineer in
1996; he has worked on parallel compilers for over 35
years. He has published one textbook, High Performance
Compilers for Parallel Computing, and a number of
technical papers. He can be reached by e-mail at
michael.wolfe@pgroup.com.

References

[1] B. Cloutier, B.K. Muitey, P. Riggez, Dept of
Electrical Engineering and Computer Science, University
of Michigan, Performance of FORTRAN and C GPU
Extensions for a Benchmark Suite of Fourier
Pseudospectral Algorithms, arXiv:1206.3215v2, August
14, 2012

[2] Sandra Wienke, Paul Springer, Christian Terboven,
and Dieter an Mey, JARA, RWTH Aachen University,
Germany Center for Computing and Communication,
OpenACC — First Experiences with Real-World
Applications, Euro-Par 2012, LNCS 7484, pp. 859–870,
2012.

[3] D. Moth, A Code-Based Introduction to C++ AMP,
MSDN Magazine, April 2012.

mailto:brent.leback@pgroup.com
mailto:douglas.miles@pgroup.com
../../AppData/AppData/AppData/AppData/Local/Temp/michael.wolfe@pgroup.com

CUG 2013 Proceedings 9 of 9

[4] J. Jeffers, J. Reinders, Intel Xeon Phi Coprocessor
High Performance Programming, Morgan Kaufmann,
2013.

[5] OpenMP ARB, OpenMP Application Program
Interface, Version 4.0 – RC 2 – March 2013.

[6] OpenACC ARB, The OpenACC Application
Programming Interface, Version 1.0, November, 2011.

[7] Khronos OpenCL Working Group, The OpenCL
Specification, Version 1.2, November 2011.

[8] The Portland Group, Inc., CUDA Fortran
Programming Guide and Reference, March 2011.

[9] NVIDIA Corp., CUDA C Programming Guide,
October 2012.

[10] P. Du, R. Weber, P. Luszczek, S. Tomov, G.
Peterson, J. Dongarra, From CUDA to OpenCL: Towards
a performance-portable solution for multi-platform GPU
programming, Parallel Computing, August 2012.

[11] NVIDIA Corp., NVIDIA’s Next Generate CUDA
Compute Architecture: Kepler GK110, 2012.

[12] AMD Corp., Southern Islands Series Instruction Set
Architecture, August 2012.

[13] Intel Corp., Intel Xeon Phi Coprocessor Instruction
Set Architecture Reference Manual, September, 2012.

[14] A. Herdman and W. Gaudin, An Accelerated,
Distributed Hydro Code with MPI and OpenACC, Cray
Technical Workshop on XK6 Programming, October,
2012

[15] A. Hart, R. Ansaloni, A. Gray, Porting and scaling
OpenACC applications on massively-parallel, GPU-
accelerated supercomputers, The European Physical
Journal Special Topics, August 2012.

[16] M. Colgrove, 5x in 5 Hours: Porting a 3D Elastic
Wave Simulator to GPUs Using OpenACC, PGInsider
Newsletter, March 2012.

[17] J. Levesque, R. Sankaran, R. Grout, Hybridizing
S3D into an Exascale application using OpenACC: An
approach for moving to multi-petaflops and beyond,
SC12, November, 2012.

