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ABSTRACT: Today, most CPU+Accelerator systems incorporate NVIDIA GPUs.  Intel 
Xeon Phi and the continued evolution of AMD Radeon GPUs make it likely we will soon 
see, and want to program, a wider variety of CPU+Accelerator systems.  PGI already 
supports NVIDIA GPUs, and is working to add support for Xeon Phi and AMD Radeon. 
Here we explore the features common to all three types of accelerators, those unique to 
each, and the implications for programming models and performance portability from a 
compiler writer's and application writer’s perspective. 
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1. Introduction 

Today’s high performance systems are trending 
towards using highly parallel accelerators to meet 
performance goals and power and price limits.  The most 
popular compute accelerators today are NVIDIA GPUs.  
Intel Xeon Phi coprocessors and AMD Radeon GPUs are 
competing for that same market, meaning we will soon be 
programming and tuning for a wider variety of host + 
accelerator systems. 

We want to avoid writing a different program for 
each type of accelerator.  There are at least three current 
options for writing a single program that targets multiple 
accelerator types.  One is to use a library, which works 
really well if the library contains all the primitives your 
application needs.  Solutions built on class libraries with 
managed data structures are really another method to 
implement libraries, and again work well if the primitives 
suit your application.  The potential downside is that you 
depend on the library implementer to support each of your 
targets now and in the future. 

A second option is to dive into a low-level, target 
independent solution such as OpenCL.  There are 
significant upfront costs to refactor your application, as 
well as additional and continuing costs to tune for each 
accelerator.  OpenCL, in particular, is quite low-level, and 
requires several levels of tuning to achieve high 
performance for each device. 

A third option is to use a high-level target 
independent programming model, such as OpenMP or 

OpenACC directives.  OpenMP has had great success for 
its target domain, shared-memory multiprocessor and 
multicore systems.  OpenACC has shown some initial 
success for a variety of applications [1, 2, 14, 15, 16, 17].  
It is just now being targeted for multiple accelerator types, 
and our early experience is that it can be used to achieve 
high performance for a single program across a range of 
accelerator systems. 

Using directives for parallel and accelerator 
programming divides the programming challenges 
between the application writer and the compiler.  Defining 
an abstract view of the target architecture used by the 
compiler allows a program to be optimized for very 
different targets, and allows programmers to understand 
how to express a program that can be optimized across 
accelerators. 

PGI has been delivering directive-based Accelerator 
compilers since 2009.  The current compilers implement 
the OpenACC v1.0 specification on 64-bit and 32-bit 
Linux, OS/X and Windows operating systems, targeting 
NVIDIA Tesla, Fermi and Kepler GPUs.  PGI has 
demonstrated initial functionality on AMD Radeon GPUs 
and APUs, and Intel Xeon Phi co-processors.  The PGI 
compilers are designed to allow a program to be compiled 
for a single accelerator target, or to be compiled into a 
single binary that will run on any of multiple accelerator 
targets depending on which is available at runtime.  They 
are also designed to generate binaries that utilize multiple 
accelerators at runtime, or even multiple accelerators from 
different vendors.  To make all these cases truly useful, 
the program must be written in a way that allows the 



 

 

CUG 2013 Proceedings 2 of 9 

 

compiler to optimize for different architectures that have 
common themes but fundamentally different parallelism 
structures. 

 

2.  Accelerator Architectures Today  

Here we present important architectural aspects of 

today’s multi-core CPUs and the three most common 

accelerators designed to be coupled to those CPUs for 

technical computing: NVIDIA Kepler GPU [11], Intel 

Xeon Phi [13] and AMD Radeon GPU [12].  There are 

other accelerators in current use, such as FPGAs for 

bioinformatics and data analytics, and other possible 

accelerator vendors, such as DSP units from Texas 

Instruments and Tilera, but these have not yet achieved a 

significant presence in the technical computing market. 

2.1 Common Multi-core CPU 
For comparison, we present an architectural summary 

of a common multi-core CPU.  An Intel Sandy Bridge 
processor has up to 8 cores.  Each core stores the state of 
up to 2 threads.  Each core can issue up to 5 instructions 
in a single clock cycle; the 5 instructions issued in a single 
cycle can be a mix from the two different threads.  This is 
Intel’s Hyperthreading, which is an implementation of 
Simultaneous Multithreading.  In addition to scalar 
instructions, each core has SSE and AVX SIMD registers 
and instructions.  An AVX instruction has 256-bit 
operands, meaning it can process 8 single-precision 
floating point operations or 4 double-precision floating 
point operations with a single instruction.  Each core has a 
32KB level-1 data cache and 32KB level-1 instruction 
cache, and a 256KB L2 cache.  There is a L3 cache shared 
across all cores which ranges up to 20MB.  The CPU 
clock rate ranges between 2.3GHz to 4.0GHz (in Turbo 
mode).  The core is deeply pipelined, about 14 stages. 

The control unit for a modern CPU can issue 
instructions even beyond the point where an instruction 
stalls.  For instance, if a memory load instruction misses in 
the L1 and L2 cache, its result won’t be ready for tens or 
hundreds of cycles until the operand is fetched from main 
memory.  If a subsequent add instruction, say, needs the 
result of that load instruction, the control unit can still 
issue the add instruction, which will wait at a reservation 
station until the result from the load becomes available.  
Meanwhile, instructions beyond that add can be issued 
and can even execute while the memory load is being 
processed.  Thus, instructions are executed out-of-order 
relative to their appearance in the program. 

The deep, two- or three-level cache hierarchy reduces 
the average latency for memory operations.  If a memory 
data load instruction hits in the L1 cache, the result will be 
ready in 4-5 clock cycles.  If it misses in the L1 cache but 

hits in the L2 cache, the result will take 12 cycles.  An L3 
cache hit will take 35-45 clock cycles, while missing 
completely in the cache may take 250 or more cycles.  
There is additional overhead to manage multicore cache 
coherence for the L1 and L2 caches. 

GPU marketing literature often uses the term “GPU 
core” or equivalent.  This is essentially a single precision 
(32-bit) ALU or equivalent.  By this definition, an 8-core 
Sandy Bridge with AVX instructions has 64 GPU core-
equivalents. 

 

2.2 NVIDIA Kepler GPU  
An NVIDIA Kepler GPU has up to 15 SMX units, 

where each SMX unit corresponds roughly to a highly 
parallel CPU core.  The SMX units execute warp-
instructions, where each warp-instruction is roughly a 32-
wide SIMD instruction, with predication.  The warp is a 
fundamental unit for NVIDIA GPUs; all operations are 
processed as warps.  The CUDA programming model uses 
CUDA threads, which are implemented as predicated, 
smart lanes in a SIMD instruction stream.  In this section, 
we use the term thread to mean a sequence of warp-
instructions, not a CUDA thread.  The SMX units can 
store the state of up to 64 threads.  Each SMX unit can 
issue instructions from up to four threads in a single cycle, 
and can issue one or two instructions from each thread.  
There are obvious structural and data hazards that would 
limit the actual number of instructions issued in a single 
cycle.  Instructions from a single thread are issued in-
order.  When a thread stalls while waiting for a result from 
memory or other slow operation, the SMX control unit 
will select instructions from some other active thread.  
The SMX clock is about 1.1 GHz.  The SMX is also 
pipelined, with 8 stages. 

Each execution engine of the Kepler SMX has an 
array of execution units, including 192 single precision 
GPU cores (for a total of 2880 GPU cores on chip), plus 
additional units for double precision, memory load/store 
and transcendental operations.  The execution units are 
organized into several SIMD functional units, with a 
hardware SIMD width of 16.  This means that it takes two 
cycles to initiate a 32-wide warp instruction on the 16-
wide hardware SIMD function unit. 

There is a two-level data cache hierarchy.  The L1 
data cache is 64KB per SMX unit.  The L1 data cache is 
only used for thread-private data.  The L1 data cache is 
actually split between a normal associative data cache and 
a scratchpad memory, with 25%, 50% or 75% of the 
64KB selectively used as scratchpad memory.  There is an 
additional 48KB read-only L1 cache, which is accessed 
through special instructions.  The 1.5MB L2 data cache is 
shared across all SMX units.  The caches are small, 
relative to the large number of SIMD operations running 
on all 15 SMX units.  The device main memory ranges up 
to 6GB in current units and 12GB in the near future. 
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2.3 AMD Radeon GPU  
An AMD Radeon GPU has up to 32 compute units, 

where each compute unit corresponds roughly to a simple 
CPU core with attached vector units.  Each compute unit 
has four SIMD units and a scalar unit, where the scalar 
unit is used mainly for control flow.  The SIMD units 
operate on wavefronts, which roughly correspond to 
NVIDIA warps, except wavefronts are 64-wide.  The 
SIMD units are physically 16-wide, so it takes four clock 
cycles to initiate a 64-wide wavefront instruction.  With 
32 compute units, each with 4 16-wide SIMD units, the 
AMD Radeon has up to 2048 single precision GPU cores.   
In this section, I use the term thread to mean a sequence 
of scalar and wavefront instructions. 

A thread is statically assigned to one of the four 
SIMD units.  As with NVIDIA Kepler, the AMD Radeon 
issues instructions in-order per thread.  Each SIMD unit 
stores the state for up to 10 threads, and uses 
multithreading to tolerate long latency operations.  The 
compute units operate at about 1GHz. 

There is a 64KB scratchpad memory for each 
compute unit, shared across all SIMD units.  There is an 
additional 16KB L1 data cache per compute unit, and a 
16KB L1 read-only scalar data cache shared across the 
four SIMD units.  A 768KB L2 data cache is shared 
across all compute units.  The device main memory is 
3GB in current devices. 

 

2.4 Intel Xeon Phi Coprocessor  
The Intel Xeon Phi Coprocessor (IXPC) is designed 

to appear and operate more like a common multicore 
processor, though with many more cores.  An IXPC has 
up to 61 cores, where each core implements most of the 
64-bit x86 scalar instruction set.  Instead of SSE and AVX 
instructions, an IXPC core has 512-bit vector instructions, 
which perform 16 single precision operations or 8 double 
precision operations in a single instruction.  Each core has 
a 32KB L1 instruction cache and 32KB L1 data cache, 
and a 512KB L2 cache.  There is no cache shared across 
cores.  The CPU clock is about 1.1GHz.  With 61 cores 
and 16-wide vector operations, the IXPC has the 
equivalent of 976 GPU cores. 

The control unit can issue two instructions per clock, 
though instructions are issued in-order and those two 
instructions must be from the same thread (unlike Intel 
Hyperthreading).  Each core stores the state of up to four 
threads, using multithreading to tolerate cache misses.   

The IXPC is packaged as an IO device, similar to a 
GPU.  It has 8GB memory in current devices.  The big 
advantage to the IXPC is its programmability.  In many if 
not most cases, you really can just recompile your 
program and run it natively on an IXPC using MPI and/or 
OpenMP; however, to get the best performance, you will 
likely have to tune or refactor your application. 

 

2.5 Common Accelerator Architecture Themes 
There are several common themes across the Tesla, 

Radeon and Xeon Phi accelerators. 

Separate device memory:  The current devices are 
all packaged as an IO device, with separate memory from 
the host.  This makes memory management key to 
achieving high performance.  Partly this is because the 
transfer rates across the IO bus are so slow relative to 
memory speeds, but partly this is because the device 
memory is not paged and is only a few GB.  When a 
workstation or single cluster node typically has 64GB or 
more of physical memory, having less memory on the high 
throughput accelerator presents a challenge.  The limited 
physical memory sizes and relatively slow individual core 
speeds on today’s accelerators also limits their ability to 
be viewed or used as standalone compute nodes.  They are 
only viable when coupled to and used in concert with very 
fast mainstream CPUs. 

Many cores:  Our definition of core here is a 
processor that issues instructions across one or more 
functional units, and shares resources closely amongst 
those units.  An NVIDIA SMX unit or Radeon Compute 
unit is a core, by this definition.  With 15, 32 or 61 cores, 
your program needs enough parallelism to keep these 
units busy. 

Somewhat unique to each device is how each 
organizes the cores and functional units within each core.  
The Radeon GPU has up to 32 compute units where each 
core has four SIMD units.  One could argue that this 
should be treated as 128 cores.  PGI has chosen to treat 
this like 32 cores, where each core can issue four 
instructions per clock, one to each SIMD unit.  Similarly, 
PGI treats the Kepler SMX as a single core which can 
issue many instructions in a single cycle to many 
functional units.   

Multithreading:  All three devices use 
multithreading to tolerate long latency operations, 
typically memory operations.  This is a trade-off between 
storing more thread state on board instead of 
implementing a more complex control unit.  This means 
your application will have to expose an additional degree 
of parallelism to fill the multithreading slots, in addition to 
filling the cores. 

The degree of multithreading differs across the 
devices.  The IXPC has a lower degree (4) than Kepler 
(64) or Radeon (40), largely because the IXPC depends 
more on caches to reduce the average memory latency.  

Vectors:  All three devices have wide vector 
operations.  The physical SIMD parallelism in all three 
designs happens to be the same (16), though the 
instruction set for Kepler and Radeon are designed with 
32- and 64-wide vectors.  Your application must deliver 
both SIMD and MIMD parallelism to achieve peak 
performance. 
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In-order instruction issue:  This is really one of 
several common design issues that highlight the simpler 
control units on these devices relative to commodity CPU 
cores.  If a goal is higher performance per transistor or per 
square nanometer, then making the control unit smaller 
allows the designer to use more transistors for the 
functional units, registers or caches.  However, 
commodity cores benefit from the more complex control 
units, so clearly there is value to them.  As a result, the 
cores used in accelerators may prove insufficient on the 
workloads where a commodity CPU thrives, or on the 
serial portions of workloads that overall are well-suited to 
an accelerator. 

Memory strides matter:  The device memories are 
optimized for accesses to superwords, a long sequence of 
adjacent words; a superword essentially corresponds to a 
cache line.  If the data accesses are all stride-1, the 
application can take advantage of the high hardware 
memory bandwidth.  With indexed accesses or high 
strides, the memory still responds with 256- or 384- or 
512-bit superwords, but only a fraction of that data 
bandwidth is used. 

Smaller caches: The cache memories are smaller per 
core than today’s high performance CPUs.  The 
applications where accelerators are used effectively 
generally operate on very large matrices or data structures, 
where cache memories are less effective.  The trade-off 
between smaller cache and higher memory bandwidth 
targets this application space directly. 

At PGI, we represent these common elements in an 
abstracted CPU+Accelerator architecture that looks as 
follows: 
  

 
 

Figure 1: CPU+Accelerator Abstract Machine Architecture 
 

3. Exploiting Accelerator Performance 

Here we review and discuss the various means to 
program for today’s accelerators, focusing on how the 
various important architectural aspects are managed by 
the programming model.  A programming model has 
several options for exploiting architectural features: hide 
it, virtualize it, or expose it.   

The model can hide a feature by automatically 
managing it.  This is the route taken for register 
management for classical CPUs, for instance.  While the C 
language has a register keyword, modern compilers 
ignore that when performing register allocation.  Hiding a 
feature relieves the programmer from worrying about it, 
but also prevents the programmer from optimizing or 
tuning for it. 

The model can virtualize a feature by exposing its 
presence but virtualizing the details.  This is how 
vectorization is classically handled.  The presence of 
vector or SIMD instructions is explicit, and programmers 
are expected to write vectorizable inner loops.  However, 
the native vector length, the number of vector registers 
and the vector instructions themselves are all virtualized 
by the compiler.  Compare this to using SSE intrinsics and 
how that affects portability to a future architecture (with, 
say, AVX instructions).  Virtualizing a feature often 
incurs some performance penalty, but also improves 
productivity and portability. 

Finally, a model can expose a feature fully.  The 
classical example is how using MPI exposes the separate 
compute nodes, distributed memory and network data 
transfers within a program.  The C language exposes the 
linear data layout, allowing pointer arithmetic to navigate 
a data structure.  Exposing a feature allows the 
programmer to tune and optimize for it, but also requires 
the programmer to do the tuning and optimization. 

The programming models we will discuss are 
OpenCL [7], CUDA C and Fortran, Microsoft’s C++AMP 
[3], Intel’s offload directives [4] (which are turning into 
the OpenMP 4.0 target directives [5]), and OpenACC [6]. 

3.1 Memory Management 
Memory management is the highest hurdle and 

biggest obstacle to high performance on today’s 
accelerators.  Memory has to be allocated on the device, 
and data has to be moved between the host and the device.  
This is essentially identical across all the current devices.  
All attempts to automatically manage data movement 
between devices or nodes of a cluster result in great 
performance for simple stunt cases, but disappointing 
results in general.  The costs of a bad decision are simply 
too high.  For that reason, all of these programming 
models delegate some aspects of memory management to 
the programmer. 

CUDA C [9] and Fortran [8] require the programmer 
to allocate device memory and explicitly copy data 
between host and device.  CUDA Fortran allows the use 
of standard allocate and array assignment statements to 
manage the device data. 

Similarly, OpenCL requires the programmer to 
allocate buffers and copy data to the buffers.  It hides 
some important details, however, in that it doesn’t expose 
exactly where the buffer lives at various points during the 
program execution.  A compliant implementation may 
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(and may be required to) move a buffer to host memory, 
then back to device memory, with no notification to the 
programmer. 

C++AMP uses views and arrays of data.  The 
programmer can create a view of the data that will be 
processed on the accelerator.  As with OpenCL, the actual 
point at which the memory is allocated on the device and 
data transferred to or from the device is hidden.  
Alternatively, the programmer may take full control by 
creating an explicit new array, or create an array with 
data copied from the host. 

The Intel offload directives and OpenACC allow the 
programmer to rely entirely on the compiler for memory 
management to get started, but offer optional data 
constructs and clauses to control and optimize when data 
is allocated on the device and moved between host and 
device.  The language, compiler and runtime cooperate to 
virtualize the separate memory spaces by using the same 
names for host and device copies of data.  This is 
important to allow efficient implementations on systems 
where data movement is not necessary, and to allow the 
same program to be used on systems with or without an 
accelerator. 

 

3.2 Parallelism Scheduling 
These devices have three levels of compute 

parallelism: many cores, multithreading on a core, and 
SIMD execution. 

CUDA and OpenCL expose the many-core 
parallelism with a three-level hierarchy.  A kernel is 
written as a scalar thread; many threads are executed in 
parallel in a rectangular block or workgroup on a single 
core; many blocks or workgroups are executed in parallel 
in a rectangular grid across cores.  The number of scalar 
threads in a block or workgroup, and the number of blocks 
or workgroups are chosen explicitly by the programmer.  
The fact that consecutive scalar threads are actually 
executed in SIMD fashion in warps or wavefronts on a 
GPU is hidden, though tuning guidelines give advice on 
how to avoid performance cliffs.  The fact that some 
threads in a block or workgroup may execute in parallel 
using multithreading on the same hardware, or that 
multiple blocks or workgroups may execute in parallel 
using multithreading on the same hardware is also hidden.  
The programming model virtualizes the multithreading 
aspect, using multithreading for large blocks or 
workgroups, or many blocks or workgroups, until the 
resources are exhausted. 

C++AMP does not expose the multiple levels of 
parallelism, instead presenting a flat parallelism model.  
The programmer can impose some hierarchy by explicitly 
using tiles in the code, but the mapping to the eventual 
execution mode is still implicit. 

Intel’s offload directives use OpenMP parallelism 
across the cores and threads on a core.  The number of 

threads to launch can be set by the programmer using 
OpenMP clauses or environment variables, or set by 
default by the implementation.  SIMD execution on a core 
is implemented with loop vectorization. 

OpenACC exposes the three levels of parallelism as 
gang, worker and vector parallelism.  A programmer can 
use OpenACC loop directives to explicitly control which 
loop indices are mapped to each level.  However, a 
compiler has some freedom to automatically map or 
remap parallelism for a target device.  For instance, the 
compiler may choose to automatically vectorize an inner 
loop.  Or, if there is only a single loop, the compiler may 
remap the programmer-specified gang parallelism across 
gangs, workers and vector lanes, to exploit all the 
available parallelism.  This allows the programmer to 
worry more about the abstract parallelism, leaving most of 
the device-specific scheduling details to the compiler. 

OpenACC also allows the programmer to specify how 
much parallelism to instantiate, similar to the 
num_threads clause in OpenMP, with num_gangs, 
num_workers and vector_length clauses on the parallel 
directive, or with explicit sizes in the kernels loop 
directives.  The best values to use are likely to be 
dependent on the device, so these should usually be left to 
the compiler or runtime system. 

 

3.3 Multithreading 
All three devices require oversubscription to keep the 

compute units busy; that is, the program must expose extra 
(slack) parallelism so a compute unit can swap in another 
active thread when a thread stalls on memory or other 
long latency operations.  This slack parallelism can come 
from several sources.  Here we explore how to create 
enough parallelism to keep the devices busy. 

In CUDA and OpenCL, slack parallelism comes from 
creating blocks or workgroups larger than one warp or 
wavefront, or from creating more blocks or workgroups 
than the number of cores.  Whether the larger blocks or 
workgroups are executed in parallel across SIMD units or 
time-sliced using multithreading is hidden by the 
hardware. 

C++AMP completely hides how parallelism is 
scheduled.  The programmer simply trusts that if there is 
enough parallelism, the implementation will manage it 
well on the target device. 

Intel’s offload model doesn’t expose multithreading 
explicitly.  Multithreading is used as another mechanism 
to implement OpenMP threads on the device.  The 
programmer must create enough OpenMP threads to 
populate the cores, then create another factor to take 
advantage of multithreading for latency tolerance. 

 OpenACC worker-level parallelism is intended to 
address this issue directly.  On the GPUs, iterations of a 
worker-parallel loop will run on the same core, either 
simultaneously using multiple SIMD units in the same 
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core, or sharing the same resources using multithreading.  
As mentioned earlier, an OpenACC implementation can 
also use longer vectors or more gangs and implement 
these using multithreading, similar to the way OpenCL or 
CUDA would. 

 

3.4 SIMD operations 
All three current architectures have vector or SIMD 

operations, but they are exposed differently.  The IXPC 
has a classical core, with scalar and vector instructions.  
The Kepler is programmed in what NVIDIA calls SIMT 
fashion, that is, as a number of independent threads that 
happen to execute in lock-step as a warp; the SIMD 
implementation is virtualized at the hardware level.  The 
Radeon also has scalar and vector units, but the scalar unit 
is limited; the Radeon is actually programmed much like 
the Kepler, with thread-independent branching relegated 
to the scalar unit. 

As mentioned above, CUDA and OpenCL hide the 
SIMD aspect of the target architecture, except for tuning 
guidelines.  C++AMP also completely hides how the 
parallelism of the algorithm is mapped onto the 
parallelism of the hardware. 

Intel’s offload model uses classical SIMD 
vectorization within a thread.  New directives also allow 
more control over which loops are vectorized.  The SIMD 
length is (obviously) limited to the 512-bit instruction set, 
for the current IXPC, but any specification of vector 
length is not part of the model. 

An OpenACC compiler can treat all three machines 
as cores with scalar and vector units.  For Kepler, vector 
operations are spread over the CUDA threads of a warp or 
thread block; scalar operations are either executed 
redundantly by each CUDA thread, or, where redundant 
execution is invalid or inefficient, executed in a protected 
region only by CUDA thread zero.  Code generation for 
Radeon works much the same way.  The native SIMD 
length for Kepler is 32 and for Radeon is 64, in both 
single and double precision.  The compiler has the 
freedom to choose a longer vector length, multiples of 32 
or 64, by synchronizing the warps or wavefronts as 
necessary to preserve vector dependences.  Thus the 
OpenACC programming model for all three devices is 
really multicore plus vector parallelism.  The compiler 
and runtime manage the differences between the device 
types. 
 

3.5 Memory Strides 
All three devices are quite sensitive to memory 

strides.  The memories are designed to deliver very high 
bandwidth when a program accesses blocks of contiguous 
memory. 

In OpenCL and CUDA, the programmer must write 
code so that consecutive OpenCL or CUDA threads 

access consecutive or contiguous memory locations.  
Since these threads execute in SIMD fashion, they will 
issue memory operations for consecutive locations in the 
same cycle, to deliver the memory performance we want. 

In C++AMP, the mapping of parallel loop iterations 
to hardware parallelism is virtualized.  If the index space 
is one dimensional, the programmer can guess that 
adjacent iterations will be executed together and should 
then access consecutive memory locations. 

The Intel offload model has no need to deal with 
strides.  The programmer should write the vector or SIMD 
loops to access memory in stride-1 order. 

Similarly, using OpenACC, the programmer should 
write the vector loops with stride-1 accesses.  When 
mapping a vector loop, the natural mapping will assign 
consecutive vector iterations to adjacent SIMD lanes, 
warp threads or wavefront threads.  This will result in 
stride-1 memory accesses, or so-called coalesced memory 
accesses. 

  

3.6 Caching and Scratchpad Memories 
All three devices have classical cache memories.  For 

the IXPC, classical cache optimizations should be as 
effective as for commodity multicore systems, except 
there is no large shared L3 cache.  For the GPUs, the 
small hardware cache coupled with the amount of 
parallelism in each core makes it much less likely that the 
caches will be very effective for temporal locality.  These 
devices have small scratchpad memories, which operate 
with the same latency as the L1 cache. 

In CUDA and OpenCL, the programmer must 
manage the scratchpad memory explicitly, using CUDA 
__shared__ or OpenCL __local memory.  The size 

of this memory is quite small, and it quickly becomes a 
critical resource that can limit the amount of parallelism 
that can be created on the core. 

C++AMP has no explicit scratchpad memory 
management, but it does expose a tile optimization to take 
advantage of memory locality.  The programmer depends 
on the implementation or the hardware to actually exploit 
the locality. 

Intel’s offload model has no scratchpad memory 
management, since the target (the IXPC) has no such 
feature. 

OpenACC has a cache directive to allow the 
programmer to tell the implementation what data has 
enough reuse to cache locally.  An OpenACC compiler 
can use this directive to store the specified data in the 
scratchpad memory.  The PGI OpenACC compilers also 
manage the scratchpad memory automatically, by 
analyzing the program to find temporal or spatial data 
reuse within and across workers and vector lanes in the 
same gang to choose to store data in the scratchpad 
memory. 
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3.7 Portability 
There are three levels of portability.  First is language 

portability, meaning a programmer can use the same 
language to write a program for different targets, even if 
the programs must be different.  Second is functional 
portability, meaning a programmer can write one program 
that will run on different targets, though not all targets will 
get the best performance.  Third is performance 
portability, meaning a programmer can write one program 
that gives good performance across many targets.  For 
standard multi-core processors, C, C++ and Fortran do a 
pretty good job of delivering performance portability, as 
long as the program is written to allow vectorization and 
with appropriate memory access patterns.  For portability 
on accelerators, the problems are significantly more 
difficult. 

CUDA provides reasonable portability across 
NVIDIA devices.  Each new architecture model adds new 
features and extends the programming model, so while old 
programs will likely run well, retuning or rewriting a 
program will often give even better performance.  PGI has 
implementations of CUDA C and Fortran to run on an x86 
multicore, but there is no pretense that these provide 
cross-vendor portability, or even performance portability 
of CUDA source code. 

OpenCL is designed to provide language and 
functionality portability.  Research has demonstrated that 
even across similar devices, like NVIDIA and AMD 
GPUs, retuning or rewriting a program can have a 
significant impact on performance [10].  In both CUDA 
and OpenCL, since the memory management is explicit in 
the program, data will be allocated and copied even when 
targeting a device like a multicore which has no split 
device memory. 

C++AMP is intended to provide performance 
portability across devices.  It is designed to do this by 
hiding or virtualizing aspects of the program that a 
programmer would tune for a particular target. 

Intel’s offload model makes no attempt to provide 
portability to other targets.  Even when targeting a 
multicore, the mechanism is to ignore the offload 
directives entirely, using the embedded OpenMP for 
parallelism on the device.  The successor, the OpenMP 
4.0 target directives, are promoted to be portable across 
devices, but it is unlikely to be fully supported except on 
targets that can implement full OpenMP, such as a many 
core or DSP. 

OpenACC is also intended to provide performance 
portability across devices, and there is some initial 
evidence to support this claim.  The OpenACC parallelism 
model is more abstract than any of the others discussed 
here, except C++AMP, yet allows the programmer to 
expose different aspects of the parallel execution.  An 
implementation can use this to exploit the different 
parallel features of a wide variety of target architectures. 

4. Accelerator Architectures Tomorrow 

Today’s devices will be replaced in the next 12-24 
months by a new generation, and we can speculate or 
predict what some of these future devices will look like. 

AMD already has APU (Accelerated Processing 
Units) with a CPU core and GPU on the same die, sharing 
the same memory interface.  Future APUs will allow the 
GPU to use the same virtual address space as the CPU 
core, allowing true shared memory.  Current CPU memory 
interfaces do not provide the memory bandwidth 
demanded for high performance GPUs.  Future APUs will 
have to improve this memory interface, or the on-chip 
GPU performance will be limited by the available memory 
bandwidth.  This improvement could use new memory 
technology, such as stacked memory, to give both CPU 
and GPU very high memory bandwidth, or by using 
separate but coherent memory controllers for CPU-side 
and GPU-side memory. 

NVIDIA has already announced plans to use stacked 
memory on future GPU dies.  This should improve the 
memory bandwidth significantly.  NVIDIA has also 
announced plans to allow the GPU to access system 
memory directly.  If the GPU sits on the IO bus, such 
memory access will be quite slow relative to on-board 
memory, so this will not be a very broad solution.  
However, NVIDIA also has plans to package an NVIDIA 
GPU with ARM cores, which may give it many of the 
same capabilities as the AMD APU. 

While Intel has not published a roadmap, one can 
imagine a convergence of the Intel Xeon Phi Coprocessor 
with the Intel Xeon processor line.  Current IXPC 
products sit on the IO bus, but Intel presentations have 
shown diagrams with future IXPC and Xeon chips as peer 
processors on a single node. 

In all three cases, it is possible or likely that the need 
to manage memory allocation and movement will 
diminish somewhat.  However, we don’t know how the 
accelerator architecture itself will evolve.  The core count 
may increase, vectors may get longer (or not), other 
capabilities may be added.  The clock speed may vary 
within a defined envelope as we prove out the most 
successful accelerator architectures.  Other vendors may 
become viable candidates, such as the Texas Instruments 
or Tilera products.  A successful programming model and 
implementation must effectively support the important 
accelerators available today, and be ready to support the 
accelerators we are likely to see tomorrow. 

 

5. Our Conclusion 

NVIDIA Tesla, Intel Xeon Phi and AMD Radeon have 
many common features that can be leveraged to create an 
Accelerator programing model that delivers language, 
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functional and performance portability across devices – 
separated and relatively small device memories, stream-
oriented memory systems, many cores, multi-threading, 
and SIMD/SIMT. Features we would all like to see in 
such a model are many: 

 
 Addresses a suitable range of applications 
 Allows programming of CPU+Accelerator 

systems as an integrated platform 
 Is built around standard C/C++/Fortran without 

sacrificing too much performance  
 Integrates with the existing, proven, widely-used 

parallel programming models – MPI, OpenMP 
 Allows incremental porting and optimization of 

existing applications 
 Imposes little or no disruption on the standard 

code/compile/run development cycle 
 Is interoperable with low-level Accelerator 

programming models 
 Allows for efficient implementations on each of 

Tesla, Xeon Phi and Radeon 
 
Admittedly, any programming model that meets most 

or all of these criteria is likely to short-change certain 
features of each of the important targets.  However, in 
deciding which models to implement, compiler writers 
like those at PGI have to maximize those goals across all 
targets rather than maximizing them for a particular target.  
Likewise, when deciding which models to support and 
use, HPC users need to consider the costs associated with 
re-writing applications for successive generations of 
hardware and of potentially limiting the diversity of 
platforms from which they can choose.   

To be successful, an Accelerator programming model 
must be low-level enough to express the important aspects 
of parallelism outlined above, but high-level and portable 
enough to allow an implementation to create efficient 
mappings of these aspects to a variety of accelerator 
hardware targets. 

Libraries are one solution, and can be a good solution 
for applications dominated by widely-used algorithms.  
CUDA and OpenCL give control over all aspects of 
Accelerator programming, but are low-level, not very 
incremental, and come with portability issues and a 
relatively steep learning curve.   C++ AMP may be a good 
solution for pure Windows programmers, but relies 
heavily on compiler technology to overcome abstraction, 
is not standardized or portable, and for HPC programmers 
offers no Fortran solution.  The OpenMP 4.0 target and 
simd extensions are attractive on the surface, but come 
with the Achilles heel of requiring support for all of 
OpenMP 3.1 on devices which are ill-suited to support it. 

In our view, OpenACC meets the criteria for long-term 
success. It is orthogonal to and interoperable with MPI 
and OpenMP.  It virtualizes into existing languages the 

concept of an accelerator for a general-purpose CPU 
where these have potentially separated memories.  It 
exposes and gives the programmer control over the 
biggest current performance bottleneck – data movement 
over a PCI bus.  It virtualizes the mapping of parallelism 
from the program onto the hardware, giving both the 
compiler and the user the freedom to create optimal 
mappings for specific targets.  And finally, it was 
designed from the outset to be portable and performance 
portable across CPU and accelerator targets of a canonical 
form − a MIMD parallel dimension, a SIMD/SIMT 
parallel dimension, and a memory hierarchy that is 
exposed to a greater or lesser degree and which must be 
accommodated by the programmer or compiler.   
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