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Monday 6th May 2013 

 
●   8:30 Lecture 1: Introduction to the Cray XK7  (15) 

●   8:45 Lecture 2: OpenACC organization (Duncan Poole)  (15) 

●   9:00 Lecture 3: The OpenACC programming model (30) 

●   9:30 Lecture 4: Porting a simple example to OpenACC  (30) 

● 10:00 break  (30) 

● 10:30 Lecture 5:  Advanced OpenACC  (40) 

● 11:10 Lecture 6:  Using CCE with OpenACC  (25) 

● 11:35 Lecture 7:  OpenACC 2.0 and OpenMP 4.0  (25) 

● 12:00 close 
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● The aims of this course: 
● To motivate why directive-based programming of GPUs is useful 

● To introduce you to the OpenACC programming model 

● To give you some experience seeing OpenACC directives in a code 
 

● The idea is to prepare you for future tutorials and initial 
porting efforts 



Inside the Cray XK7  
and the Nvidia Kepler K20X GPU 
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Contents of this talk 
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● An overview of the Cray XK7 
● The hardware 

● Why GPUs are interesting for Exascale research 

● Programming models for GPUs 

 

● A quick GPU refresher 
● the hardware 

● how codes execute on the hardware and what this means to the 
programmer 

 

● Things to consider before starting an OpenACC port 
 

 

 



"Accelerating the Way to Better Science" 

6.May.2013 Cray OpenACC tutorial, CUG 
6 

Cray XK(6|7) supercomputer 

● Node architecture: 
● One AMD Series 6200 Interlagos CPU (16 cores) 

● One Nvidia GPU 
● XK6 Fermi+ 

● 512 cores, 665 GFlop/s DP, 6GB memory 

● XK7 Kepler 
● 2496 cores, 1.17 TFlop/s DP, 5GB memory 

● 2688 cores, 1.31 TFlop/s DP, 6GB memory  

 

● Cray Gemini interconnect 
● shared between two nodes 

● high bandwidth/low latency scalability 

 

● Fully integrated/optimized/supported  
● Tight integration of GPU and NIC drivers 

 



The Exascale is coming... 
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(and they're all Crays) 

 Sustained performance milestones every 10 years... 

 1000x the performance with 100x the PEs 



Exascale, but not exawatts 
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● Power is a big consideration in an exascale architecture 
● Jaguar XT (ORNL) draws 6MW to deliver 1PF 
● The US DoE wants 1EF, but using only 20MW... 

● A hybrid system is one way to reach this, e.g. 
● 105 nodes (up from 104 for Jaguar) 
● 104 FPUs/node (up from 10 for Jaguar) 

● some full-featured cores for serial work 
● a lot more cutdown cores for parallel work 

● Instruction level parallelism will be needed 
● continues the SIMD trend SSE → AVX → ... 

 
● This looks a lot like the current GPU accelerator model 

● manycore architecture, split into SIMT threadblocks 
● Complicated memory space/hierarchy (internal and PCIe) 

 

● And this looks a lot like the old days 
● welcome back to vectorization, we kept the compiler ready for you 



Accelerator programming 

6.May.2013 Cray OpenACC tutorial, CUG 
9 

● Why do we need a new GPU programming model? 

 

● Aren’t there enough ways already? 
● CUDA (incl. NVIDIA CUDA-C & PGI CUDA-Fortran) 

● OpenCL  

● Stream 

● hiCUDA ... 

 

● All are quite low-level and closely coupled to the GPU 
● User needs to rewrite kernels in specialist language: 

● Hard to write and debug 

● Hard to optimise for specific GPU 

● Hard to port to new accelerator 

● Multiple versions of kernels in codebase 
● Hard to add new functionality 

 



Directive-based programming 
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Directives provide a high-level alternative 

 

+ Based on original source code (e.g. Fortran, C, C++) 
+ Easier to maintain/port/extend code 

+ Users with (for instance) OpenMP experience find it a familiar 
programming model 

+ Compiler handles repetitive boilerplate code (cudaMalloc, 
cudaMemcpy...) 

+ Compiler handles default scheduling; user can step in with clauses 
where needed 

 

– Possible performance sacrifice 
– Important to quantify this 

– Can then tune the compiler 

– Small performance sacrifice is an acceptable trade-off for portability 
and productivity 
– After all, who handcodes in assembly for CPUs these days? 



Performance compared to CUDA 
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● Is there a performance gap relative to explicit low-level 
programming model? Typically 10-15%, sometimes none. 

● Is the performance gap acceptable? Yes. 
● e.g. S3D comp_heat kernel (ORNL application readiness): 
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Structure of this course 
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● Aims to lead you through the entire development process 
● What is OpenACC? 

● How do I use it in a simple code? 

● Performance tuning and advanced topics 

 

● It will assume you know 
● A little bit about GPU architecture and programming 

● SMs, threadblocks, warps, coalescing 

● a quick refresher follows 

 

 

● It will help if you know 
● The basic idea behind OpenMP programming 

● but this is not essential 

 



A quick GPU refresher 
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How fast are current GPUs? 
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● Beware the hype: "I got 1000x speed-up on a GPU" 

● What should you expect? 
● Cray XK7: 

● Flop/s: GPU ~9x faster than single, whole CPU (16 cores) 

● Memory bandwidth: GPU ~6x faster than CPU 

● These ratios are going to be similar in other systems 

● Plus, it is harder to reach peak performance on a GPU 
● Your code needs to fit the architecture 

● You also need to factor in data transfers between CPU and GPU 

CPU 
~150 GF 

GPU 
~1.3 TF 

32GB  

SDRAM 6 GB  

GDDR 

PCIe-2 

8 GB/s 

~250 GB/s ~42 GB/s 



Nvidia K20X Kepler architecture 
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● Global architecture 
● a lot of compute cores 

● 2688 SP plus 896 DP; ratio 3:1 

● divided into 14 Streaming Multiprocessors 
● these operate independently 

 
● SMX architecture 

● many cores 
● 192 SP 
● 64 DP 

● shared instruction stream; same ops 
● lockstep, SIMT execution of same ops 
● SMX acts like vector processor 

 
● Memory hierarchy 

● each core has private registers 
● fixed register file size 

● cores in an SM share a fast memory 
● 64KB, split between: 

● L1 cache and user-managed 

● all cores share large global memory 
● 6GB; also some specialist memory 

 



Issues around GPUs and OpenACC 
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● Program Execution on a GPU 
● Kernels are launched by CPU to execute on GPU 
● The GPU runtime schedules Kernels on hardware 
● Kernel launch is asynchronous 

 

● What CUDA doesn’t tell you (upfront) 
● Threads are not created equal 

● warps 
● Memory accesses done at the warp level 
● Compiler looks at GPU as a SMP vector processor 

 

● What does this mean to programmers 
● Need a lot of parallel tasks 
● Loops must vectorize 
● Data transfers are expensive 
● Synchronization is not possible at ThreadBlock level 

 

● With Auto-vectorization do we need directives? 
● Location location location 

 

● Risk Factors 
● Will there be machines to run my code? 
● Will OpenACC continue? 
● Will OpenACC be superseded? 

 



OpenACC Organization 

Duncan Poole 
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Monday 6th May 2013 

 
●   8:30 Lecture 1: Introduction to the Cray XK7  (15) 

●   8:45 Lecture 2: OpenACC organization (Duncan Poole)  (15) 

●   9:00 Lecture 3: The OpenACC programming model (30) 

●   9:30 Lecture 4: Porting a simple example to OpenACC  (30) 

● 10:00 break  (30) 

● 10:30 Lecture 5:  Advanced OpenACC  (40) 

● 11:10 Lecture 6:  Using CCE with OpenACC  (25) 

● 11:35 Lecture 7:  OpenACC 2.0 and OpenMP 4.0  (25) 

● 12:00 close 



● A common directive programming model for today’s GPUs 
● Announced at SC11 conference 

● Offers portability between compilers 
● Drawn up by: NVIDIA, Cray, PGI, CAPS 

● Multiple compilers offer: 
● portability, debugging, permanence 

● Works for Fortran, C, C++ 
● Standard available at openacc.org 

● Initially implementations targeted at NVIDIA GPUs 

● Current version: 1.0 (November 2011) 
● v2.0 expected in 1H 2013 

● Compiler support: all now complete 
● Cray CCE: complete in 8.1 release 

● PGI Accelerator: version 12.6 onwards 

● CAPS: Full support in v1.3 

● (accULL: research compiler, C only) 
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http://openacc.org/
http://www.pgroup.com/resources/accel.htm
http://www.caps-entreprise.com/technology/hmpp/
http://accull.wordpress.com/


The OpenACC programming model 

James Beyer 
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● OpenACC programming model 
 

● What does OpenACC looks like? 
 

● How are OpenACC directives used? 
● Basic directives 

● Advanced topics will follow in another lecture 

 

● Where can I learn more? 

 

● Plus a few hints, tips, tricks and gotchas along the way 
● Not all guaranteed to be relevant, useful (or even true) 



OpenACC programming model 
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● Host-directed execution with attached GPU 
● Main program executes on “host” (i.e. CPU) 

● Directs execution on device (i.e. GPU) 
● Memory allocation and transfers 

● Kernel execution 

● Synchronization 

● Memory spaces on the host and device distinct 
● Different locations, different address space 

● Data movement performed by host using runtime library calls that 
explicitly move data between the separate  

● GPUs have a weak memory model 
● No synchronization possible between outermost parallel level 

● User responsible for 
● Specifying code to run on device 

● Specifying parallelism 

● Specifying data allocation/movement that spans single kernels 



Accelerator directives 

● Modify original source code with directives 
● Non-executable statements (comments, pragmas) 

● Can be ignored by non-accelerating compiler 

● CCE -hnoacc (or -xacc) also supresses compilation 

● Sentinel: acc 
● C/C++: preceded by #pragma 

● Structured block {...} avoids need for end directives 

● Fortran: preceded by !$ (or c$ for FORTRAN77) 
● Usually paired with !$acc end * 

● Directives can be capitalised 

 

● Continuation to extra lines allowed 
● C/C++: \ (at end of line to be continued) 

● Fortran: 
● Fixed form: c$acc& or !$acc& on continuation line 

● Free form: & at end of line to be continued 

● continuation lines can start with either !$acc or !$acc& 

! Fortran example 
!$acc * 
<structured block> 
!$acc end * 

// C/C++ example  
#pragma acc * 
{structured block} 

6.May.13 
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Conditional compilation 

6.May.13 Cray OpenACC tutorial, CUG 
25 

● In theory, OpenACC code should be identical to CPU 
● only difference are the directives (i.e. comments) 

 

● In practise, you may need slightly different code 
● E.g. 

● around calls to OpenACC runtime API functions 

● where you need to recode for OpenACC, e.g. for performance reasons 
● try to minimize this; usually better OpenACC code is better CPU code 

 

● CPP macro defined to allow conditional compilation 
● _OPENACC == yyyymm (currently 201111) 



A first example 

Execute a loop nest on the GPU 
● Compiler does the work: 

● Data movement 
● allocates/frees GPU memory at  
 start/end of region 
● moves of data to/from GPU 

 
● Loop schedule: spreading loop iterations over PEs of GPU 

● OpenACC CUDA 

● gang:  a threadblock 

● worker:  warp (group of 32 threads) 
● vector:   threads within a warp 

● Compiler takes care of cases where iterations doesn't divide threadblock size 

 
● Caching (explicitly use GPU shared memory for reused data) 

● automatic caching (e.g. NVIDIA Fermi, Kepler) important 

 
● Tune default behavior with optional clauses on directives 

 

!$acc parallel loop  
DO i = 2,N-1 
    c(i,j) = a(i,j) + b(i,j) 
  ENDDO 
ENDDO 
!$acc end parallel loop 

read-only write-only 

6.May.13 
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A first full OpenACC program: "Hello World" 

● Array a(:) unnecessarily moved from and to GPU between 
kernels 
● "data sloshing" 

● Code still compile-able for CPU 

 

PROGRAM main 
  INTEGER :: a(N) 
  <stuff> 
!$acc parallel loop 
  DO i = 1,N 
   a(i) = i 
  ENDDO 
!$acc end parallel loop 
!$acc parallel loop 
  DO i = 1,N 
   a(i) = 2*a(i) 
  ENDDO 
!$acc end parallel loop 
  <stuff> 
END PROGRAM main 

 Two accelerator parallel regions 

 Compiler creates two kernels 
 Loop iterations automatically divided 

across gangs, workers, vectors 

 Breaking parallel region acts as barrier 

 First kernel initialises array 
 Compiler will determine copyout(a) 

 Second kernel updates array 
 Compiler will determine copy(a) 

 Breaking parallel region=barrier 
 No barrier directive (global or within SM) 

6.May.13 
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A second version 

● No automatic synchronization of copies within data region 
● User-directed synchronisation via update directive 

PROGRAM main 
  INTEGER :: a(N) 
  <stuff> 
!$acc data copyout(a) 
!$acc parallel loop 
  DO i = 1,N 
   a(i) = i 
  ENDDO 
!$acc end parallel loop 
!$acc parallel loop 
  DO i = 1,N 
   a(i) = 2*a(i) 
  ENDDO 
!$acc end parallel loop 
!$acc end data 
  <stuff> 
END PROGRAM main 

 Now added a data region 

 Specified arrays only moved at 
boundaries of data region 

 Unspecified arrays moved by 
each kernel 

 No compiler-determined 
movements for data regions 

 Data region can contain host code 
and accelerator regions 

 Copies of arrays independent 
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Sharing GPU data between subprograms 

● One of the kernels now in subroutine (maybe in separate file) 
● CCE supports function calls inside parallel regions 

● Fermi: Compiler will inline (maybe need -Oipafrom or program library) 

● present clause uses version of b on GPU without data copy 
● Can also call double_array() from outside a data region 

● Replace present with present_or_copy 

● Original call-tree structure of program can be preserved 

SUBROUTINE double_array(b) 
  INTEGER :: b(N) 
!$acc parallel loop present(b) 
  DO i = 1,N 
   b(i) = double_scalar(b(i)) 
  ENDDO 
!$acc end parallel loop 
END SUBROUTINE double_array 

PROGRAM main 
  INTEGER :: a(N) 
  <stuff> 
!$acc data copyout(a) 
!$acc parallel loop 
  DO i = 1,N 
   a(i) = i 
  ENDDO 
!$acc end parallel loop 
  CALL double_array(a) 
!$acc end data 
  <stuff> 
END PROGRAM main 

INTEGER FUNCTION double_scalar(c) 
  INTEGER :: c 
  double_scalar = 2*c 
END FUNCTION double_scalar 

6.May.13 
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Data clauses  
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● Applied to: data, parallel [loop], kernels [loop] 
● copy, copyin, copyout 

● copy moves data "in" to GPU at start of region and/or "out" to CPU 
at end 

● supply list of arrays or array sections (using ":" notation) 

● N.B. Fortran uses start:end; C/C++ uses start:length 
● e.g. first N elements: Fortran 1:N (familiar); C/C++ 0:N (less familiar) 

● Advice: be careful and don't make mistakes! 

● Use profiler and/or runtime commentary to see how much data moved 

● Avoid non-contiguous array slices for performance 

● create 
● No copyin/out – useful for shared temporary arrays in loopnests 

● Host copy still exists 

● private, firstprivate: as per OpenMP 
● scalars private by default (not just loop variables) 

● Advice: declare them anyway, for clarity 



More data clauses  

6.May.13 Cray OpenACC tutorial, CUG 
31 

● present, present_or_copy*, present_or_create 
● pcopy*, pcreate for short 

● Checks if data is already on the device 
● if it is, it uses that version 

● no data copying will be carried out for that data 

● if not, it does the prescribed data copying 

● Advice: only use present_or_* if you really have to 
● "not present" runtime errors are a useful development tool for most 

codes 

 

● In both cases, the data is processed on the GPU 
● Advanced topic: what if I want to call routine either: 

● with data on the GPU, to be processed on the GPU, or... 

● with data on the CPU, to be processed on the CPU? 

● Either: 
● Explicitly call one of  two versions of the routine, one with OpenACC, or... 

● Use the Cray OpenACC runtime to check if data present and branch code 



And take a breath... 
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● You now know everything you need to start accelerating 
 

● So what do we do for the rest of the lecture? 
● Not all codes are simple 

● OpenACC has a lot more functionality to cover 

● And we want to be able to tune the performance 

 
 

 



Clauses for !$acc parallel loop 
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● Tuning clauses: 
● !$acc loop [gang] [worker] [vector] 

● Targets specific loop (or loops with collapse) at specific level of 
hardware 
● gang ↔ CUDA threadblock (scheduled on a single SM) 

● worker ↔ CUDA warp of 32 threads (scheduled on vector unit) 

● vector ↔ CUDA threads in warp executing in SIMT lockstep 

● You can specify more than one 
● !$acc loop gang worker vector schedules loop iteration over all hardware 

 

● We'll discuss loop scheduling in much more detail later 
 



More clauses for !$acc parallel loop 
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● More tuning clauses: 

● num_gangs, num_workers, vector_length 
● Tunes the amount of parallelism used (threadblocks, threads/block...) 

● To set the number of threads per block (fixed at compile time for CCE) 
● vector_length(NTHREADS) or num_workers(NTHREADS/32) 

● NTHREADS must be one of: 1, 64, 128 (default), 256, 512, 1024 

● NTHREADS > 32 automatically decomposed into warps of length 32 

 

● Don't need to specify number of threadblocks (unless you want to) 

 

● Handy tip: To debug a kernel by running on a single GPU thread, use: 
● !$acc parallel [loop] gang vector num_gangs(1) vector_length(1) 

● Useful for checking race conditions in parallelised loopnests (but very slow) 



More OpenACC directives 

● Other !$acc parallel loop clauses: 
● seq: loop executed sequentially 

● independent: compiler hint, if it isn't partitioning (parallelising) a loop 

● if(logical) 
● Executes on GPU if .TRUE. at runtime, otherwise on CPU 

● reduction: as in OpenMP 

● cache: specified data held in software-managed data cache 
● e.g. explicit blocking to shared memory on NVIDIA GPUs 

 

● CCE-specific tuning:  
● can also use !dir$ directives to adjust loop scheduling 

● e.g. concurrent, blockable 

● see man intro_directives (with PrgEnv-cray loaded) for details 
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More OpenACC directives 

● !$acc update [host|device] 
● Copy specified arrays (slices) within data region  

● Useful if you only need to send a small subset of data to/from GPU 
● e.g. halo exchange for domain-decomposed parallel code 

● or sending a few array elements to the CPU for printing/debugging 

● Remember slicing syntax differs between Fortran and C/C++ 

● The contiguous array sections perform better 

● !$acc declare 
● Makes a variable resident in accelerator memory 

● persists for the duration of the implicit data region  

 

● Other directives 
● We'll cover these in detail later: 

● !$acc cache 

● async clause and !$acc wait 

● !$acc host_data 
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parallel vs. kernels 
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● parallel and kernels regions look very similar 
● both define a region to be accelerated 

● different heritage; different levels of obligation for the compiler 

● parallel 
● prescriptive (like OpenMP programming model) 

● uses a single accelerator kernel to accelerate region 

● compiler will accelerate region (even if this leads to incorrect results) 

● kernels 
● descriptive (like PGI Accelerator programming model)  

● uses one or more accelerator kernels to accelerate region 

● compiler may accelerate region (if decides loop iterations are independent) 

● For more info: http://www.pgroup.com/lit/articles/insider/v4n2a1.htm 

 

● Which to use (my opinion) 
● parallel (or parallel loop) offers greater control 

● fits better with the OpenMP model 

● kernels (or kernels loop) better for initially exploring parallelism 
● not knowing if loopnest is accelerated could be a problem 

http://www.pgroup.com/lit/articles/insider/v4n2a1.htm
http://www.pgroup.com/lit/articles/insider/v4n2a1.htm


parallel loop vs. parallel and loop 
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● parallel region can span multiple code blocks 
● i.e. sections of serial code statements and/or loopnests 

● loopnests in parallel region are not automatically partitioned 
● need to explicitly use loop directive for this to happen 

● scalar code (serial code, loopnests without loop directive) 
● executed redundantly, i.e. identically by every thread 

● or maybe just by one thread per block (its implementation dependent) 

● There is no synchronisation between redundant code or kernels 
● offers potential for overlap of execution on GPU 

● also offers potential (and likelihood) of race conditions and incorrect code 

● There is no mechanism for a barrier inside a parallel region 
● after all, CUDA offers no barrier on GPU across threadblocks 

● to effect a barrier, end the parallel region and start a new one 
● also use wait directive outside parallel region for extra safety 



parallel loop vs. parallel and loop 
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● My advice: don't... 
● GPU threads are very lightweight (unlike OpenMP) 

● so don't worry about having extra parallel regions 

● explicit use of async clause may achieve same results 
● as using one parallel region 
● but with greater code clarity and better control over overlap 

 

● ... but if you feel you must 
● begin with composite parallel loop and get correct code 

● separate directives with care only as a later performance tuning 
● when you are sure the kernels are independent and no race conditions 

 



parallel gotchas 
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● No loop directive 
● The code will (or may) run redundantly 

● Every thread does every loop iteration 

● Not usually what we want 

 

!$acc parallel 
  DO i = 1,N 
   a(i) = b(i) + c(i) 
  ENDDO 
!$acc end parallel 

● Serial code in parallel region 
● avoids copyin(t), but a good idea? 
● No! Every thread sets t=0 
● asynchronicity: no guarantee this 

finishes before loop kernel starts 
● race condition, unstable answers. 

!$acc parallel 
  t = 0 
!$acc loop reduction(+:t) 
  DO i = 1,N 
   t = t + a(i) 
  ENDDO 
!$acc end parallel 

● Multiple kernels 
● Again, potential race condition 

● Treat OpenACC "end loop" like 
OpenMP "enddo nowait" 

 

!$acc parallel 
!$acc loop 
  DO i = 1,N 
   a(i) = 2*a(i) 
  ENDDO 
!$acc loop 
  DO i = 1,N 
   a(i) = a(i) + 1 
  ENDDO 
!$acc end parallel 



parallel loop vs. parallel and loop 
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● When you actually might want to 
● You might split the directive if: 

● you have a single loopnest, and  

● you need explicit control over the loop scheduling 

● you do this with multiple loop directives inside parallel region 
● or you could use parallel loop for the outermost loop, and loop for the others 

● But beware of reduction variables 
● With separate loop directives, you need a reduction clause on every 

loop directive that includes a reduction: 
 

t = 0 
!$acc parallel loop &  
!$acc    reduction(+:t) 
 
DO j = 1,N 
 
  DO i = 1,N 
    t = t + a(i,j) 
  ENDDO 
ENDDO 
!$acc end parallel loop 

t = 0 
!$acc parallel &  
!$acc    reduction(+:t) 
!$acc loop 
DO j = 1,N 
!$acc loop 
  DO i = 1,N 
    t = t + a(i,j) 
  ENDDO 
ENDDO 
!$acc end parallel 

t = 0 
!$acc parallel 
 
!$acc loop reduction(+:t) 
DO j = 1,N 
!$acc loop 
  DO i = 1,N 
    t = t + a(i,j) 
  ENDDO 
ENDDO 
!$acc end parallel 

t = 0 
!$acc parallel 
 
!$acc loop reduction(+:t) 
DO j = 1,N 
!$acc loop reduction(+:t) 
  DO i = 1,N 
    t = t + a(i,j) 
  ENDDO 
ENDDO 
!$acc end parallel 

Correct! Wrong! Correct! Wrong! 



The OpenACC runtime API 
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● Directives are comments in the code 
● automatically ignored by non-accelerating compiler 

 
● OpenACC also offers a runtime API 

● set of library calls, names starting acc_ 
● set, get and control accelerator properties 
● offer finer-grained control of asynchronicity 

● OpenACC specific 
● will need pre-processing away for CPU execution 
● #ifdef _OPENACC 

 

● CCE offers an extended runtime API 
● set of library calls, names starting with cray_acc_ 

● will need pre-processing away if not using OpenACC with CCE 
● #if defined(_OPENACC) && PE_ENV==CRAY 

 
● Advice: you do not need the API for most codes. 

● Start without it, only introduce it where it is really needed. 



Sources of further information 
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● OpenACC standard web page:  
● OpenACC.org 

● documents: full standard and quick reference guide PDFs 

● links to other documents, tutorials etc. 

● Discussion lists: 
● Cray users: openacc-users@cray.com  

● automatic subscription if you have a raven account 

● OpenACC forum: openacc.org/forum   

 

● CCE man pages (with PrgEnv-cray loaded): 
● programming model and Cray extensions: intro_openacc 

● examples of use: openacc.examples 

● also compiler-specific man pages: crayftn, craycc, crayCC 

 

● CrayPAT man pages (with perftools loaded): 
● intro_craypat, pat_build, pat_report 

● also command: pat_help 

● accpc (for accelerator performance counters) 

 

http://www.openacc.org/
mailto:openacc-users@cray.com
mailto:openacc-users@cray.com
mailto:openacc-users@cray.com
http://openacc.org/forum
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Timetable 

6.May.2013 Cray OpenACC tutorial, CUG 
45 

Monday 6th May 2013 

 
●   8:30 Lecture 1: Introduction to the Cray XK7  (15) 

●   8:45 Lecture 2: OpenACC organization (Duncan Poole)  (15) 

●   9:00 Lecture 3: The OpenACC programming model (30) 

●   9:30 Lecture 4: Porting a simple example to OpenACC  (30) 

● 10:00 break  (30) 

● 10:30 Lecture 5:  Advanced OpenACC  (40) 

● 11:10 Lecture 6:  Using CCE with OpenACC  (25) 

● 11:35 Lecture 7:  OpenACC 2.0 and OpenMP 4.0  (25) 

● 12:00 close 



Overview 
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● This worked example leads you through accelerating a 
simple application 
● a simple application is easy to understand 

● but it shows all the steps you would use for a more complicated code 

 

 



The Himeno Benchmark 
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● 3D Poisson equation solver 
● Iterative loop evaluating 19-point stencil 

● Memory intensive, memory bandwidth bound 

 

● Fortran and C implementations 
available from  http://accc.riken.jp/2444.htm  
 

● We look at the scalar version for simplicity 
 

● Code characteristics 
● Around 230 lines of Fortran or C 

● Arrays statically allocated 
● problem size fixed at compile time 
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Why use such a simple code? 
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● Understanding a code structure is crucial if we are to 
successfully OpenACC an application 
● i.e. one that runs faster node-for-node (not just GPU vs. single CPU core) 

 

● There are two key things to understand about the code: 
● How is data passed through the calltree? 

● CPUs and accelerators have separate memory spaces  
● The PCIe link between them is relatively slow 
● Unnecessary data transfers will wipe out any performance gains 
● A successful OpenACC port will keep data resident on the accelerator 

● Where are the hotspots? 
● The OpenACC programming model is aimed at loop-based codes 

● Which loopnests dominate the runtime? 
● Are they suitable for a GPU?  

● What are the min/average/max tripcounts? 

● Minimising data movements will probably require eventual acceleration of many 
more (and possibly all) loopnests, but we have to start somewhere 
 

● Answering these questions for a large application is hard 
● There are tools to help (we will discuss some of them later in the course) 
● With a simple code, we can do all of this just by code inspection 



Stages to accelerating an application 
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1. Understand and characterise the application 
● Profiling tools, code inspection, speaking to developers if you can 

2. Introduce first OpenACC kernels 

3. Introduce data regions in subprograms 
● reduce unnecessary data movements 

● will probably require more OpenACC kernels 

4. Move up the calltree, adding higher-level data regions 
● ideally, port entire application so data arrays live entirely on the GPU 

● otherwise, minimise traffic between CPU and GPU 

● This will give the single biggest performance gain 

5. Only now think about performance tuning for kernels 
● First correct any obviously inefficient  scheduling on the GPU 

● This will give some good performance improvements 

● Optionally, experiment with OpenACC tuning clauses 
● You may gain some final additional performance from this 

 

● Remember to verify correctness along the way. 

● And remember Amdahl's law... 

 



Step 1: Himeno program structure 
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● Code has two subprograms 
● init_mt() initialises the data array 

● Called once at the start of the program 

● jacobi() performs iterative stencil updates of the data array 
● The number of updates is an argument to the subroutine and fixed 

● A summed residual is calculated, but not tested for convergence 

● This subroutine is called twice, and each call is timed: 
● Each call is timed internally by the code 

● The first call does a small fixed number of iterations. 

● The time is used to estimate how many iterations could be done in one minute 

● The second call does this number of iterations 

● The time is converted into a performance figure by the code 

 

● Actually, it is useful when testing to do a fixed number of iterations 

● Then we can use the value of the residual for a correctness check. 

 

● The next slide shows an edited version of the code 
● These slides discuss the Fortran version; there is also a C code 



Step 1: Himeno program structure (contd) 
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● In the next slides we look at the 
details of jacobi() 

 

PROGRAM himeno 

 INCLUDE "himeno_f77.h" 

 

 CALL initmt  ! Initialise local matrices 

 

 cpu0 = gettime() ! Wraps SYSTEM_CLOCK 

 CALL jacobi(3,gosa) 

 cpu1 = gettime() 

 cpu = cpu1 - cpu0 

 

! nn = INT(ttarget/(cpu/3.0)) ! Fixed runtime 

 nn = 1000 ! Hardwired for testing 

 

 cpu0 = gettime() 

 CALL jacobi(nn,gosa) 

 cpu1 = gettime() 

 cpu = cpu1 - cpu0 

 xmflops2 = flop*1.0d-6/cpu*nn 

 

  PRINT *,' Loop executed for ',nn,' times' 

   PRINT *,' Gosa :',gosa 

   PRINT *,' MFLOPS:',xmflops2,'  time(s):',cpu 

END PROGRAM himeno 
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Step 1: Structure of the jacobi routine 
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● Outer loop is executed 
fixed number of times 
● loop must be sequential ! 

 

●  Apply stencil to p to 
create temporary wrk2 
● residual gosa computed 

● details on the next slide 

 

● Pressure array p 
updated from wrk2 
● this loopnest can be 

parallelised 

 

● Outer halo of p is fixed 

SUBROUTINE jacobi(nn,gosa) 

 

   iteration: DO loop = 1, nn 

 

! compute stencil: wrk2, gosa from p 

     <described on next slide> 

    

! copy back wrk2 into p 

      DO k = 2,kmax-1 

         DO j = 2,jmax-1 

            DO i = 2,imax-1 

               p(i,j,k) = wrk2(i,j,k) 

            ENDDO 

         ENDDO 

      ENDDO 

   

   ENDDO iteration 

 

END SUBROUTINE jacobi 
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Step 1: The Jacobi computational kernel  
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● The stencil is applied to 
pressure array p 
● 19-point stencil 

 
● Updated pressure values 

are saved to temporary 
array wrk2 
 

● Residual value gosa is 
computed 
 

● This loopnest dominates 
runtime 
● Can be computed in 

parallel 
● gosa is reduction variable 

gosa = 0 

DO k = 2,kmax-1 

 DO j = 2,jmax-1 

  DO i = 2,imax-1 

   s0=a(i,j,k,1)*p(i+1,j, k ) & 

     +a(i,j,k,2)*p(i, j+1,k ) & 

     +a(i,j,k,3)*p(i, j, k+1) & 

     +b(i,j,k,1)*(p(i+1,j+1,k )-p(i+1,j-1,k )  & 

                 -p(i-1,j+1,k )+p(i-1,j-1,k )) & 

     +b(i,j,k,2)*(p(i, j+1,k+1)-p(i, j-1,k+1)  & 

                 -p(i, j+1,k-1)+p(i, j-1,k-1)) & 

     +b(i,j,k,3)*(p(i+1,j, k+1)-p(i-1,j, k+1)  & 

                 -p(i+1,j, k-1)+p(i-1,j, k-1)) & 

     +c(i,j,k,1)*p(i-1,j, k ) & 

     +c(i,j,k,2)*p(i, j-1,k ) & 

     +c(i,j,k,3)*p(i, j, k-1) & 

     + wrk1(i,j,k) 

 

   ss = (s0*a(i,j,k,4)-p(i,j,k)) * bnd(i,j,k) 

   gosa = gosa + ss*ss 

   wrk2(i,j,k) = p(i,j,k) + omega*ss 

  ENDDO 

 ENDDO 

ENDDO 

fw
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6.May.13 



Step 2: a first OpenACC kernel 
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● Start with most expensive 
● apply parallel loop 
● end parallel loop optional 

● advice: use it for clarity 

● reduction clause 
● like OpenMP, not optional 

● private clause 
● loop variables default 

private (like OpenMP) 
● scalar variables default 

private (unlike OpenMP) 
● so clause optional here 

● advice: use one for clarity 

● copy* data clauses 
● compiler will do automatic 

analysis 
● explicit clauses will 

interfere with data 
directives at next step 
● advice: only use if compiler 

over-cautious 

gosa1 = 0 

 

!$acc parallel loop reduction(+:gosa1) & 

!$acc&  private(i,j,k,so,ss) & 

!$acc&  copyin(p,a,b,c,bnd,wrk1) & 

!$acc&  copyout(wrk2) 

DO k = 2,kmax-1 

 DO j = 2,jmax-1 

  DO i = 2,imax-1 

   s0 = a(i,j,k,1) * p(i+1,j, k ) & 

     <etc...> 

   

   ss = (s0*a(i,j,k,4) - p(i,j,k)) * &           

                             bnd(i,j,k) 

   gosa1 = gosa1 + ss*ss 

   wrk2(i,j,k) = p(i,j,k) + omega*ss 

  ENDDO 

 ENDDO 

ENDDO 

!$acc end parallel loop 
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Compiler feedback 
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● Compiler feedback is extremely important 
● Did the compiler recognise the accelerator directives? 

● A good sanity check 

● How will the compiler move data? 
● Only use data clauses if the compiler is over-cautious on the copy* 

● Or you want to declare an array to be scratch (create clause) 

 

● The first main code optimisation is removing unnecessary data movements 

● How will the compiler schedule loop iterations across GPU threads? 
● Did it parallelise the loopnests? 

● Did it schedule the loops sensibly? 

 

● The other main optimisation is correcting obviously-poor loop scheduling 

 

● Compiler teams work very hard to make feedback useful 
● advice: use it, it's free! (i.e. no impact on performance to generate it) 

● CCE:  -hlist=a  Produces commentary files <stem>.lst 

● PGI:  -Minfo  Feedback to STDERR 
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163. 1--------< DO loop = 1,nn 

169. 1           gosa1 = 0 

171. 1 G-----<> !$acc parallel loop reduction(+:gosa1) private(i,j,k,s0,ss) 

172. 1 g------<  DO k = 2,kmax-1 

173. 1 g 3----<   DO j = 2,jmax-1 

174. 1 g 3 g--<    DO i = 2,imax-1 

175. 1 g 3 g        s0 = a(i,j,k,1) * p(i+1,j,k) ... 

188. 1 g 3 g-->    ENDDO 

189. 1 g 3---->   ENDDO 

190. 1 g------>  ENDDO 

191. 1          !$acc end parallel loop 

208. 1--------> ENDDO 
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Numbers denote 

serial loops 

G = accelerator kernel 

g = partitioned loop  

source line numbers 
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163. 1--------< DO loop = 1,nn 

169. 1           gosa1 = 0 

171. 1 G-----<> !$acc parallel loop reduction(+:gosa1) private(i,j,k,s0,ss) 

172. 1 g------<  DO k = 2,kmax-1 

173. 1 g 3----<   DO j = 2,jmax-1 

174. 1 g 3 g--<    DO i = 2,imax-1 

175. 1 g 3 g        s0 = a(i,j,k,1) * p(i+1,j,k) ... 

188. 1 g 3 g-->    ENDDO 

189. 1 g 3---->   ENDDO 

190. 1 g------>  ENDDO 

191. 1          !$acc end parallel loop 

208. 1--------> ENDDO 

 

Data movements: 

ftn-6418 ftn: ACCEL File = himeno_f77_v02.f, Line = 171 

  If not already present: allocate memory and copy whole array "p" to accelerator, 
free at line 191 (acc_copyin). 

 

<identical messages for a,b,c,wrk1,bnd> 

 

ftn-6416 ftn: ACCEL File = himeno_f77_v02.f, Line = 171 

  If not already present: allocate memory and copy whole array "wrk2" to accelerator, 
copy back at line 191 (acc_copy). 
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Over-cautious: compiler worried about halos;  

could specify copyout(wrk2) 

yes, as we expected 

To learn more, use command: 

explain ftn-6418 
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163. 1--------< DO loop = 1,nn 

169. 1           gosa1 = 0 

171. 1 G-----<> !$acc parallel loop reduction(+:gosa1) private(i,j,k,s0,ss) 

172. 1 g------<  DO k = 2,kmax-1 

173. 1 g 3----<   DO j = 2,jmax-1 

174. 1 g 3 g--<    DO i = 2,imax-1 

175. 1 g 3 g        s0 = a(i,j,k,1) * p(i+1,j,k) ... 

188. 1 g 3 g-->    ENDDO 

189. 1 g 3---->   ENDDO 

190. 1 g------>  ENDDO 

191. 1          !$acc end parallel loop 

208. 1--------> ENDDO 

 

ftn-6430 ftn: ACCEL File = himeno_f77_v02.f, Line = 172 

  A loop starting at line 172 was partitioned across the thread blocks. 

 

ftn-6509 ftn: ACCEL File = himeno_f77_v02.f, Line = 173 

  A loop starting at line 173 was not partitioned because a better candidate was found at 
line 174. 

 

ftn-6412 ftn: ACCEL File = himeno_f77_v02.f, Line = 173 

  A loop starting at line 173 will be redundantly executed. 

 

ftn-6430 ftn: ACCEL File = himeno_f77_v02.f, Line = 174 

  A loop starting at line 174 was partitioned across the 128 threads within a threadblock. 
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CUDA: k value(s) 

built from blockIdx.x  

Each thread executes complete 

j-loop for its i, k value(s)  

CUDA: i value(s) built 

from threadIdx.x  



Is the code still correct? 
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● Most important thing is that the code is correct: 
● Make sure you check the residual (Gosa) 
● N.B. will never get bitwise reproducibility between CPU and GPU 

architectures 
● different compilers will also give different results 

 

● Advice: make sure the code has checksums, residuals 
etc. to check for correctness. 
● even if code is single precision, try to use double precision for 

checking. 
● globally or at least for global sums and other reduction variables 



How does this first version perform? 
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● The code is faster... 
● ... but not by much and compared to one core.  

 

● Why? 
● Only 2% of the GPU time is compute;  

● The rest is data transfer to and from device 

 

● Lesson: optimise data movements before looking at 
kernel performance 
● We are lucky with Himeno  

● most codes are actually slower than one core at this stage 

language Fortran C 

precision single double single double 

v00 2881 1454 2287 1131 

v01 1177 565 1178 594 



Profiling the first Himeno kernel 
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● CrayPAT profile, breaks time down into compute and data 

● Most kernels are launched asynchronously 
● as is the case with CUDA 

● reported host time is the time taken to launch operation 
● Host time is much smaller than accelerator time 

● Host eventually waits for completion of accelerator operations 
● This shows up in a "large" SYNC_WAIT time 

 

 

Table 2:  Time and Bytes Transferred for Accelerator Regions 
 
  Host  |  Host  |   Acc  | Acc Copy  | Acc Copy  | Events  |Calltree  
 Time%  |  Time  |  Time  |       In  |      Out  |         | 
        |        |        | (MBytes)  | (MBytes)  |         | 
        
 100.0% | 11.716 | 11.656 |     23525 |      1680 |     515 |Total 
|------------------------------------------------------------------------------------------------ 
| 100.0% | 11.716 | 11.656 |     23525 |      1680 |     515 |main_ 
|        |        |        |           |           |         | jacobi_ 
3        |        |        |           |           |         |  jacobi_.ACC_REGION@li.288 
||||--------------------------------------------------------------------------------------------- 
4|||  93.5% | 10.953 | 10.911 |     23525 |        -- |     103 |jacobi_.ACC_COPY@li.288 
4|||   4.5% |  0.527 |  0.517 |        -- |      1680 |     103 |jacobi_.ACC_COPY@li.315 
4|||   2.0% |  0.230 |     -- |        -- |        -- |     103 |jacobi_.ACC_SYNC_WAIT@li.315 
4|||   0.0% |  0.004 |  0.228 |        -- |        -- |     103 |jacobi_.ACC_KERNEL@li.288 
4|||   0.0% |  0.001 |     -- |        -- |        -- |     103 |jacobi_.ACC_REGION@li.288(exclusive) 
|================================================================================================ 



Profiling the first Himeno kernel 
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● Clarify profile by inserting synchronisation points 
● Could do this explicitly by inserting "acc wait" after every operation 
● better to compile with CCE using -hacc_model=auto_async_none 

● see man crayftn for details 

● Profile now shows same time for host at every operation 
● It is now very clear that data transfers take most of the time 

● Extra synchronisation will affect performance 
● Could skew the profile, so use with care 
● N.B. GPU profilers (Craypat, Nvidia...) already introduce some sync.  

Table 2:  Time and Bytes Transferred for Accelerator Regions 
 
  Host  |  Host  |   Acc  | Acc Copy  | Acc Copy  | Events  |Calltree  
 Time%  |  Time  |  Time  |       In  |      Out  |         | 
        |        |        | (MBytes)  | (MBytes)  |         | 
        
 100.0% | 11.745 | 11.686 |     23525 |      1680 |     412 |Total 
|------------------------------------------------------------------------------------------------ 
| 100.0% | 11.745 | 11.686 |     23525 |      1680 |     412 |main_ 
|        |        |        |           |           |         | jacobi_ 
3        |        |        |           |           |         |  jacobi_.ACC_REGION@li.288 
||||--------------------------------------------------------------------------------------------- 
4|||  93.5% | 10.978 | 10.935 |     23525 |        -- |     103 |jacobi_.ACC_COPY@li.288 
4|||   4.5% |  0.532 |  0.523 |        -- |      1680 |     103 |jacobi_.ACC_COPY@li.315 
4|||   2.0% |  0.234 |  0.228 |        -- |        -- |     103 |jacobi_.ACC_KERNEL@li.288 
4|||   0.0% |  0.001 |     -- |        -- |        -- |     103 |jacobi_.ACC_REGION@li.288(exclusive) 
|================================================================================================ 



Step 3: Optimising data movements 

6.May.13 Cray OpenACC tutorial, CUG 
63 

● Within jacobi routine 
● data-sloshing: all arrays are copied to GPU at every loop iteration 

 

● Need to establish data region outside the iteration loop 
● Then data can remain resident on GPU for entire call 

● reused for each iteration without copying to/from host 

● Must accelerate all loopnests processing the arrays 
● Even if it takes negligible compute time, still accelerate for data locality 

● This is a major productivity win for OpenACC compared to low-level languages 

● You can accelerate a loopnest with one directive 

● Don't have to handcode a new CUDA/OpenCL kernel 

● And, remember, the performance of such a kernel is irrelevant  

 

 

 
 



Step 3: Structure of the jacobi routine 
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● data region spans 
iteration loop 
● CPU and OpenACC code 

● use explicit data clauses 
● no automatic scoping 

● requires knowledge of app 

● enclosed kernels 
shouldn't have data 
clauses for these 
variables 

● wrk2 now a scratch array  
● does not need copying 

 

SUBROUTINE jacobi(nn,gosa) 

 

!$acc data copy(p) & 

!$acc&     copyin(a,b,c,wrk1,bnd) & 

!$acc&     create(wrk2) 

   iteration: DO loop = 1, nn 

 

! compute stencil: wrk2, gosa from p 

!$acc parallel loop <clauses> 

      <stencil loopnest> 

!$acc end parallel loop 

 

! copy back wrk2 into p 

!$acc parallel loop 

      <copy loopnest> 

!$acc end parallel loop   

 

   ENDDO iteration 

!$acc end data 

 

END SUBROUTINE jacobi 
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How does this second version perform? 
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● A big performance improvement 
● Now 51% of the GPU time is compute 

● And more of the profile has been ported to the GPU 

● Data transfers only happen once per call to jacobi(),  
● rather than once per iteration 

● Code still correct: 
● Check the Gosa values 

 

language Fortran C 

precision single double single double 

v00 2881 1454 2287 1131 

v01 1177 565 1178 594 

v02 37525 20300 37143 20287 



Profile with a local data region in jacobi() 
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● Profile now dominated by compute (ACC_KERNEL) 

● Data transfers infrequent  
● only once for each of 2 calls to jacobi 

● but still very expensive 

Table 2:  Time and Bytes Transferred for Accelerator Regions 
 
  Host  | Host  |  Acc  | Acc Copy  | Acc Copy  | Events  |Calltree  
 Time%  | Time  | Time  |       In  |      Out  |         | 
        |       |       | (MBytes)  | (MBytes)  |         | 
        
 100.0% | 0.497 | 0.475 |   424.177 |    32.630 |     624 |Total 
|---------------------------------------------------------------------------------------- 
| 100.0% | 0.497 | 0.475 |   424.177 |    32.630 |     624 |main_ 
|        |       |       |           |           |         | jacobi_ 
3        |       |       |           |           |         |  jacobi_.ACC_DATA_REGION@li.276 
||||------------------------------------------------------------------------------------- 
4|||  50.5% | 0.251 | 0.236 |     0.001 |     0.001 |     412 |jacobi_.ACC_REGION@li.288 
|||||------------------------------------------------------------------------------------ 
5||||  46.7% | 0.232 | 0.227 |        -- |        -- |     103 |jacobi_.ACC_KERNEL@li.288 
5||||   1.9% | 0.010 | 0.005 |        -- |     0.001 |     103 |jacobi_.ACC_COPY@li.315 
5||||   1.8% | 0.009 | 0.004 |     0.001 |        -- |     103 |jacobi_.ACC_COPY@li.288 
|||||==================================================================================== 
4|||  40.0% | 0.199 | 0.197 |   424.176 |        -- |       2 |jacobi_.ACC_COPY@li.276 
4|||   7.6% | 0.038 | 0.033 |        -- |        -- |     206 |jacobi_.ACC_REGION@li.317 
5|||   7.5% | 0.037 | 0.033 |        -- |        -- |     103 | jacobi_.ACC_KERNEL@li.317 
4|||   1.9% | 0.009 | 0.009 |        -- |    32.629 |       2 |jacobi_.ACC_COPY@li.335 
|======================================================================================== 



Step 4: Further optimising data movements 
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● Still including single copy of data arrays in timing of 
jacobi routine 

 

● Solution: move up the call tree to parent routine 
● Add data region that spans both initialisation and iteration routines 

● Specified arrays then only move on boundaries of outer data region  
● moves the data copies outside of the timed region 

● after all, benchmark aims to measure flops, not PCIe bandwidth 

 
 



Adding a data region 
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● Data region spans both 
calls to jacobi 
● plus timing calls 

● Arrays just need to be 
copyin now 
● and transfers not timed 

● Data region remains in 
jacobi  
● you can nest data regions 
● arrays now declared 

present 
● could be copy_or_present 
● advice: present generates 

runtime error if not present 

 
● Drawback: arrays have to 

be in scope for this to work 
● may need to unpick clever 

use of module data 

SUBROUTINE jacobi(nn,gosa) 

 

!$acc data present(p,a,b,c,wrk1,bnd,wrk2) 

   iteration: DO loop = 1, nn 

 

   ENDDO iteration 

!$acc end data 

 

END SUBROUTINE jacobi 
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PROGRAM himeno 

 CALL initmt 

 

!$acc data copyin(p,a,b,c,bnd,wrk1,wrk2) 

   cpu0 = gettime() 

 CALL jacobi(3,gosa) 

 cpu1 = gettime() 

 

 cpu0 = gettime() 

 CALL jacobi(nn,gosa) 

 cpu1 = gettime() 

!$acc end data 

 

 END PROGRAM himeno 



Step 4: Going further 
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● Best solution is to port entire application to GPU 
● data regions span entire use of arrays 

● all enclosed loopnests accelerated with OpenACC 

● no significant data transfers 

 

● Expand outer data region to include call to initialisation 
routine 
● arrays can now all be declared as scratch space with "create" 

● need to accelerated loopnests in initmt(), declaring arrays present 

 

● N.B. Currently no way to ONLY allocated arrays in GPU 
memory 
● CPU version is now dead space, but 

● GPU memory is usually the limiting factor, so usually not a problem. 



Porting entire application 
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● No significant data 
transfers now 
● doesn't improve 

measured compute 
performance in this case 

SUBROUTINE initmt 

!$acc data present(p,a,b,c,wrk1,bnd) 

!$acc parallel loop 

   <set all elements to zero> 

 

!$acc parallel loop 

   <set some elements to be non-zero> 

!$acc end data 

 

END SUBROUTINE initmt 
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PROGRAM himeno 

 

!$acc data create(p,a,b,c,bnd,wrk1,wrk2) 

 CALL initmt 

   cpu0 = gettime() 

 CALL jacobi(3,gosa) 

 

 CALL jacobi(nn,gosa) 

 cpu1 = gettime() 

!$acc end data 

 

 END PROGRAM himeno 



How does this third version perform? 
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● Code is now a lot faster (44x faster than v01) 
● 98% of the GPU time is now compute  

● Remaining data transfers are negligible and outside region timed 

● And the code is still correct: 
● Check the Gosa values! 
 

● We're getting a great speedup: 18x compared to v00 
● But this is compared to one CPU core out of 16 
● What happens if we use all the cores 

● using OpenMP, as this is originally a scalar code 
 

 

language Fortran C 

precision single double single double 

v00 2881 1454 2287 1131 

v01 1177 565 1178 594 

v02 37525 20300 37143 20287 

v03 51921 28863 51078 28891 



Profile of fully ported application 
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● Almost no data transferred 
● remainder (gosa and a few compiler internals) hard to remove 

 

● At this point we can start looking at kernel optimisation 
 

 

Table 2:  Time and Bytes Transferred for Accelerator Regions 
 
  Host  | Host  |  Acc  | Acc Copy  | Acc Copy  | Events  |Calltree  
 Time%  | Time  | Time  |       In  |      Out  |         | 
        |       |       | (MBytes)  | (MBytes)  |         | 
        
 100.0% | 0.296 | 0.275 |     0.001 |     0.001 |     634 |Total 
|---------------------------------------------------------------------------------------- 
| 100.0% | 0.296 | 0.275 |     0.001 |     0.001 |     634 |main_ 
|        |       |       |           |           |         | main_.ACC_DATA_REGION@li.116 
|||-------------------------------------------------------------------------------------- 
3||  97.6% | 0.289 | 0.269 |     0.001 |     0.001 |     624 |jacobi_ 
4||        |       |       |           |           |         | jacobi_.ACC_DATA_REGION@li.277 
|||||------------------------------------------------------------------------------------ 
5||||  84.8% | 0.251 | 0.236 |     0.001 |     0.001 |     412 |jacobi_.ACC_REGION@li.288 
||||||----------------------------------------------------------------------------------- 
6|||||  78.4% | 0.232 | 0.227 |        -- |        -- |     103 |jacobi_.ACC_KERNEL@li.288 
6|||||   3.3% | 0.010 | 0.005 |        -- |     0.001 |     103 |jacobi_.ACC_COPY@li.315 
6|||||   3.1% | 0.009 | 0.004 |     0.001 |        -- |     103 |jacobi_.ACC_COPY@li.288 
||||||=================================================================================== 
5||||  12.7% | 0.038 | 0.033 |        -- |        -- |     206 |jacobi_.ACC_REGION@li.317 
6||||  12.7% | 0.038 | 0.033 |        -- |        -- |     103 | jacobi_.ACC_KERNEL@li.317 
|||||==================================================================================== 
3||   1.8% | 0.005 | 0.005 |        -- |        -- |       7 |initmt_ 
4||        |       |       |           |           |         | initmt_.ACC_DATA_REGION@li.208 
|======================================================================================== 



Step 5: Is this a good loop schedule? 
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● Look at .lst file 
 

● Should see partitioning 
    between and across 
    threadblocks 

● if not, much of GPU is 
    is being wasted 

 
● Usually want inner loop to be vectorised 

● allows coalesced loading of data from global memory 
● if inner loop is not partitioned over threads in a threadblock... 

● is the loop vectorisable (are there dependencies between loop iterations)? 
● No? You need to rewrite the code (it will probably go faster on the CPU) 

● Can you use a more-explicitly parallel algorithm? 
● Avoid incremented counters (e.g. when packing buffers) 
● Change data layout so inner loop addresses fastest-moving array index 

● Yes? You need to tell the compiler what to do: 
● Put "acc loop vector" directive above the "DO i = ..." statement 

 
● This is the most important optimisation 

● almost guaranteed to give big performance increase 
● other optimisations are trial-and-error and may give no benefits 

 

172. 1 g------<  DO k = 2,kmax-1 

173. 1 g 3----<   DO j = 2,jmax-1 

174. 1 g 3 g--<    DO i = 2,imax-1 

175. 1 g 3 g        s0 = a(i,j,k,1)*p(i+1,j,k) ... 

188. 1 g 3 g-->    ENDDO 

189. 1 g 3---->   ENDDO 

190. 1 g------>  ENDDO 
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Advanced performance tuning 
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● Loop schedule balances 
    lots of parallel threads vs. 
    enough work per thread 

 
 

● If kmax is small, perhaps need more threads 
● Try collapsing k and j loops to get more loop iterations 

● Put "acc loop collapse(2)" directive above k-loop 

● Collapse can be expensive if compiler has to regenerate k and j 
● integer divides are costly 

● Could instead collapse i and j loops, or all three loops 

 
● Nvidia Fermi and Kepler GPUs have caching 

● Loop blocking can improve cache usage (as for the CPU) 
● Block the loops manually (and use gang, vector clauses to tweak schedule) 
● Can use CCE-specific directives to do this as well 

 
● We'll discuss performance optimisation in more detail in a following 

lecture 
 

172. 1 g------<  DO k = 2,kmax-1 

173. 1 g 3----<   DO j = 2,jmax-1 

174. 1 g 3 g--<    DO i = 2,imax-1 

175. 1 g 3 g        s0 = a(i,j,k,1)*p(i+1,j,k) ... 

188. 1 g 3 g-->    ENDDO 

189. 1 g 3---->   ENDDO 

190. 1 g------>  ENDDO 

6.May.13 



In summary 
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● We ported the entire Himeno code to the GPU  
● chiefly to avoid data transfers 

● 4 OpenACC kernels (only 1 significant for compute performance) 
● 1 outer data region 
● 2 inner data regions (nested within this) 

● 7 directive pairs for 200 lines of Fortran 
● Profiling frequently showed the bottlenecks 
● Correctness was also frequently checked 

● Data transfers were optimised at the first step 
 

● We checked the kernels were scheduling sensibly 
 

● Further performance tuning 
● data region gave a 44x speedup; kernel tuning is secondary  
● Low-level languages like CUDA offer more direct control of the hardware 

● OpenACC is much easier to use, and should get close to CUDA performance 
● Remember Amdahl's Law:  

● speed up the compute of a parallel application, soon become network bound 
● Don't waste time trying to get an extra 10% in the compute  
● You are better concentrating your efforts on tuning the MPI/CAF comms 

● Bottom line:  
● 5-6x speedup from 7 directive pairs in 200 lines of Fortran 
● compared to the complete CPU 



Advanced OpenACC: 
topics and performance tuning 

James Beyer 
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Timetable 
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Monday 6th May 2013 

 
●   8:30 Lecture 1: Introduction to the Cray XK7  (15) 

●   8:45 Lecture 2: OpenACC organization (Duncan Poole)  (15) 

●   9:00 Lecture 3: The OpenACC programming model (30) 

●   9:30 Lecture 4: Porting a simple example to OpenACC  (30) 

● 10:00 break  (30) 

● 10:30 Lecture 5:  Advanced OpenACC  (40) 

● 11:10 Lecture 6:  Using CCE with OpenACC  (25) 

● 11:35 Lecture 7:  OpenACC 2.0 and OpenMP 4.0  (25) 

● 12:00 close 



Contents 
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● Some more advanced OpenACC topics 
● the async and cache clauses 

 

● Then we talk about a few tuning tips for OpenACC 
● The Golden Rules of Tuning 

● information sources 

● Tuning data locality 

● Tuning kernels 
● correcting obvious scheduling errors 

● advanced schedule tuning (collapse, worker, vector_length clauses) 
● use scalar Himeno code as an example 

● Extreme tuning 
● source code changes 

● reordering data structures 

● using CUDA 
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OpenACC async clause 
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● async[(handle)] clause for parallel, update directives 
● Launch accelerator region/data transfer asynchronously 

● Operations with same handle guaranteed to execute sequentially 
● as for CUDA streams 

● Operations with different handles can overlap 
● if the hardware permits it and runtime chooses to schedule it: 

● can potentially overlap: 
● PCIe transfers in both directions 

● Plus multiple kernels  

● can overlap up to 16 parallel streams with Fermi 

● streams identified by handle (integer-valued) 
● tasks with same handle execute sequentially 

● can wait on one, more or all tasks 

 

● !$acc wait: waits for completion of all streams of tasks 
● !$acc wait(handle) waits for a specified stream to complete 

● Runtime API library functions 
● can also be used to wait or test for completion 
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OpenACC async clause 
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● First attempt 
● a simple pipeline: 

● processes array, slice by slice 
● copy data to GPU,  

● process on GPU,  

● bring back to CPU 

● can overlap 3 streams at once 
● use slice number as stream handle  

● don't worry if number gets too large 

● OpenACC runtime maps it back into allowable range (using MOD function) 
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REAL(kind=dp) :: 
a(Nvec,Nchunks),b(Nvec,Nchunks) 
 
!$acc data create(a,b) 
DO j = 1,Nchunks 
!$acc update device(a(:,j)) async(j) 
 
!$acc parallel loop async(j) 
  DO i = 1,Nvec 
    b(i,j) = <function of a(i,j)> 
  ENDDO 
 
!$acc update host(b(:,j)) async(j) 
 
ENDDO 
!$acc wait 
!$acc end data 



OpenACC async results 
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● Execution times (on Cray XK6): 
● CPU:   3.76s 
● OpenACC, blocking: 1.10s 
● OpenACC, async:      0.34s 

 
● NVIDIA Visual profiler: 

● time flows left to right 
● streams stacked vertically 

● only 7 of 16 streams fit in window 
● red:  data transfer to GPU 
● pink: computational on GPU 
● blue: data transfer from GPU 

● vertical slice shows what is overlapping 
● collapsed view at bottom 

● async handle modded by number of streams 
● so see multiple coloured bars per stream (looking horizontally) 

 
● Alternative to pipelining is task-based overlap 

● Harder to arrange; needs knowledge of data flow in specific application 
● May (probably will) require application restructuring (maybe helps CPU) 
● Some results later in Himeno Case Study 
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Using the cache clause 
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● Performance-tuning clause 
● Don't worry about this when first accelerating a code 

● Apply it later to the slowest kernels of working OpenACC port 

 

● Suggests that compiler could place data into software-
managed cache 
● e.g. threadblock-specific "shared" memory on Nvidia GPU 

● No guarantee it makes the code faster 
● could conflict with automatic caching done by hardware and/or runtime 

● Clause inserted inside kernel 
● i.e. inside all the accelerated loops 

● Written from perspective of a single thread 
● Compiler pools statements together for threadblock 

● Limited resource: use sparingly and only specify what's needed 

● Any non-loop variables should be compile-time parameters (CCE) 

 



cache clause examples 
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● Example 1: 
● loop-based stencil 

● inner loop sequential 

● RADIUS should be known at 
compile time (parameter or cpp) 

 

 

 

 

!$acc parallel loop copyin(c) 
  DO i = 1,N 
   result = 0 
!$acc cache(in(i-RADIUS,i+RADIUS),c) 
!$acc loop seq 
   DO j = -RADIUS,RADIUS 
    result = result + c(j)*in(i+j) 
   ENDDO 
   out(i) = result 
  ENDDO 



cache clause examples 
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● Example 2 
● from "man openacc.examples" 

● multidimensional loopnest 
● stencil only in i,j directions 

● same principle, but... 
● you need to tile the loopnest 

● two options currently: 
● do it explicitly 

● DO jb = 1,N,JBS 

● DO j = jb,MIN(jb+JBS-1,N) 

● and similarly for i 

● use CCE directives, as right 

● OpenACC v2.0 will ease this: 
● tile clause for loop directive 

● more on this later in course 

 

 

 

!$acc loop gang 
DO k = 1,N 
!dir$ blockable( i, j ) 
!$acc loop worker 
!dir$ blockingsize ( 16 ) 
  DO j = 1,N 
!$acc loop vector 
!dir$ blockingsize ( 64 ) 
    DO i = 1,N 
!$acc cache( A(i,j,k), & 
!$acc        B(i-1:i+1,j-1:j+1,k) ) 
 
      A(i,j,k) = B(i,  j,  k) - & 
               ( B(i-1,j-1,k) & 
               + B(i-1,j+1,k) & 
               + B(i+1,j-1,k) & 
               + B(i+1,j+1,k) ) / 5 
    ENDDO 
  ENDDO 
ENDDO 
!$acc end parallel 



Tuning code performance 
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● Remember the Golden Rules of performance tuning: 
● always profile the code yourself 

● always verify claims like "this is always the slow routine";  

● codes/computers change 

● optimise the real problem running on the production system 
● a small testcase running on a laptop will have a very different profile 

● optimise the right parts of the code  
● the bits that take the most time 

● even if these are not the exciting bits of the code 

● e.g. it might not be GPU compute; it might be comms (MPI), I/O... 

● keep on profiling 
● the balance of CPU/GPU/comms/IO will change as you go 

● refocus your efforts appropriately 

 

● Keep on checking for correctness 

 

● Know when to stop (and when to start again) 
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Tuning OpenACC performance 
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● Tuning needs input:  
● There are three main sources of information; make sure you use them: 

● Compiler feedback (static analysis) 
● loopmark files (-hlist=a) for CCE; -Minfo=accel for PGI 

● Runtime commentary (CCE only: CRAY_ACC_DEBUG=1 or 2 or 3) 

● Code profiling 
● CrayPAT 

● Nvidia compute profiler 

● pgprof for PGI 

 

 
 

Cray OpenACC tutorial, CUG 



Tuning OpenACC codes 
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● The main optimisation is minimising data movements 
 

● How can I tell if data locality is important? 
● CrayPAT will show the proportion of time spent in data transfers 

● May need to compile CCE with -hacc_model=auto_async_none to see this 

● Loopmark comments will tell you which arrays might be transferred 
● Compile CCE with -hlist=a and look at .lst files  

● Runtime commentary will tell you which arrays actually moved  
● and how often and when in the code 

● Compile as usual, export/setenv CRAY_ACC_DEBUG=2 at runtime 
● use the runtime API to control the amount of information produced 
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Tuning OpenACC data locality 
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● What can I do? 
● Use data regions to keep data resident on the accelerator 

● Understanding how data flows in application call tree is crucial, but tricky 

 
● Only transfer the data you need 

● if only need to transfer some of an array (e.g. halo data, debugging values),  
● rather than use copy* clause, use create and explicit update directives 
● packing/sending a buffer may be faster than sending strided array section 

 
● Overlap data transfers with other, independent activities 

● use async clause on update directive; then wait for completion later 
● typical situations: 

● pipelining; send one chunk while another processes on the GPU 
● task-based overlap; can be hard to arrange 

● typical use case: pack halo buffer and transfer to CPU while GPU updates bulk 

 

● Beware of GPU memory allocation overheads 
● if a routine using big temporary arrays is called many times, even create 

clause can have a big overhead 
● maybe keep array(s) allocated between calls (add to higher data region) 

● add it to a higher data region as create and use present clause in subprogram 

● (not good for a memory-bound code, of course) 
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● Next optimisation: make sure all the kernels vectorise 
● How can I tell if this is a problem? 

● if a kernel is surprisingly slow on accelerator 
● in a wildly different place in the the profile compared to running on CPU 

● examine the loopmark compiler commentary files 

● loop iterations should be divided over both the threads in a 
threadblock (vector) and over the threadblocks (gang) 
● CCE: you should see either: 

● If a single loop is divided over both levels of parallelism, look for: Gg 

● If two different loops divided, look for G and 2 g-s (maybe with numbers between) 

● generally want to vectorise the innermost loop 
● usually fastest-moving array index, for coalescing 

● if not, can the inner loop be vectorised? 
● i.e. can loop iterations be computed in any order? 

● if not, rewrite code 
● avoid loop-carried dependencies 

● e.g. buffer packing: calculate rather than increment 

● these rewrites will probably perform better on CPU also  

Replace: 
    i = 0 
    DO y = 2,N-1 
       i = i+1 
       buffer(i) = a(2,y) 
    ENDDO 
    buffsize = i 
By: 
    DO y = 2,N-1 
       buffer(y-1) = a(2,y) 
    ENDDO 
    buffsize = N-2 
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● If the loop is vectorisable, guide the compiler 
● a gentle hint: 

● put "acc loop independent" directive above this loop 
● could also use CCE directive "!dir$ concurrent" 

● see "man intro_directives" for details 

● a direct order: 
● put "acc loop vector" directive above this loop 

● check the code is still correct and running faster, though: 
● the compiler might not be vectorising for a good reason 

 

● If the inner loop is vectorising but performance is still bad 
● is the inner loop really the one to vectorise in this case? 

● in this example, we should vectorise the i-loop  
● because we happen to know mmax is small here 

 

● put "acc loop seq" directive above m-loop 
● then executed redundantly by every thread 
● also t is now an i-loop private scalar 

● rather than a reduction variable (which is slower) 

 

● probably also want to reorder array c for speed 
● c(i,m) gives much coalesced memory accesses 
● want vector index to be fastest-moving index 

 

!$acc parallel loop 
DO i = 1,N 
   t = 0 
!$acc loop seq 
   DO m = 1,mmax 
      t = t + c(m,i) 
   ENDDO 
   a(i) = t 
ENDDO 
!$acc end parallel loop 
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It's all vectorizing, but still performing badly 
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● Profile the code and start "whacking moles" 
● optimise the thing that is taking the time 

● if it really is a GPU compute kernels... 

 

● GPUs need lots of parallel tasks to work well 

 

● First look at loop scheduling using OpenACC clauses 

 

● Then might need to consider more extreme measures 
● source code changes 

● handcoding CUDA kernels 
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● OpenACC loop schedules are limited by the loop bounds 
● at least with the current implementation in CCE 

● one loop's iterations are divided over gangs 

● another loop's iterations are divided over threads in a threadblock 

● So...  
● "tall, skinny" loopnests (j=1:big; i=1:small) won't schedule well 

● if less than 32 iterations won't even fill a warp, so wasted SIMT 

● "short, fat" loopnests (j=1:small; i=1:big) also not good 
● want lots of threadblocks to swap amongst SMs 

● What can we do? 
● collapse clause is way of increasing flexibility 

● the compiler may use this automatically (look for C in loopmark) 

● no guarantee that it is faster 
● e.g. index rediscovery requires expensive integer divisions 

● need perfectly nested loops for this to work 

● worker clause can also do this 



Using the collapse clause 
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● Consider a three-level loopnest (i inside j inside k) 
● needs to be perfectly nested to use collapse 

● Collapse all three loops and schedule across GPU 
● "acc parallel loop collapse(3) gang worker vector" above k-loop 

● probably don't need "gang worker vector" here 

● Schedule inner two loops over threads in threadblock 
● "acc parallel loop gang" above k-loop 

● "acc loop collapse(2) vector" above j-loop 
● don't need "gang"; enough warps are used to cover all the iterations 

● Schedule outer two loops over the threadblocks 
● "acc parallel loop collapse(2) gang" above k-loop 

● "acc loop vector" above i-loop 

● Schedule outer two loops together over entire GPU 
● "acc loop collapse(2) gang worker vector" above k-loop 

● "acc loop seq" above i-loop 

● Schedule k-loop and i-loop together over entire GPU 
● collapsed loops must be perfectly nested; you'll need to reorder the code 
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workers or vectors? 
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● kernel threadblocks are scheduled on SMs 
● executed as "warps" i.e. vector instructions of length 32 
● threads-per-threadblock>32 automatically decomposed into warps 

 

● OpenACC makes distinction explicit 
● worker refers to whole warps (i.e. sets of vector instructions) 

● can be generated explicitly by the user using "!$acc loop worker" 

● vector refers to threads within a warp 
● can be generated automatically by the compiler/runtime 

● vector_length > 32 automatically decomposes into (vector_length/32) workers 

 
● CCE: only allows one of the above 

● If you don't specify "!$acc loop worker" 
● vector_length (default 128) automatically partitioned into workers 
● num_workers works the same  

● If you specify "!$acc loop worker" 
● default, or vector_length explicitly set 

● num_workers implicitly set to (vector_length/32) 
● vector_length implicitly set to 32 (see loopmark for information) 

● num_workers explicitly set 
● vector_length set to 32 

● num_workers and vector_length>32 explicitly set 
● Compiler warning that vector_length value is being overridden and set to 32 



Scheduling with and without the worker clause 
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● The default scheduling 
● k-loop iterations divided over threadblocks 
● i-loop iterations divided within a threadblock 

● round-robin distribution 
● first thread does i=1, V+1, 2*V+1, ... 
● V is vector_length value (default 128 with CCE) 

● threads automatically grouped into warps 
● first warp does i=1:32, V+1:V+32, ... 

● each thread does all the j-loop iterations 

 
● With explicit loop worker directive 

● k-loop divided as before 
● i-loop iterations are divided within a warp 

● first thread does i=1, 33, 65, ... 
● each warp does all values: i=1:32, 33:64, ... 

● j-loop iterations divided over warps 
● number of warps, W (see previous): 

● either:  num_workers value 
● or:  vector_length value divided by 32 

● round-robin distribution 
● first warp does j=1, W+1, 2*W+1, ... 

 

 

!$acc parallel 
!$acc loop gang 
DO k = 1,N 
!$acc loop seq 
   DO j = 1,N 
!$acc loop vector 
      DO i = 1,N 

!$acc parallel 
!$acc loop gang 
DO k = 1,N 
!$acc loop worker 
   DO j = 1,N 
!$acc loop vector 
      DO i = 1,N 



workers or vectors (contd)? 
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● So when might we use "!$acc loop worker"? 

 

● Perfectly nested loops with one or more low tripcounts 
● probably better to use the collapse clause 

● e.g. "!$acc loop collapse(2) vector" 

● we'll see this for scalar Himeno shortly 

 

● Imperfectly nested loops with one or more low tripcounts 
● may benefit to put "!$acc loop worker" on the middle loop 

● collapse won't work here 



Extreme tuning 
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● You've tried tuning with OpenACC clauses 
● but you think kernel performance can still be improved 
● (and this kernel is the performance-limiter in your application) 

 

● Now (and only now) you may need... extreme tuning 
 

● Some examples: 
● main source code changes 

● What changes will work? 
● There is no definitive guide 

 
● Following slides give two cases 

 
● mixed languages 

● You could handtune the slow kernel in CUDA 
● OpenACC allows interoperability with CUDA (i.e. sharing data) 

 
● Following slides give a very simple example 



Avoiding temporary arrays 
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● Perfect loop nests often perform better than imperfect 
● Imperfect loopnests often use temporary arrays 

● e.g. in a stencil like MultiGrid, to avoid additional duplicated computation 

● With OpenACC, these arrays are privatised; too big for shared memory 
● Imperfect loop nest also means scheduling decisions are restricted 

● Try two approaches; which (if any) faster depends on code 
● Remove temporary arrays by manually inlining (eliminate array b) 

● one perfect loop nest; cache clause can use shared mem/regs where needed 

● Manually privatise arrays and fission the loopnest (b(i)→b(i,j)) 
 

 

 

 

 

 

 

DO j = 1,N 
 DO i = 0,M+1 
  b(i) = a(i,j+1) + a(i,j-1) 
 ENDDO 
 DO i = 1,M 
  c(i,j) = b(i+1) + b(i-1) 
 ENDDO 
ENDDO 

DO j = 1,N 
 DO i = 1,M 
  c(i,j) = a(i+1,j+1) + a(i+1,j-1) & 
         + a(i-1,j+1) + a(i-1,j-1) 
 ENDDO 
ENDDO DO j = 1,N 

 DO i = 0,M+1 
  b(i,j) = a(i,j+1) + a(i,j-1) 
 ENDDO 
ENDDO 
DO j = 1,N 
 DO i = 1,M 
  c(i,j) = b(i+1,j) + b(i-1,j) 
 ENDDO 
ENDDO Cray OpenACC tutorial, CUG 



More drastic performance optimisations 
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● Would reordering your data structures help? 

● For instance: 
● Nmax particles each have Smax internal properties 

● code separately combines the internal properties together for each particle 

● CPU code usually stores data as f(Smax,Nmax) or f[Nmax][Smax] 
● good cache reuse when we access all the properties of a particle 

● GPU code would normally parallelise over the particles 
● each thread processes the internal properties of a single particle 

● first warp would attempt vector load of sth prop. of first 32 particles: f(s,1:32) 

● no coalescing (vector load needs contiguous block of memory) 

● very poor performance (even if Smax is small) 

● Better to reorder data so site index fastest: fgpu(Nmax,Smax) 
● vector load of fgpu(1:32,s) now stride-1 in memory 

● if code memory-bandwidth-bound, you will see a big speed-up 

 

● Quite an effort to reorder data structures in the code 
● but... may also see benefits on CPU  

● especially with AVX (and longer vectors in future CPU processors) 
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host_data directive 
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● OpenACC runtime manages GPU memory implicitly 
● user does not need to worry about memory allocation/free-ing 

 

● Sometimes it can be useful to know where data is held in 
device memory, e.g.: 
● so a hand-optimised CUDA kernel can be used to process data 

already held on the device 

● so a third-party GPU library can be used to process data already held 
on the device (Cray libsci_acc, cuBLAS, cuFFT etc.) 

● so optimised communication libraries can be used to streamline data 
transfer from one GPU to another 

 

● host_data directive provides mechanism for this 
● nested inside OpenACC data region 

● subprogram calls within host_data region then pass pointer in device 
memory rather than in host memory 
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Interoperability with CUDA 

● host_data region exposes accelerator memory address on host 
● nested inside data region 

● Call CUDA-C wrapper (compiled with nvcc; linked with CCE) 
● must include cudaThreadSynchronize() 

● Before: so asynchronous accelerator kernels definitely finished 

● After: so CUDA kernel definitely finished before we return to the OpenACC 

● CUDA kernel written as usual 

● Or use same mechanism to call existing CUDA library 

__global__ void dbl_knl(int *c) { 
  int i = \ 
       blockIdx.x*blockDim.x+threadIdx.x; 
  if (i < N) c[i] *= 2; 
} 
 
extern "C" void dbl_cuda_(int *b_d) { 
  cudaThreadSynchronize(); 
  dbl_knl<<<NBLOCKS,BSIZE>>>(b_d); 
  cudaThreadSynchronize(); 
} 
 

PROGRAM main 
  INTEGER :: a(N) 
  <stuff> 
!$acc data copy(a) 
! <Populate a(:) on device 
!  as before> 
!$acc host_data use_device(a) 
  CALL dbl_cuda(a) 
!$acc end host_data 
!$acc end data 
  <stuff> 
END PROGRAM main 
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Using CCE with OpenACC 
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Timetable 
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Monday 6th May 2013 

 
●   8:30 Lecture 1: Introduction to the Cray XK7  (15) 

●   8:45 Lecture 2: OpenACC organization (Duncan Poole)  (15) 

●   9:00 Lecture 3: The OpenACC programming model (30) 

●   9:30 Lecture 4: Porting a simple example to OpenACC  (30) 

● 10:00 break  (30) 

● 10:30 Lecture 5:  Advanced OpenACC  (40) 

● 11:10 Lecture 6:  Using CCE with OpenACC  (25) 

● 11:35 Lecture 7:  OpenACC 2.0 and OpenMP 4.0  (25) 

● 12:00 close 
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Contents 
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● Cray Compilation Environment (CCE) 
● What does CCE do with X? 

● -hacc_model= 

● Extensions 
● Structure shaping 

● Deep copy 

● Selective deep copy 
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OpenACC in CCE 

105 

● man intro_openacc 

● Which module to use 
● craype-accel-nvidia20  

● craype-accel-nvidia35 

● Forces dynamic linking 

● Single object file 

● Whole program 

● Messages/list file 

● Compiles to PTX not cuda 

● Debugger sees original program not cuda intermediate 
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What does CCE do with OpenACC constructs (1) 

● Parallel/kernels 
● Flatten all calls 

● Package code for kernel  

● Insert data motion to and from 
device 
● Clauses 

● Autodetect  

● Insert kernel launch code 

● Automatic vectorization is 
enabled 

 

● Kernels 
● Identify kernels  

 

● Loop 
● Gang  

● Thread Block (TB) 

● Worker 
● warp 

● Vector 
● Threads within a warp or TB 

● Automatic vectorization is 
enabled 

● Collapse 
● Will only rediscover indices 

when required 

● Independent 
● Turns off safety/correctness 

checking for work-sharing of 
loop 

● Reduction 
● Nontrivial to implement 
● Does not use multiple kernels 
● All loop directives within a loop 

nest must list to reduction if 
applicable 
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What does CCE do with OpenACC constructs (2) 

● Data 
● clause( object list ) 

● create 
● allocate at start 

● register in “present-table”  

● de-allocate at exit 

● copy, copyin, copyout 
● “create” plus data copy 

● present 
● Abort at runtime if object is not 

in “present table”. 

● present_or_copy, 
present_or_copyin, 
present_or_copyout, 
present_or_create 

● deviceptr  
● Send address directly to kernel 

without translation. 

● Update 
● Implicit !$acc data present( obj ) 

● For known contiguous memory 
● Transfer (Essentially a CUDA 

memcpy) 

● Not contiguous memory 
● Pack into contiguous buffer 

● Transfer contiguous  

● Unpack from contiguous buffer 
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What does CCE do with OpenACC constructs (3) 

● Cache 
● Create shared memory “copies” of objects 

● Generate copy into shared memory objects 

● Generate copy out of shared memory objects 

● Release the shared memory 
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Extended OpenACC 1.0 runtime routines 

/* takes a host pointer */ 

void* cray_acc_create( void* , size_t ); 

void  cray_acc_delete( void* ); 

void* cray_acc_copyin( void*, size_t ); 

void  cray_acc_copyout( void*, size_t ); 

void  cray_acc_updatein( void*, size_t ); 

void  cray_acc_updateout( void*, size_t ); 

int   cray_acc_is_present( void* ); 

int   cray_acc_is_present_2( void*, size_t); 

void *cray_acc_deviceptr( void* ); 

 

/* takes a device and host pointer */ 

void  cray_acc_memcpy_device_host( void*, void*, size_t ); 

/* takes a host and device pointer */ 

void  cray_acc_memcpy_host_device( void*, void*, size_t ); 

Version 1. 0 
Version 2. 0 

/* Takes a pointer to an implementation defined type */ 

bool cray_acc_get_async_info( void *, int ) 

 

/* takes a device and host pointer */ 

void  cray_acc_memcpy_device_host( void*, void*, size_t ); 

/* takes a host and device pointer */ 

void  cray_acc_memcpy_host_device( void*, void*, size_t ); 
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Partitioning clause mappings 

110 

1. !$acc loop gang : across thread blocks  

2. !$acc loop worker : across  warps within a thread block  

3. !$acc loop vector : across threads within  a warp 

 

1. !$acc loop gang : across thread blocks  

2. !$acc loop worker vector :  across threads within a thread block 

 

1. !$acc loop gang : across thread blocks  

2. !$acc loop vector : across threads within a thread block 

 

1. !$acc loop gang worker: across thread blocks and the warps within a thread block 

2. !$acc loop vector : across threads within a warp 

 

1. !$acc loop gang vector : across thread blocks and threads within a thread block 

 

1. !$acc loop gang worker vector : across thread blocks and threads within a thread 
block 
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Partitioning clause mappings (cont) 

111 

You can also force things to be within a single thread 
block: 
 
1. !$acc loop worker : across warps within a single thread block  

2. !$acc loop vector : across threads within a warp 

 

1. !$acc worker vector : across threads within a single thread block 

 

1. !$acc vector : across threads within a single thread block 
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-hacc_model options 

● auto_async_(none | kernel | all) 
● Compiler automatically adds some asynchronous behavior 

● Only overlaps host and accelerator 

● No automatic overlap of different accelerator constructs (single 
stream) 

● May require some explicit user waits 
● Host_data 

● [no_]fast_addr 
● Uses 32 bit variables/calculations for index expressions 

● Faster address computation 

● Fewer registers 

● [no_]deep_copy 
● Enable automatic deep copy support 
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Extensions 

● Deep copy 

● Structure shaping 

● Selective deep copy 
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Flat object model 

11
4 

● OpenACC supports a “flat” object model 
● Primitive types 

● Composite types without allocatable/pointer members 

struct { 

  int x[2]; // static size 2 

} *A;       // dynamic size 2 

#pragma acc data copy(A[0:2]) 

Host Memory: A[0].x[0] A[0].x[1] A[1].x[0] A[1].x[1] 

dA[0].x[0] dA[0].x[1] dA[1].x[0] dA[1].x[1] Device Memory: 
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Challenges with pointer indirection 

11
5 

● Non-contiguous transfers 

● Pointer translation 

struct { 

  int *x; // dynamic size 2 

} *A;     // dynamic size 2 

#pragma acc data copy(A[0:2]) 

Host Memory: 

Device Memory: 

A[0].x A[1].x x[0] x[1] x[0] x[1] 
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Challenges with pointer indirection 

11
6 

● Non-contiguous transfers 

● Pointer translation 

struct { 

  int *x; // dynamic size 2 

} *A;     // dynamic size 2 

#pragma acc data copy(A[0:2]) 

Host Memory: 

Device Memory: 

Shallow Copy 

dA[0].x dA[1].x 

A[0].x A[1].x x[0] x[1] x[0] x[1] 
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Challenges with pointer indirection 

11
7 

● Non-contiguous transfers 

● Pointer translation 

struct { 

  int *x; // dynamic size 2 

} *A;     // dynamic size 2 

#pragma acc data copy(A[0:2]) 

Host Memory: 

Device Memory: 

A[0].x A[1].x x[0] x[1] x[0] x[1] 

dA[0].x dA[1].x x[0] x[1] x[0] x[1] 

Deep Copy 
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Possible deep-copy solutions 

11
8 

● Re-write application 
● Use “flat” objects 

● Manual deep copy 
● Issue multiple transfers 

● Translate pointers 

● Compiler-assisted deep copy 
● Automatic for fortran 

● -hacc_models=deep_copy 

● Dope vectors are self describing 

● OpenACC extensions for C/C++ 
● Pointers require explicit shapes 

Appropriate 

for CUDA 

Appropriate 

for OpenACC 
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Manual deep-copy 

11
9 

● Currently works for C/C++ 

● Portable in OpenACC 2.0, but not usually practical 

struct A_t { 

  int n; 

  int *x;      // dynamic size n 

}; 

... 

struct A_t *A; // dynamic size 2 

/* shallow copyin A[0:2] to device_A[0:2] */ 

struct A_t *dA = acc_copyin( A, 2*sizeof(struct A_t) ); 

for (int i = 0 ; i < 2 ; i++) { 

  /* shallow copyin A[i].x[0:A[i].n] to "orphaned" object */ 

  int *dx = acc_copyin( A[i].x, A[i].n*sizeof(int) ); 

  /* fix acc pointer device_A[i].x */ 

  cray_acc_memcpy_to_device( &dA[i].x, &dx, sizeof(int*); ); 

} 
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Automatic Fortran deep-copy 

12
0 

● No aliases on the accelerator 

● Must be contiguous 

● On or off – no “selective” deep copy 

● Only works for Fortran 

type A_t 

   integer,allocatable :: x(:) 

end type A_t 

... 

type(A_t),allocatable :: A(:) 

... 

! shallow copy with -hacc_model=no_deep_copy (default) 

!    deep copy with -hacc_model=deep_copy 

!$acc data copy(A(:)) 
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Proposed “member shape” directives 

12
1 

● Each object must shape it’s own pointers 
● Member pointers must be contiguous 
● No polymorphic types (types must be known statically) 
● Pointer association may not change on accelerator 

(including allocation/deallocation) 
● Member pointers may not alias (no cyclic data structures) 
● Assignment operators, copy constructors, constructors or 

destructors are not invoked  

struct A_t { 

  int n; 

  int *x;      // dynamic size n 

#pragma acc declare shape(x[0:n]) 

}; 

... 

struct A_t *A; // dynamic size 2 

... 

/* deep copy */ 

#pragma acc data copy(A[0:2]) 
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Member-shape directive examples 

12
2 

extern int size_z(); 

int size_y; 

struct Foo 

{ 

  double* x; 

  double* y; 

  double* z; 

  int     size_x; 

  // deep copy x, y, and z 

  #pragma acc declare shape(x[0:size_x], y[1:size_y-1], z[0:size_z()]) 

}; 

type Foo 

    real,allocatable :: x(:) 

    real,pointer     :: y(:) 

    !$acc declare shape(x)   ! deep copy x 

    !$acc declare unshape(y) ! do not deep copy y 

end type Foo 

6.May.13 Cray OpenACC tutorial, CUG 
122 



Member Shape Status 

12
3 

● Library 
● Support for type descriptors 

● Compiler 
● Automatic generation of type descriptors for Fortran 

● Compiler flag to enable/disable deep copy 

● Released in CCE 8.1 

● Significant internal testing, moderate customer testing 

● Directive-based generation of type descriptors for C/C++ 
● Planned for release in CCE 8.2 

● Limited preliminary internal testing 

● Language 
● Committee recognizes the utility and need 

● Will revisit after OpenACC 2.0 
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OpenACC 2.0 & OpenMP 4.0 

James C. Beyer 
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Timetable 
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Monday 6th May 2013 

 
●   8:30 Lecture 1: Introduction to the Cray XK7  (15) 

●   8:45 Lecture 2: OpenACC organization (Duncan Poole)  (15) 

●   9:00 Lecture 3: The OpenACC programming model (30) 

●   9:30 Lecture 4: Porting a simple example to OpenACC  (30) 

● 10:00 break  (30) 

● 10:30 Lecture 5:  Advanced OpenACC  (40) 

● 11:10 Lecture 6:  Using CCE with OpenACC  (25) 

● 11:35 Lecture 7:  OpenACC 2.0 and OpenMP 4.0  (25) 

● 12:00 close 
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Contents 

12
6 

● OpenACC 2.0 
● New directives 

● Status 

 

● OpenMP 4.0 accelerator support 
● New directives 

● Status 

 

● Differences between OpenACC and OpenMP 
 

● Usage/Porting tips 
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OpenACC 2.0 key features 
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● Procedure calls, separate compilation 

● Nested parallelism 

● Device-specific tuning, multiple devices 

● Data management features and global data 

● Multiple host thread support 

● Loop directive additions 

● Asynchronous behavior additions 

● New API routines 

● Default( none ) 
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Procedure calls, separate compilation 

● In C and C++, the syntax of the routine directive is: 
● #pragma acc routine clause-list new-line 
● #pragma acc routine ( name ) clause-list new-line 

 
● In Fortran the syntax of the routine directive is: 

● !$acc routine clause-list 
● !$acc routine ( name ) clause-list 

 
● The clause is one of the following: 

● gang 
● worker 
● vector 
● seq 
● bind( name ) 
● bind( string ) 
● device_type( device-type-list ) 
● nohost 
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Nested Parallelism 

● Actually simply a deletion of two restrictions 
● OpenACC parallel regions may not contain other parallel regions or 

kernels regions.  

● OpenACC kernels regions may not contain other parallel regions or 
kernels regions.  

 

● Other changes were mainly cosmetic 

 

● Has significant impact on where objects can be placed in 
memory. 
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Device-specific tuning, multiple devices 

● device_type(dev-type) 

 

#pragma acc parallel loop \  

               device_type(nvidia) num_gangs(200) …\ 

               dtype(radeon) num_gangs(400) …  

 for( int i = 0; i < n; ++i ){   

    v[i] += rhs[i]; 

    matvec( v, x, a, i, n ); 

 }  
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Data management features and global data 

float a[1000000]; 

#pragma acc declare create(a ) 

 

extern float a[]; 

#pragma acc declare create(a) 

float a[100000]; 

#pragma acc declare device_resident(a) 

 

float a[100000]; 

#pragma acc declare link(a) 

 

float *a; 

#pragma acc declare create(a)  

6.May.13 Cray OpenACC tutorial, CUG 
131 



Data management features  
 unstructured data lifetimes 

#pragma acc data copyin(a[0:n])\  

                create(b[0:n])  

{ … }  

#pragma acc enter data copyin( a[0:n] )\  

                create(b[0:n])  

… 

#pragma acc exit data delete(a[0:n]) 

 … 

#pragma acc exit data copyout(b[0:n])  

void init() { 

#pragma acc enter data copyin( a[0:n] )\  

                create(b[0:n]) 

} 

 

void fini { 

#pragma acc exit data delete(a[0:n]) 

#pragma acc exit data copyout(b[0:n])  

} 
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Multiple host thread support 

● Share the device context  

● Share the device data  

● Can create race conditions  

● present_or_copy is your friend  

 

● This is what Cray has always done, now it is well defined. 
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Loop directive additions 

● loop gang may not contain loop gang  

● loop worker may not contain loop gang, worker  

● loop vector may not contain gang, worker, vector  

● added loop auto (compiler selects)  

 

● Tile clause 
● tile(16,16) gang vector  

● !$acc loop tile(64,4) gang vector  
do i = 1, n  

 do j = 1, m  

     a(j,i) = (b(j-1,i)+b(j+1,i)+ &  

                   b(j,i-1)+b(j,i+1))*0.25  

    enddo  

enddo  
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Asynchronous behavior additions 

● Allow async clause on wait directive 
● Join two async streams without waiting on host 

● !$acc wait(1) async(2) 
● All previous work on async(1) must complete before any new work added to 

async(2) can execute 

● Adds a join with async(1) in the async(2) queue 

● Allow wait clause on any directive that supports async 
● Parallel, kernels, update, … 

● Allow multiple async identifiers in a wait directive/clause 
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New API routines 

acc_copyin( ptr, bytes )  

acc_create( ptr, bytes )  

acc_copyout( ptr, bytes )  

acc_delete( ptr, bytes )  

acc_is_present( ptr, bytes )  

acc_update_device( ptr, bytes )  

acc_update_local( ptr, bytes )  

acc_deviceptr( ptr )  

acc_hostptr( devptr )  

acc_map_data( devptr, hostptr, bytes )  

acc_unmap_data( hostptr )  
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Default( none ) 

● No implicit data scoping/mapping will be performed 

 

● It is an error if a non-predetermined variable is not in a 
data clause 
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OpenACC 2.0 status 

● All major features accepted 

● Closing in on the final feature set 

● Plan release for ISC’13 
● Biggest risk is the editor’s time 
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● A common directive programming model for shared 
memory systems 

● Announced 15yrs ago 

● Works with Fortran, C, C++ 

● Current version 3.1 (July 2011) 

● Accelerator version 4.0 (?? 2013) 

● Compiler support 
● http://openmp.org/wp/openmp-compilers/ 
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OpenMP 4.0 accelerator additions 

● Target data 
● Place objects on the device 

● Target 
● Move execution to a device 

● Target update 
● Update objects on the device or host 

● Declare target 
● Place objects on the device 

● Place subroutines/functions on the device 

● Teams 
● Start multiple contention groups 

● This gains access to the ThreadBlocks 

● Distribute 
● Similar to the OpenACC loop construct, binds to teams construct 

● Array sections 
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OpenMP 4.0 status 

● Accelerator support version 1 accepted 

● Currently in comment period 

● Language committee members doing section by section 
review 

● Hoping for a May release, not very likely 

● There were several compromises in this version  
● Bitwise copies for both language classes 

● No auto-deep copy in fortran 

● No constructors in C++ for data motion 

● Single type of accelerator per compile 

● … 
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OpenACC compared to OpenMP 

● Parallel (offload) 

● Parallel (multiple “threads”) 

● Kernels 

● Data 

● Loop 

● Host data 

● Cache 

● Update 

● Wait  

● Declare 

 

● Target 

● Team/Parallel 

●   

● Target Data 

● Distribute/Do/for 

●   

●   

● Update 

●   

● Declare 

OpenACC 1 OpenMP 
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OpenACC compared to OpenMP continued 

● enter data  

● exit data  

● data api 

● routine 

● async wait 

● parallel in parallel 

● tile 

●   

●   

●   

● declare target 

●   

● Parallel in parallel or 
team  

●   

143 

OpenACC 2 OpenMP 
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OpenACC compared to OpenMP continued 

●   

●   

●   

●   

●   

●   

●   

●   

●   

 

● Atomic 

● Critical sections 

● Master 

● Single 

● Tasks 

● barrier 

● get_thread_num 

● get_num_threads 

● … 

144 

OpenACC  OpenMP 
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OpenMP async  

145 

● Target does NOT take an async clause! 
● Does this mean no async capabilities? 

● OpenMP already has async capabilities -- Tasks 
● !$omp task 

● #pagma omp task 

● Is this the best solution? 
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Porting code to OpenACC (kernel level) 

146 

● Identify parallel opportunities  

● For each parallel opportunity 
● Add OpenACC Parallel Loop(s) 

● Verify correctness 

● Avoid data clause when possible, use present_or_* when required 

● Optimize “kernel” performance 
● Add additional acc loop directives 

● Add tuning clause/directives (collapse, cache, num_gangs, 
num_workers, vector_length, …) 

● Algorithmic enhancements/code rewrites 

● Try fast address option 



Porting code to OpenACC (application level) 

147 

● Add data regions/updates 
● Try to put data regions as high in the call chain as profitable 

● Working with one variable at a time can make things more 
manageable 

● To identify data correctness issues can add excessive updates and 
remove them verifying correctness. 

● Try auto async all 
● Auto async kernel is default 

● Add async clauses and waits 
● If synchronization issues are suspected, try adding extra waits and 

slowly remove them. 



Transition from OpenACC to OpenMP 
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● OpenACC 1.0 to OpenMP 4.0 is straight forward 

● OpenACC 2.0 to OpenMP 4.0 has issues 
● Unstructured data lifetimes  

● Tile 

● OpenMP 4.1 and 5.0 should close many of the gaps 

● Differences are significant enough that OpenACC may 
never fold back into OpenMP 
● OpenACC aims for portable performance 

● OpenMP aims for programmability 




