
An Introduction to OpenACC

6.May.2013 Cray OpenACC tutorial, CUG
1

James Beyer PhD

Timetable

6.May.2013 Cray OpenACC tutorial, CUG
2

Monday 6th May 2013

● 8:30 Lecture 1: Introduction to the Cray XK7 (15)

● 8:45 Lecture 2: OpenACC organization (Duncan Poole) (15)

● 9:00 Lecture 3: The OpenACC programming model (30)

● 9:30 Lecture 4: Porting a simple example to OpenACC (30)

● 10:00 break (30)

● 10:30 Lecture 5: Advanced OpenACC (40)

● 11:10 Lecture 6: Using CCE with OpenACC (25)

● 11:35 Lecture 7: OpenACC 2.0 and OpenMP 4.0 (25)

● 12:00 close

Contents

6.May.2013 Cray OpenACC tutorial, CUG
3

● The aims of this course:
● To motivate why directive-based programming of GPUs is useful

● To introduce you to the OpenACC programming model

● To give you some experience seeing OpenACC directives in a code

● The idea is to prepare you for future tutorials and initial
porting efforts

Inside the Cray XK7
and the Nvidia Kepler K20X GPU

6.May.2013 Cray OpenACC tutorial, CUG
4

Contents of this talk

6.May.2013 Cray OpenACC tutorial, CUG
5

● An overview of the Cray XK7
● The hardware

● Why GPUs are interesting for Exascale research

● Programming models for GPUs

● A quick GPU refresher
● the hardware

● how codes execute on the hardware and what this means to the
programmer

● Things to consider before starting an OpenACC port

"Accelerating the Way to Better Science"

6.May.2013 Cray OpenACC tutorial, CUG
6

Cray XK(6|7) supercomputer

● Node architecture:
● One AMD Series 6200 Interlagos CPU (16 cores)

● One Nvidia GPU
● XK6 Fermi+

● 512 cores, 665 GFlop/s DP, 6GB memory

● XK7 Kepler
● 2496 cores, 1.17 TFlop/s DP, 5GB memory

● 2688 cores, 1.31 TFlop/s DP, 6GB memory

● Cray Gemini interconnect
● shared between two nodes

● high bandwidth/low latency scalability

● Fully integrated/optimized/supported
● Tight integration of GPU and NIC drivers

The Exascale is coming...

6.May.2013 Cray OpenACC tutorial, CUG
7

(and they're all Crays)

 Sustained performance milestones every 10 years...

 1000x the performance with 100x the PEs

Exascale, but not exawatts

6.May.2013 Cray OpenACC tutorial, CUG
8

● Power is a big consideration in an exascale architecture
● Jaguar XT (ORNL) draws 6MW to deliver 1PF
● The US DoE wants 1EF, but using only 20MW...

● A hybrid system is one way to reach this, e.g.
● 105 nodes (up from 104 for Jaguar)
● 104 FPUs/node (up from 10 for Jaguar)

● some full-featured cores for serial work
● a lot more cutdown cores for parallel work

● Instruction level parallelism will be needed
● continues the SIMD trend SSE → AVX → ...

● This looks a lot like the current GPU accelerator model

● manycore architecture, split into SIMT threadblocks
● Complicated memory space/hierarchy (internal and PCIe)

● And this looks a lot like the old days
● welcome back to vectorization, we kept the compiler ready for you

Accelerator programming

6.May.2013 Cray OpenACC tutorial, CUG
9

● Why do we need a new GPU programming model?

● Aren’t there enough ways already?
● CUDA (incl. NVIDIA CUDA-C & PGI CUDA-Fortran)

● OpenCL

● Stream

● hiCUDA ...

● All are quite low-level and closely coupled to the GPU
● User needs to rewrite kernels in specialist language:

● Hard to write and debug

● Hard to optimise for specific GPU

● Hard to port to new accelerator

● Multiple versions of kernels in codebase
● Hard to add new functionality

Directive-based programming

6.May.2013 Cray OpenACC tutorial, CUG
10

Directives provide a high-level alternative

+ Based on original source code (e.g. Fortran, C, C++)
+ Easier to maintain/port/extend code

+ Users with (for instance) OpenMP experience find it a familiar
programming model

+ Compiler handles repetitive boilerplate code (cudaMalloc,
cudaMemcpy...)

+ Compiler handles default scheduling; user can step in with clauses
where needed

– Possible performance sacrifice
– Important to quantify this

– Can then tune the compiler

– Small performance sacrifice is an acceptable trade-off for portability
and productivity
– After all, who handcodes in assembly for CPUs these days?

Performance compared to CUDA

6.May.2013 Cray OpenACC tutorial, CUG
11

● Is there a performance gap relative to explicit low-level
programming model? Typically 10-15%, sometimes none.

● Is the performance gap acceptable? Yes.
● e.g. S3D comp_heat kernel (ORNL application readiness):

0.01

0.1

1

10

0 8 16 24 32

T
im

e
 (

s
e

c
o

n
d

s
)

Cores on Host

OpenMP

CUDA Fortran (PGI)

OpenACC (CCE)

Structure of this course

6.May.2013 Cray OpenACC tutorial, CUG
12

● Aims to lead you through the entire development process
● What is OpenACC?

● How do I use it in a simple code?

● Performance tuning and advanced topics

● It will assume you know
● A little bit about GPU architecture and programming

● SMs, threadblocks, warps, coalescing

● a quick refresher follows

● It will help if you know
● The basic idea behind OpenMP programming

● but this is not essential

A quick GPU refresher

6.May.2013 Cray OpenACC tutorial, CUG
13

How fast are current GPUs?

6.May.2013 Cray OpenACC tutorial, CUG
14

● Beware the hype: "I got 1000x speed-up on a GPU"

● What should you expect?
● Cray XK7:

● Flop/s: GPU ~9x faster than single, whole CPU (16 cores)

● Memory bandwidth: GPU ~6x faster than CPU

● These ratios are going to be similar in other systems

● Plus, it is harder to reach peak performance on a GPU
● Your code needs to fit the architecture

● You also need to factor in data transfers between CPU and GPU

CPU
~150 GF

GPU
~1.3 TF

32GB

SDRAM 6 GB

GDDR

PCIe-2

8 GB/s

~250 GB/s ~42 GB/s

Nvidia K20X Kepler architecture

6.May.2013 Cray OpenACC tutorial, CUG
15

● Global architecture
● a lot of compute cores

● 2688 SP plus 896 DP; ratio 3:1

● divided into 14 Streaming Multiprocessors
● these operate independently

● SMX architecture

● many cores
● 192 SP
● 64 DP

● shared instruction stream; same ops
● lockstep, SIMT execution of same ops
● SMX acts like vector processor

● Memory hierarchy

● each core has private registers
● fixed register file size

● cores in an SM share a fast memory
● 64KB, split between:

● L1 cache and user-managed

● all cores share large global memory
● 6GB; also some specialist memory

Issues around GPUs and OpenACC

6.May.2013 Cray OpenACC tutorial, CUG
16

● Program Execution on a GPU
● Kernels are launched by CPU to execute on GPU
● The GPU runtime schedules Kernels on hardware
● Kernel launch is asynchronous

● What CUDA doesn’t tell you (upfront)
● Threads are not created equal

● warps
● Memory accesses done at the warp level
● Compiler looks at GPU as a SMP vector processor

● What does this mean to programmers
● Need a lot of parallel tasks
● Loops must vectorize
● Data transfers are expensive
● Synchronization is not possible at ThreadBlock level

● With Auto-vectorization do we need directives?
● Location location location

● Risk Factors
● Will there be machines to run my code?
● Will OpenACC continue?
● Will OpenACC be superseded?

OpenACC Organization

Duncan Poole

Timetable

6.May.2013 Cray OpenACC tutorial, CUG
18

Monday 6th May 2013

● 8:30 Lecture 1: Introduction to the Cray XK7 (15)

● 8:45 Lecture 2: OpenACC organization (Duncan Poole) (15)

● 9:00 Lecture 3: The OpenACC programming model (30)

● 9:30 Lecture 4: Porting a simple example to OpenACC (30)

● 10:00 break (30)

● 10:30 Lecture 5: Advanced OpenACC (40)

● 11:10 Lecture 6: Using CCE with OpenACC (25)

● 11:35 Lecture 7: OpenACC 2.0 and OpenMP 4.0 (25)

● 12:00 close

● A common directive programming model for today’s GPUs
● Announced at SC11 conference

● Offers portability between compilers
● Drawn up by: NVIDIA, Cray, PGI, CAPS

● Multiple compilers offer:
● portability, debugging, permanence

● Works for Fortran, C, C++
● Standard available at openacc.org

● Initially implementations targeted at NVIDIA GPUs

● Current version: 1.0 (November 2011)
● v2.0 expected in 1H 2013

● Compiler support: all now complete
● Cray CCE: complete in 8.1 release

● PGI Accelerator: version 12.6 onwards

● CAPS: Full support in v1.3

● (accULL: research compiler, C only)

6.May.13
19

Cray OpenACC tutorial, CUG

http://openacc.org/
http://www.pgroup.com/resources/accel.htm
http://www.caps-entreprise.com/technology/hmpp/
http://accull.wordpress.com/

The OpenACC programming model

James Beyer

6.May.13 Cray OpenACC tutorial, CUG
20

Timetable

6.May.2013 Cray OpenACC tutorial, CUG
21

Monday 6th May 2013

● 8:30 Lecture 1: Introduction to the Cray XK7 (15)

● 8:45 Lecture 2: OpenACC organization (Duncan Poole) (15)

● 9:00 Lecture 3: The OpenACC programming model (30)

● 9:30 Lecture 4: Porting a simple example to OpenACC (30)

● 10:00 break (30)

● 10:30 Lecture 5: Advanced OpenACC (40)

● 11:10 Lecture 6: Using CCE with OpenACC (25)

● 11:35 Lecture 7: OpenACC 2.0 and OpenMP 4.0 (25)

● 12:00 close

Contents

6.May.13 Cray OpenACC tutorial, CUG
22

● OpenACC programming model

● What does OpenACC looks like?

● How are OpenACC directives used?
● Basic directives

● Advanced topics will follow in another lecture

● Where can I learn more?

● Plus a few hints, tips, tricks and gotchas along the way
● Not all guaranteed to be relevant, useful (or even true)

OpenACC programming model

23

● Host-directed execution with attached GPU
● Main program executes on “host” (i.e. CPU)

● Directs execution on device (i.e. GPU)
● Memory allocation and transfers

● Kernel execution

● Synchronization

● Memory spaces on the host and device distinct
● Different locations, different address space

● Data movement performed by host using runtime library calls that
explicitly move data between the separate

● GPUs have a weak memory model
● No synchronization possible between outermost parallel level

● User responsible for
● Specifying code to run on device

● Specifying parallelism

● Specifying data allocation/movement that spans single kernels

Accelerator directives

● Modify original source code with directives
● Non-executable statements (comments, pragmas)

● Can be ignored by non-accelerating compiler

● CCE -hnoacc (or -xacc) also supresses compilation

● Sentinel: acc
● C/C++: preceded by #pragma

● Structured block {...} avoids need for end directives

● Fortran: preceded by !$ (or c$ for FORTRAN77)
● Usually paired with !$acc end *

● Directives can be capitalised

● Continuation to extra lines allowed
● C/C++: \ (at end of line to be continued)

● Fortran:
● Fixed form: c$acc& or !$acc& on continuation line

● Free form: & at end of line to be continued

● continuation lines can start with either !$acc or !$acc&

! Fortran example
!$acc *
<structured block>
!$acc end *

// C/C++ example
#pragma acc *
{structured block}

6.May.13
24

Cray OpenACC tutorial, CUG

Conditional compilation

6.May.13 Cray OpenACC tutorial, CUG
25

● In theory, OpenACC code should be identical to CPU
● only difference are the directives (i.e. comments)

● In practise, you may need slightly different code
● E.g.

● around calls to OpenACC runtime API functions

● where you need to recode for OpenACC, e.g. for performance reasons
● try to minimize this; usually better OpenACC code is better CPU code

● CPP macro defined to allow conditional compilation
● _OPENACC == yyyymm (currently 201111)

A first example

Execute a loop nest on the GPU
● Compiler does the work:

● Data movement
● allocates/frees GPU memory at
 start/end of region
● moves of data to/from GPU

● Loop schedule: spreading loop iterations over PEs of GPU

● OpenACC CUDA

● gang: a threadblock

● worker: warp (group of 32 threads)
● vector: threads within a warp

● Compiler takes care of cases where iterations doesn't divide threadblock size

● Caching (explicitly use GPU shared memory for reused data)

● automatic caching (e.g. NVIDIA Fermi, Kepler) important

● Tune default behavior with optional clauses on directives

!$acc parallel loop
DO i = 2,N-1
 c(i,j) = a(i,j) + b(i,j)
 ENDDO
ENDDO
!$acc end parallel loop

read-only write-only

6.May.13
26

Cray OpenACC tutorial, CUG

A first full OpenACC program: "Hello World"

● Array a(:) unnecessarily moved from and to GPU between
kernels
● "data sloshing"

● Code still compile-able for CPU

PROGRAM main
 INTEGER :: a(N)
 <stuff>
!$acc parallel loop
 DO i = 1,N
 a(i) = i
 ENDDO
!$acc end parallel loop
!$acc parallel loop
 DO i = 1,N
 a(i) = 2*a(i)
 ENDDO
!$acc end parallel loop
 <stuff>
END PROGRAM main

 Two accelerator parallel regions

 Compiler creates two kernels
 Loop iterations automatically divided

across gangs, workers, vectors

 Breaking parallel region acts as barrier

 First kernel initialises array
 Compiler will determine copyout(a)

 Second kernel updates array
 Compiler will determine copy(a)

 Breaking parallel region=barrier
 No barrier directive (global or within SM)

6.May.13
27

Cray OpenACC tutorial, CUG

A second version

● No automatic synchronization of copies within data region
● User-directed synchronisation via update directive

PROGRAM main
 INTEGER :: a(N)
 <stuff>
!$acc data copyout(a)
!$acc parallel loop
 DO i = 1,N
 a(i) = i
 ENDDO
!$acc end parallel loop
!$acc parallel loop
 DO i = 1,N
 a(i) = 2*a(i)
 ENDDO
!$acc end parallel loop
!$acc end data
 <stuff>
END PROGRAM main

 Now added a data region

 Specified arrays only moved at
boundaries of data region

 Unspecified arrays moved by
each kernel

 No compiler-determined
movements for data regions

 Data region can contain host code
and accelerator regions

 Copies of arrays independent

6.May.13
28

Cray OpenACC tutorial, CUG

Sharing GPU data between subprograms

● One of the kernels now in subroutine (maybe in separate file)
● CCE supports function calls inside parallel regions

● Fermi: Compiler will inline (maybe need -Oipafrom or program library)

● present clause uses version of b on GPU without data copy
● Can also call double_array() from outside a data region

● Replace present with present_or_copy

● Original call-tree structure of program can be preserved

SUBROUTINE double_array(b)
 INTEGER :: b(N)
!$acc parallel loop present(b)
 DO i = 1,N
 b(i) = double_scalar(b(i))
 ENDDO
!$acc end parallel loop
END SUBROUTINE double_array

PROGRAM main
 INTEGER :: a(N)
 <stuff>
!$acc data copyout(a)
!$acc parallel loop
 DO i = 1,N
 a(i) = i
 ENDDO
!$acc end parallel loop
 CALL double_array(a)
!$acc end data
 <stuff>
END PROGRAM main

INTEGER FUNCTION double_scalar(c)
 INTEGER :: c
 double_scalar = 2*c
END FUNCTION double_scalar

6.May.13
29

Cray OpenACC tutorial, CUG

Data clauses

6.May.13 Cray OpenACC tutorial, CUG
30

● Applied to: data, parallel [loop], kernels [loop]
● copy, copyin, copyout

● copy moves data "in" to GPU at start of region and/or "out" to CPU
at end

● supply list of arrays or array sections (using ":" notation)

● N.B. Fortran uses start:end; C/C++ uses start:length
● e.g. first N elements: Fortran 1:N (familiar); C/C++ 0:N (less familiar)

● Advice: be careful and don't make mistakes!

● Use profiler and/or runtime commentary to see how much data moved

● Avoid non-contiguous array slices for performance

● create
● No copyin/out – useful for shared temporary arrays in loopnests

● Host copy still exists

● private, firstprivate: as per OpenMP
● scalars private by default (not just loop variables)

● Advice: declare them anyway, for clarity

More data clauses

6.May.13 Cray OpenACC tutorial, CUG
31

● present, present_or_copy*, present_or_create
● pcopy*, pcreate for short

● Checks if data is already on the device
● if it is, it uses that version

● no data copying will be carried out for that data

● if not, it does the prescribed data copying

● Advice: only use present_or_* if you really have to
● "not present" runtime errors are a useful development tool for most

codes

● In both cases, the data is processed on the GPU
● Advanced topic: what if I want to call routine either:

● with data on the GPU, to be processed on the GPU, or...

● with data on the CPU, to be processed on the CPU?

● Either:
● Explicitly call one of two versions of the routine, one with OpenACC, or...

● Use the Cray OpenACC runtime to check if data present and branch code

And take a breath...

6.May.13 Cray OpenACC tutorial, CUG
32

● You now know everything you need to start accelerating

● So what do we do for the rest of the lecture?
● Not all codes are simple

● OpenACC has a lot more functionality to cover

● And we want to be able to tune the performance

Clauses for !$acc parallel loop

6.May.13 Cray OpenACC tutorial, CUG
33

● Tuning clauses:
● !$acc loop [gang] [worker] [vector]

● Targets specific loop (or loops with collapse) at specific level of
hardware
● gang ↔ CUDA threadblock (scheduled on a single SM)

● worker ↔ CUDA warp of 32 threads (scheduled on vector unit)

● vector ↔ CUDA threads in warp executing in SIMT lockstep

● You can specify more than one
● !$acc loop gang worker vector schedules loop iteration over all hardware

● We'll discuss loop scheduling in much more detail later

More clauses for !$acc parallel loop

6.May.13 Cray OpenACC tutorial, CUG
34

● More tuning clauses:

● num_gangs, num_workers, vector_length
● Tunes the amount of parallelism used (threadblocks, threads/block...)

● To set the number of threads per block (fixed at compile time for CCE)
● vector_length(NTHREADS) or num_workers(NTHREADS/32)

● NTHREADS must be one of: 1, 64, 128 (default), 256, 512, 1024

● NTHREADS > 32 automatically decomposed into warps of length 32

● Don't need to specify number of threadblocks (unless you want to)

● Handy tip: To debug a kernel by running on a single GPU thread, use:
● !$acc parallel [loop] gang vector num_gangs(1) vector_length(1)

● Useful for checking race conditions in parallelised loopnests (but very slow)

More OpenACC directives

● Other !$acc parallel loop clauses:
● seq: loop executed sequentially

● independent: compiler hint, if it isn't partitioning (parallelising) a loop

● if(logical)
● Executes on GPU if .TRUE. at runtime, otherwise on CPU

● reduction: as in OpenMP

● cache: specified data held in software-managed data cache
● e.g. explicit blocking to shared memory on NVIDIA GPUs

● CCE-specific tuning:
● can also use !dir$ directives to adjust loop scheduling

● e.g. concurrent, blockable

● see man intro_directives (with PrgEnv-cray loaded) for details

6.May.13
35

Cray OpenACC tutorial, CUG

More OpenACC directives

● !$acc update [host|device]
● Copy specified arrays (slices) within data region

● Useful if you only need to send a small subset of data to/from GPU
● e.g. halo exchange for domain-decomposed parallel code

● or sending a few array elements to the CPU for printing/debugging

● Remember slicing syntax differs between Fortran and C/C++

● The contiguous array sections perform better

● !$acc declare
● Makes a variable resident in accelerator memory

● persists for the duration of the implicit data region

● Other directives
● We'll cover these in detail later:

● !$acc cache

● async clause and !$acc wait

● !$acc host_data

6.May.13
36

Cray OpenACC tutorial, CUG

parallel vs. kernels

6.May.13 Cray OpenACC tutorial, CUG
37

● parallel and kernels regions look very similar
● both define a region to be accelerated

● different heritage; different levels of obligation for the compiler

● parallel
● prescriptive (like OpenMP programming model)

● uses a single accelerator kernel to accelerate region

● compiler will accelerate region (even if this leads to incorrect results)

● kernels
● descriptive (like PGI Accelerator programming model)

● uses one or more accelerator kernels to accelerate region

● compiler may accelerate region (if decides loop iterations are independent)

● For more info: http://www.pgroup.com/lit/articles/insider/v4n2a1.htm

● Which to use (my opinion)
● parallel (or parallel loop) offers greater control

● fits better with the OpenMP model

● kernels (or kernels loop) better for initially exploring parallelism
● not knowing if loopnest is accelerated could be a problem

http://www.pgroup.com/lit/articles/insider/v4n2a1.htm
http://www.pgroup.com/lit/articles/insider/v4n2a1.htm

parallel loop vs. parallel and loop

6.May.13 Cray OpenACC tutorial, CUG
38

● parallel region can span multiple code blocks
● i.e. sections of serial code statements and/or loopnests

● loopnests in parallel region are not automatically partitioned
● need to explicitly use loop directive for this to happen

● scalar code (serial code, loopnests without loop directive)
● executed redundantly, i.e. identically by every thread

● or maybe just by one thread per block (its implementation dependent)

● There is no synchronisation between redundant code or kernels
● offers potential for overlap of execution on GPU

● also offers potential (and likelihood) of race conditions and incorrect code

● There is no mechanism for a barrier inside a parallel region
● after all, CUDA offers no barrier on GPU across threadblocks

● to effect a barrier, end the parallel region and start a new one
● also use wait directive outside parallel region for extra safety

parallel loop vs. parallel and loop

6.May.13 Cray OpenACC tutorial, CUG
39

● My advice: don't...
● GPU threads are very lightweight (unlike OpenMP)

● so don't worry about having extra parallel regions

● explicit use of async clause may achieve same results
● as using one parallel region
● but with greater code clarity and better control over overlap

● ... but if you feel you must
● begin with composite parallel loop and get correct code

● separate directives with care only as a later performance tuning
● when you are sure the kernels are independent and no race conditions

parallel gotchas

6.May.13 Cray OpenACC tutorial, CUG
40

● No loop directive
● The code will (or may) run redundantly

● Every thread does every loop iteration

● Not usually what we want

!$acc parallel
 DO i = 1,N
 a(i) = b(i) + c(i)
 ENDDO
!$acc end parallel

● Serial code in parallel region
● avoids copyin(t), but a good idea?
● No! Every thread sets t=0
● asynchronicity: no guarantee this

finishes before loop kernel starts
● race condition, unstable answers.

!$acc parallel
 t = 0
!$acc loop reduction(+:t)
 DO i = 1,N
 t = t + a(i)
 ENDDO
!$acc end parallel

● Multiple kernels
● Again, potential race condition

● Treat OpenACC "end loop" like
OpenMP "enddo nowait"

!$acc parallel
!$acc loop
 DO i = 1,N
 a(i) = 2*a(i)
 ENDDO
!$acc loop
 DO i = 1,N
 a(i) = a(i) + 1
 ENDDO
!$acc end parallel

parallel loop vs. parallel and loop

6.May.13 Cray OpenACC tutorial, CUG
41

● When you actually might want to
● You might split the directive if:

● you have a single loopnest, and

● you need explicit control over the loop scheduling

● you do this with multiple loop directives inside parallel region
● or you could use parallel loop for the outermost loop, and loop for the others

● But beware of reduction variables
● With separate loop directives, you need a reduction clause on every

loop directive that includes a reduction:

t = 0
!$acc parallel loop &
!$acc reduction(+:t)

DO j = 1,N

 DO i = 1,N
 t = t + a(i,j)
 ENDDO
ENDDO
!$acc end parallel loop

t = 0
!$acc parallel &
!$acc reduction(+:t)
!$acc loop
DO j = 1,N
!$acc loop
 DO i = 1,N
 t = t + a(i,j)
 ENDDO
ENDDO
!$acc end parallel

t = 0
!$acc parallel

!$acc loop reduction(+:t)
DO j = 1,N
!$acc loop
 DO i = 1,N
 t = t + a(i,j)
 ENDDO
ENDDO
!$acc end parallel

t = 0
!$acc parallel

!$acc loop reduction(+:t)
DO j = 1,N
!$acc loop reduction(+:t)
 DO i = 1,N
 t = t + a(i,j)
 ENDDO
ENDDO
!$acc end parallel

Correct! Wrong! Correct! Wrong!

The OpenACC runtime API

6.May.13 Cray OpenACC tutorial, CUG
42

● Directives are comments in the code
● automatically ignored by non-accelerating compiler

● OpenACC also offers a runtime API

● set of library calls, names starting acc_
● set, get and control accelerator properties
● offer finer-grained control of asynchronicity

● OpenACC specific
● will need pre-processing away for CPU execution
● #ifdef _OPENACC

● CCE offers an extended runtime API
● set of library calls, names starting with cray_acc_

● will need pre-processing away if not using OpenACC with CCE
● #if defined(_OPENACC) && PE_ENV==CRAY

● Advice: you do not need the API for most codes.

● Start without it, only introduce it where it is really needed.

Sources of further information

6.May.13 Cray OpenACC tutorial, CUG
43

● OpenACC standard web page:
● OpenACC.org

● documents: full standard and quick reference guide PDFs

● links to other documents, tutorials etc.

● Discussion lists:
● Cray users: openacc-users@cray.com

● automatic subscription if you have a raven account

● OpenACC forum: openacc.org/forum

● CCE man pages (with PrgEnv-cray loaded):
● programming model and Cray extensions: intro_openacc

● examples of use: openacc.examples

● also compiler-specific man pages: crayftn, craycc, crayCC

● CrayPAT man pages (with perftools loaded):
● intro_craypat, pat_build, pat_report

● also command: pat_help

● accpc (for accelerator performance counters)

http://www.openacc.org/
mailto:openacc-users@cray.com
mailto:openacc-users@cray.com
mailto:openacc-users@cray.com
http://openacc.org/forum

Porting a simple example to OpenACC:
the scalar Himeno code

James Beyer

6.May.13 Cray OpenACC tutorial, CUG
44

Timetable

6.May.2013 Cray OpenACC tutorial, CUG
45

Monday 6th May 2013

● 8:30 Lecture 1: Introduction to the Cray XK7 (15)

● 8:45 Lecture 2: OpenACC organization (Duncan Poole) (15)

● 9:00 Lecture 3: The OpenACC programming model (30)

● 9:30 Lecture 4: Porting a simple example to OpenACC (30)

● 10:00 break (30)

● 10:30 Lecture 5: Advanced OpenACC (40)

● 11:10 Lecture 6: Using CCE with OpenACC (25)

● 11:35 Lecture 7: OpenACC 2.0 and OpenMP 4.0 (25)

● 12:00 close

Overview

6.May.13 Cray OpenACC tutorial, CUG
46

● This worked example leads you through accelerating a
simple application
● a simple application is easy to understand

● but it shows all the steps you would use for a more complicated code

The Himeno Benchmark

Cray OpenACC tutorial, CUG
47

● 3D Poisson equation solver
● Iterative loop evaluating 19-point stencil

● Memory intensive, memory bandwidth bound

● Fortran and C implementations
available from http://accc.riken.jp/2444.htm

● We look at the scalar version for simplicity

● Code characteristics
● Around 230 lines of Fortran or C

● Arrays statically allocated
● problem size fixed at compile time

6.May.13

http://accc.riken.jp/2444.htm
http://accc.riken.jp/2444.htm
http://accc.riken.jp/2444.htm
http://accc.riken.jp/HPC_e/himenobmt_e.html

Why use such a simple code?

6.May.13 Cray OpenACC tutorial, CUG
48

● Understanding a code structure is crucial if we are to
successfully OpenACC an application
● i.e. one that runs faster node-for-node (not just GPU vs. single CPU core)

● There are two key things to understand about the code:
● How is data passed through the calltree?

● CPUs and accelerators have separate memory spaces
● The PCIe link between them is relatively slow
● Unnecessary data transfers will wipe out any performance gains
● A successful OpenACC port will keep data resident on the accelerator

● Where are the hotspots?
● The OpenACC programming model is aimed at loop-based codes

● Which loopnests dominate the runtime?
● Are they suitable for a GPU?

● What are the min/average/max tripcounts?

● Minimising data movements will probably require eventual acceleration of many
more (and possibly all) loopnests, but we have to start somewhere

● Answering these questions for a large application is hard
● There are tools to help (we will discuss some of them later in the course)
● With a simple code, we can do all of this just by code inspection

Stages to accelerating an application

6.May.13 Cray OpenACC tutorial, CUG
49

1. Understand and characterise the application
● Profiling tools, code inspection, speaking to developers if you can

2. Introduce first OpenACC kernels

3. Introduce data regions in subprograms
● reduce unnecessary data movements

● will probably require more OpenACC kernels

4. Move up the calltree, adding higher-level data regions
● ideally, port entire application so data arrays live entirely on the GPU

● otherwise, minimise traffic between CPU and GPU

● This will give the single biggest performance gain

5. Only now think about performance tuning for kernels
● First correct any obviously inefficient scheduling on the GPU

● This will give some good performance improvements

● Optionally, experiment with OpenACC tuning clauses
● You may gain some final additional performance from this

● Remember to verify correctness along the way.

● And remember Amdahl's law...

Step 1: Himeno program structure

6.May.13 Cray OpenACC tutorial, CUG
50

● Code has two subprograms
● init_mt() initialises the data array

● Called once at the start of the program

● jacobi() performs iterative stencil updates of the data array
● The number of updates is an argument to the subroutine and fixed

● A summed residual is calculated, but not tested for convergence

● This subroutine is called twice, and each call is timed:
● Each call is timed internally by the code

● The first call does a small fixed number of iterations.

● The time is used to estimate how many iterations could be done in one minute

● The second call does this number of iterations

● The time is converted into a performance figure by the code

● Actually, it is useful when testing to do a fixed number of iterations

● Then we can use the value of the residual for a correctness check.

● The next slide shows an edited version of the code
● These slides discuss the Fortran version; there is also a C code

Step 1: Himeno program structure (contd)

Cray OpenACC tutorial, CUG
51

● In the next slides we look at the
details of jacobi()

PROGRAM himeno

 INCLUDE "himeno_f77.h"

 CALL initmt ! Initialise local matrices

 cpu0 = gettime() ! Wraps SYSTEM_CLOCK

 CALL jacobi(3,gosa)

 cpu1 = gettime()

 cpu = cpu1 - cpu0

! nn = INT(ttarget/(cpu/3.0)) ! Fixed runtime

 nn = 1000 ! Hardwired for testing

 cpu0 = gettime()

 CALL jacobi(nn,gosa)

 cpu1 = gettime()

 cpu = cpu1 - cpu0

 xmflops2 = flop*1.0d-6/cpu*nn

 PRINT *,' Loop executed for ',nn,' times'

 PRINT *,' Gosa :',gosa

 PRINT *,' MFLOPS:',xmflops2,' time(s):',cpu

END PROGRAM himeno

6.May.13

Step 1: Structure of the jacobi routine

Cray OpenACC tutorial, CUG
52

● Outer loop is executed
fixed number of times
● loop must be sequential !

● Apply stencil to p to
create temporary wrk2
● residual gosa computed

● details on the next slide

● Pressure array p
updated from wrk2
● this loopnest can be

parallelised

● Outer halo of p is fixed

SUBROUTINE jacobi(nn,gosa)

 iteration: DO loop = 1, nn

! compute stencil: wrk2, gosa from p

 <described on next slide>

! copy back wrk2 into p

 DO k = 2,kmax-1

 DO j = 2,jmax-1

 DO i = 2,imax-1

 p(i,j,k) = wrk2(i,j,k)

 ENDDO

 ENDDO

 ENDDO

 ENDDO iteration

END SUBROUTINE jacobi

6.May.13

Step 1: The Jacobi computational kernel

Cray OpenACC tutorial, CUG
53

● The stencil is applied to
pressure array p
● 19-point stencil

● Updated pressure values

are saved to temporary
array wrk2

● Residual value gosa is
computed

● This loopnest dominates
runtime
● Can be computed in

parallel
● gosa is reduction variable

gosa = 0

DO k = 2,kmax-1

 DO j = 2,jmax-1

 DO i = 2,imax-1

 s0=a(i,j,k,1)*p(i+1,j, k) &

 +a(i,j,k,2)*p(i, j+1,k) &

 +a(i,j,k,3)*p(i, j, k+1) &

 +b(i,j,k,1)*(p(i+1,j+1,k)-p(i+1,j-1,k) &

 -p(i-1,j+1,k)+p(i-1,j-1,k)) &

 +b(i,j,k,2)*(p(i, j+1,k+1)-p(i, j-1,k+1) &

 -p(i, j+1,k-1)+p(i, j-1,k-1)) &

 +b(i,j,k,3)*(p(i+1,j, k+1)-p(i-1,j, k+1) &

 -p(i+1,j, k-1)+p(i-1,j, k-1)) &

 +c(i,j,k,1)*p(i-1,j, k) &

 +c(i,j,k,2)*p(i, j-1,k) &

 +c(i,j,k,3)*p(i, j, k-1) &

 + wrk1(i,j,k)

 ss = (s0*a(i,j,k,4)-p(i,j,k)) * bnd(i,j,k)

 gosa = gosa + ss*ss

 wrk2(i,j,k) = p(i,j,k) + omega*ss

 ENDDO

 ENDDO

ENDDO

fw
d

 n
.n

.
b

w
d

 n
.n

.
n

.n
.n

.

6.May.13

Step 2: a first OpenACC kernel

Cray OpenACC tutorial, CUG
54

● Start with most expensive
● apply parallel loop
● end parallel loop optional

● advice: use it for clarity

● reduction clause
● like OpenMP, not optional

● private clause
● loop variables default

private (like OpenMP)
● scalar variables default

private (unlike OpenMP)
● so clause optional here

● advice: use one for clarity

● copy* data clauses
● compiler will do automatic

analysis
● explicit clauses will

interfere with data
directives at next step
● advice: only use if compiler

over-cautious

gosa1 = 0

!$acc parallel loop reduction(+:gosa1) &

!$acc& private(i,j,k,so,ss) &

!$acc& copyin(p,a,b,c,bnd,wrk1) &

!$acc& copyout(wrk2)

DO k = 2,kmax-1

 DO j = 2,jmax-1

 DO i = 2,imax-1

 s0 = a(i,j,k,1) * p(i+1,j, k) &

 <etc...>

 ss = (s0*a(i,j,k,4) - p(i,j,k)) * &

 bnd(i,j,k)

 gosa1 = gosa1 + ss*ss

 wrk2(i,j,k) = p(i,j,k) + omega*ss

 ENDDO

 ENDDO

ENDDO

!$acc end parallel loop

6.May.13

Compiler feedback

6.May.13 Cray OpenACC tutorial, CUG
55

● Compiler feedback is extremely important
● Did the compiler recognise the accelerator directives?

● A good sanity check

● How will the compiler move data?
● Only use data clauses if the compiler is over-cautious on the copy*

● Or you want to declare an array to be scratch (create clause)

● The first main code optimisation is removing unnecessary data movements

● How will the compiler schedule loop iterations across GPU threads?
● Did it parallelise the loopnests?

● Did it schedule the loops sensibly?

● The other main optimisation is correcting obviously-poor loop scheduling

● Compiler teams work very hard to make feedback useful
● advice: use it, it's free! (i.e. no impact on performance to generate it)

● CCE: -hlist=a Produces commentary files <stem>.lst

● PGI: -Minfo Feedback to STDERR

Cray OpenACC tutorial, CUG
56

163. 1--------< DO loop = 1,nn

169. 1 gosa1 = 0

171. 1 G-----<> !$acc parallel loop reduction(+:gosa1) private(i,j,k,s0,ss)

172. 1 g------< DO k = 2,kmax-1

173. 1 g 3----< DO j = 2,jmax-1

174. 1 g 3 g--< DO i = 2,imax-1

175. 1 g 3 g s0 = a(i,j,k,1) * p(i+1,j,k) ...

188. 1 g 3 g--> ENDDO

189. 1 g 3----> ENDDO

190. 1 g------> ENDDO

191. 1 !$acc end parallel loop

208. 1--------> ENDDO

6.May.13

Numbers denote

serial loops

G = accelerator kernel

g = partitioned loop

source line numbers

Cray OpenACC tutorial, CUG
57

163. 1--------< DO loop = 1,nn

169. 1 gosa1 = 0

171. 1 G-----<> !$acc parallel loop reduction(+:gosa1) private(i,j,k,s0,ss)

172. 1 g------< DO k = 2,kmax-1

173. 1 g 3----< DO j = 2,jmax-1

174. 1 g 3 g--< DO i = 2,imax-1

175. 1 g 3 g s0 = a(i,j,k,1) * p(i+1,j,k) ...

188. 1 g 3 g--> ENDDO

189. 1 g 3----> ENDDO

190. 1 g------> ENDDO

191. 1 !$acc end parallel loop

208. 1--------> ENDDO

Data movements:

ftn-6418 ftn: ACCEL File = himeno_f77_v02.f, Line = 171

 If not already present: allocate memory and copy whole array "p" to accelerator,
free at line 191 (acc_copyin).

<identical messages for a,b,c,wrk1,bnd>

ftn-6416 ftn: ACCEL File = himeno_f77_v02.f, Line = 171

 If not already present: allocate memory and copy whole array "wrk2" to accelerator,
copy back at line 191 (acc_copy).

6.May.13

Over-cautious: compiler worried about halos;

could specify copyout(wrk2)

yes, as we expected

To learn more, use command:

explain ftn-6418

Cray OpenACC tutorial, CUG
58

163. 1--------< DO loop = 1,nn

169. 1 gosa1 = 0

171. 1 G-----<> !$acc parallel loop reduction(+:gosa1) private(i,j,k,s0,ss)

172. 1 g------< DO k = 2,kmax-1

173. 1 g 3----< DO j = 2,jmax-1

174. 1 g 3 g--< DO i = 2,imax-1

175. 1 g 3 g s0 = a(i,j,k,1) * p(i+1,j,k) ...

188. 1 g 3 g--> ENDDO

189. 1 g 3----> ENDDO

190. 1 g------> ENDDO

191. 1 !$acc end parallel loop

208. 1--------> ENDDO

ftn-6430 ftn: ACCEL File = himeno_f77_v02.f, Line = 172

 A loop starting at line 172 was partitioned across the thread blocks.

ftn-6509 ftn: ACCEL File = himeno_f77_v02.f, Line = 173

 A loop starting at line 173 was not partitioned because a better candidate was found at
line 174.

ftn-6412 ftn: ACCEL File = himeno_f77_v02.f, Line = 173

 A loop starting at line 173 will be redundantly executed.

ftn-6430 ftn: ACCEL File = himeno_f77_v02.f, Line = 174

 A loop starting at line 174 was partitioned across the 128 threads within a threadblock.

6.May.13

CUDA: k value(s)

built from blockIdx.x

Each thread executes complete

j-loop for its i, k value(s)

CUDA: i value(s) built

from threadIdx.x

Is the code still correct?

6.May.13 Cray OpenACC tutorial, CUG
59

● Most important thing is that the code is correct:
● Make sure you check the residual (Gosa)
● N.B. will never get bitwise reproducibility between CPU and GPU

architectures
● different compilers will also give different results

● Advice: make sure the code has checksums, residuals
etc. to check for correctness.
● even if code is single precision, try to use double precision for

checking.
● globally or at least for global sums and other reduction variables

How does this first version perform?

6.May.13 Cray OpenACC tutorial, CUG
60

● The code is faster...
● ... but not by much and compared to one core.

● Why?
● Only 2% of the GPU time is compute;

● The rest is data transfer to and from device

● Lesson: optimise data movements before looking at
kernel performance
● We are lucky with Himeno

● most codes are actually slower than one core at this stage

language Fortran C

precision single double single double

v00 2881 1454 2287 1131

v01 1177 565 1178 594

Profiling the first Himeno kernel

6.May.13 Cray OpenACC tutorial, CUG
61

● CrayPAT profile, breaks time down into compute and data

● Most kernels are launched asynchronously
● as is the case with CUDA

● reported host time is the time taken to launch operation
● Host time is much smaller than accelerator time

● Host eventually waits for completion of accelerator operations
● This shows up in a "large" SYNC_WAIT time

Table 2: Time and Bytes Transferred for Accelerator Regions

 Host | Host | Acc | Acc Copy | Acc Copy | Events |Calltree
 Time% | Time | Time | In | Out | |
 | | | (MBytes) | (MBytes) | |

 100.0% | 11.716 | 11.656 | 23525 | 1680 | 515 |Total
|--
| 100.0% | 11.716 | 11.656 | 23525 | 1680 | 515 |main_
| | | | | | | jacobi_
3 | | | | | | jacobi_.ACC_REGION@li.288
||||---
4||| 93.5% | 10.953 | 10.911 | 23525 | -- | 103 |jacobi_.ACC_COPY@li.288
4||| 4.5% | 0.527 | 0.517 | -- | 1680 | 103 |jacobi_.ACC_COPY@li.315
4||| 2.0% | 0.230 | -- | -- | -- | 103 |jacobi_.ACC_SYNC_WAIT@li.315
4||| 0.0% | 0.004 | 0.228 | -- | -- | 103 |jacobi_.ACC_KERNEL@li.288
4||| 0.0% | 0.001 | -- | -- | -- | 103 |jacobi_.ACC_REGION@li.288(exclusive)
|==

Profiling the first Himeno kernel

6.May.13 Cray OpenACC tutorial, CUG
62

● Clarify profile by inserting synchronisation points
● Could do this explicitly by inserting "acc wait" after every operation
● better to compile with CCE using -hacc_model=auto_async_none

● see man crayftn for details

● Profile now shows same time for host at every operation
● It is now very clear that data transfers take most of the time

● Extra synchronisation will affect performance
● Could skew the profile, so use with care
● N.B. GPU profilers (Craypat, Nvidia...) already introduce some sync.

Table 2: Time and Bytes Transferred for Accelerator Regions

 Host | Host | Acc | Acc Copy | Acc Copy | Events |Calltree
 Time% | Time | Time | In | Out | |
 | | | (MBytes) | (MBytes) | |

 100.0% | 11.745 | 11.686 | 23525 | 1680 | 412 |Total
|--
| 100.0% | 11.745 | 11.686 | 23525 | 1680 | 412 |main_
| | | | | | | jacobi_
3 | | | | | | jacobi_.ACC_REGION@li.288
||||---
4||| 93.5% | 10.978 | 10.935 | 23525 | -- | 103 |jacobi_.ACC_COPY@li.288
4||| 4.5% | 0.532 | 0.523 | -- | 1680 | 103 |jacobi_.ACC_COPY@li.315
4||| 2.0% | 0.234 | 0.228 | -- | -- | 103 |jacobi_.ACC_KERNEL@li.288
4||| 0.0% | 0.001 | -- | -- | -- | 103 |jacobi_.ACC_REGION@li.288(exclusive)
|==

Step 3: Optimising data movements

6.May.13 Cray OpenACC tutorial, CUG
63

● Within jacobi routine
● data-sloshing: all arrays are copied to GPU at every loop iteration

● Need to establish data region outside the iteration loop
● Then data can remain resident on GPU for entire call

● reused for each iteration without copying to/from host

● Must accelerate all loopnests processing the arrays
● Even if it takes negligible compute time, still accelerate for data locality

● This is a major productivity win for OpenACC compared to low-level languages

● You can accelerate a loopnest with one directive

● Don't have to handcode a new CUDA/OpenCL kernel

● And, remember, the performance of such a kernel is irrelevant

Step 3: Structure of the jacobi routine

Cray OpenACC tutorial, CUG
64

● data region spans
iteration loop
● CPU and OpenACC code

● use explicit data clauses
● no automatic scoping

● requires knowledge of app

● enclosed kernels
shouldn't have data
clauses for these
variables

● wrk2 now a scratch array
● does not need copying

SUBROUTINE jacobi(nn,gosa)

!$acc data copy(p) &

!$acc& copyin(a,b,c,wrk1,bnd) &

!$acc& create(wrk2)

 iteration: DO loop = 1, nn

! compute stencil: wrk2, gosa from p

!$acc parallel loop <clauses>

 <stencil loopnest>

!$acc end parallel loop

! copy back wrk2 into p

!$acc parallel loop

 <copy loopnest>

!$acc end parallel loop

 ENDDO iteration

!$acc end data

END SUBROUTINE jacobi

6.May.13

How does this second version perform?

6.May.13 Cray OpenACC tutorial, CUG
65

● A big performance improvement
● Now 51% of the GPU time is compute

● And more of the profile has been ported to the GPU

● Data transfers only happen once per call to jacobi(),
● rather than once per iteration

● Code still correct:
● Check the Gosa values

language Fortran C

precision single double single double

v00 2881 1454 2287 1131

v01 1177 565 1178 594

v02 37525 20300 37143 20287

Profile with a local data region in jacobi()

6.May.13 Cray OpenACC tutorial, CUG
66

● Profile now dominated by compute (ACC_KERNEL)

● Data transfers infrequent
● only once for each of 2 calls to jacobi

● but still very expensive

Table 2: Time and Bytes Transferred for Accelerator Regions

 Host | Host | Acc | Acc Copy | Acc Copy | Events |Calltree
 Time% | Time | Time | In | Out | |
 | | | (MBytes) | (MBytes) | |

 100.0% | 0.497 | 0.475 | 424.177 | 32.630 | 624 |Total
|--
| 100.0% | 0.497 | 0.475 | 424.177 | 32.630 | 624 |main_
| | | | | | | jacobi_
3 | | | | | | jacobi_.ACC_DATA_REGION@li.276
||||---
4||| 50.5% | 0.251 | 0.236 | 0.001 | 0.001 | 412 |jacobi_.ACC_REGION@li.288
|||||--
5|||| 46.7% | 0.232 | 0.227 | -- | -- | 103 |jacobi_.ACC_KERNEL@li.288
5|||| 1.9% | 0.010 | 0.005 | -- | 0.001 | 103 |jacobi_.ACC_COPY@li.315
5|||| 1.8% | 0.009 | 0.004 | 0.001 | -- | 103 |jacobi_.ACC_COPY@li.288
|||||==
4||| 40.0% | 0.199 | 0.197 | 424.176 | -- | 2 |jacobi_.ACC_COPY@li.276
4||| 7.6% | 0.038 | 0.033 | -- | -- | 206 |jacobi_.ACC_REGION@li.317
5||| 7.5% | 0.037 | 0.033 | -- | -- | 103 | jacobi_.ACC_KERNEL@li.317
4||| 1.9% | 0.009 | 0.009 | -- | 32.629 | 2 |jacobi_.ACC_COPY@li.335
|==

Step 4: Further optimising data movements

6.May.13 Cray OpenACC tutorial, CUG
67

● Still including single copy of data arrays in timing of
jacobi routine

● Solution: move up the call tree to parent routine
● Add data region that spans both initialisation and iteration routines

● Specified arrays then only move on boundaries of outer data region
● moves the data copies outside of the timed region

● after all, benchmark aims to measure flops, not PCIe bandwidth

Adding a data region

Cray OpenACC tutorial, CUG
68

● Data region spans both
calls to jacobi
● plus timing calls

● Arrays just need to be
copyin now
● and transfers not timed

● Data region remains in
jacobi
● you can nest data regions
● arrays now declared

present
● could be copy_or_present
● advice: present generates

runtime error if not present

● Drawback: arrays have to

be in scope for this to work
● may need to unpick clever

use of module data

SUBROUTINE jacobi(nn,gosa)

!$acc data present(p,a,b,c,wrk1,bnd,wrk2)

 iteration: DO loop = 1, nn

 ENDDO iteration

!$acc end data

END SUBROUTINE jacobi

6.May.13

PROGRAM himeno

 CALL initmt

!$acc data copyin(p,a,b,c,bnd,wrk1,wrk2)

 cpu0 = gettime()

 CALL jacobi(3,gosa)

 cpu1 = gettime()

 cpu0 = gettime()

 CALL jacobi(nn,gosa)

 cpu1 = gettime()

!$acc end data

 END PROGRAM himeno

Step 4: Going further

6.May.13 Cray OpenACC tutorial, CUG
69

● Best solution is to port entire application to GPU
● data regions span entire use of arrays

● all enclosed loopnests accelerated with OpenACC

● no significant data transfers

● Expand outer data region to include call to initialisation
routine
● arrays can now all be declared as scratch space with "create"

● need to accelerated loopnests in initmt(), declaring arrays present

● N.B. Currently no way to ONLY allocated arrays in GPU
memory
● CPU version is now dead space, but

● GPU memory is usually the limiting factor, so usually not a problem.

Porting entire application

Cray OpenACC tutorial, CUG
70

● No significant data
transfers now
● doesn't improve

measured compute
performance in this case

SUBROUTINE initmt

!$acc data present(p,a,b,c,wrk1,bnd)

!$acc parallel loop

 <set all elements to zero>

!$acc parallel loop

 <set some elements to be non-zero>

!$acc end data

END SUBROUTINE initmt

6.May.13

PROGRAM himeno

!$acc data create(p,a,b,c,bnd,wrk1,wrk2)

 CALL initmt

 cpu0 = gettime()

 CALL jacobi(3,gosa)

 CALL jacobi(nn,gosa)

 cpu1 = gettime()

!$acc end data

 END PROGRAM himeno

How does this third version perform?

6.May.13 Cray OpenACC tutorial, CUG
71

● Code is now a lot faster (44x faster than v01)
● 98% of the GPU time is now compute

● Remaining data transfers are negligible and outside region timed

● And the code is still correct:
● Check the Gosa values!

● We're getting a great speedup: 18x compared to v00
● But this is compared to one CPU core out of 16
● What happens if we use all the cores

● using OpenMP, as this is originally a scalar code

language Fortran C

precision single double single double

v00 2881 1454 2287 1131

v01 1177 565 1178 594

v02 37525 20300 37143 20287

v03 51921 28863 51078 28891

Profile of fully ported application

6.May.13 Cray OpenACC tutorial, CUG
72

● Almost no data transferred
● remainder (gosa and a few compiler internals) hard to remove

● At this point we can start looking at kernel optimisation

Table 2: Time and Bytes Transferred for Accelerator Regions

 Host | Host | Acc | Acc Copy | Acc Copy | Events |Calltree
 Time% | Time | Time | In | Out | |
 | | | (MBytes) | (MBytes) | |

 100.0% | 0.296 | 0.275 | 0.001 | 0.001 | 634 |Total
|--
| 100.0% | 0.296 | 0.275 | 0.001 | 0.001 | 634 |main_
| | | | | | | main_.ACC_DATA_REGION@li.116
|||--
3|| 97.6% | 0.289 | 0.269 | 0.001 | 0.001 | 624 |jacobi_
4|| | | | | | | jacobi_.ACC_DATA_REGION@li.277
|||||--
5|||| 84.8% | 0.251 | 0.236 | 0.001 | 0.001 | 412 |jacobi_.ACC_REGION@li.288
||||||---
6||||| 78.4% | 0.232 | 0.227 | -- | -- | 103 |jacobi_.ACC_KERNEL@li.288
6||||| 3.3% | 0.010 | 0.005 | -- | 0.001 | 103 |jacobi_.ACC_COPY@li.315
6||||| 3.1% | 0.009 | 0.004 | 0.001 | -- | 103 |jacobi_.ACC_COPY@li.288
||||||===
5|||| 12.7% | 0.038 | 0.033 | -- | -- | 206 |jacobi_.ACC_REGION@li.317
6|||| 12.7% | 0.038 | 0.033 | -- | -- | 103 | jacobi_.ACC_KERNEL@li.317
|||||==
3|| 1.8% | 0.005 | 0.005 | -- | -- | 7 |initmt_
4|| | | | | | | initmt_.ACC_DATA_REGION@li.208
|==

Step 5: Is this a good loop schedule?

Cray OpenACC tutorial, CUG
73

● Look at .lst file

● Should see partitioning
 between and across
 threadblocks

● if not, much of GPU is
 is being wasted

● Usually want inner loop to be vectorised

● allows coalesced loading of data from global memory
● if inner loop is not partitioned over threads in a threadblock...

● is the loop vectorisable (are there dependencies between loop iterations)?
● No? You need to rewrite the code (it will probably go faster on the CPU)

● Can you use a more-explicitly parallel algorithm?
● Avoid incremented counters (e.g. when packing buffers)
● Change data layout so inner loop addresses fastest-moving array index

● Yes? You need to tell the compiler what to do:
● Put "acc loop vector" directive above the "DO i = ..." statement

● This is the most important optimisation

● almost guaranteed to give big performance increase
● other optimisations are trial-and-error and may give no benefits

172. 1 g------< DO k = 2,kmax-1

173. 1 g 3----< DO j = 2,jmax-1

174. 1 g 3 g--< DO i = 2,imax-1

175. 1 g 3 g s0 = a(i,j,k,1)*p(i+1,j,k) ...

188. 1 g 3 g--> ENDDO

189. 1 g 3----> ENDDO

190. 1 g------> ENDDO

6.May.13

Advanced performance tuning

Cray OpenACC tutorial, CUG
74

● Loop schedule balances
 lots of parallel threads vs.
 enough work per thread

● If kmax is small, perhaps need more threads
● Try collapsing k and j loops to get more loop iterations

● Put "acc loop collapse(2)" directive above k-loop

● Collapse can be expensive if compiler has to regenerate k and j
● integer divides are costly

● Could instead collapse i and j loops, or all three loops

● Nvidia Fermi and Kepler GPUs have caching

● Loop blocking can improve cache usage (as for the CPU)
● Block the loops manually (and use gang, vector clauses to tweak schedule)
● Can use CCE-specific directives to do this as well

● We'll discuss performance optimisation in more detail in a following

lecture

172. 1 g------< DO k = 2,kmax-1

173. 1 g 3----< DO j = 2,jmax-1

174. 1 g 3 g--< DO i = 2,imax-1

175. 1 g 3 g s0 = a(i,j,k,1)*p(i+1,j,k) ...

188. 1 g 3 g--> ENDDO

189. 1 g 3----> ENDDO

190. 1 g------> ENDDO

6.May.13

In summary

6.May.13 Cray OpenACC tutorial, CUG
75

● We ported the entire Himeno code to the GPU
● chiefly to avoid data transfers

● 4 OpenACC kernels (only 1 significant for compute performance)
● 1 outer data region
● 2 inner data regions (nested within this)

● 7 directive pairs for 200 lines of Fortran
● Profiling frequently showed the bottlenecks
● Correctness was also frequently checked

● Data transfers were optimised at the first step

● We checked the kernels were scheduling sensibly

● Further performance tuning
● data region gave a 44x speedup; kernel tuning is secondary
● Low-level languages like CUDA offer more direct control of the hardware

● OpenACC is much easier to use, and should get close to CUDA performance
● Remember Amdahl's Law:

● speed up the compute of a parallel application, soon become network bound
● Don't waste time trying to get an extra 10% in the compute
● You are better concentrating your efforts on tuning the MPI/CAF comms

● Bottom line:
● 5-6x speedup from 7 directive pairs in 200 lines of Fortran
● compared to the complete CPU

Advanced OpenACC:
topics and performance tuning

James Beyer

6.May.13 Cray OpenACC tutorial, CUG
76

Timetable

6.May.2013 Cray OpenACC tutorial, CUG
77

Monday 6th May 2013

● 8:30 Lecture 1: Introduction to the Cray XK7 (15)

● 8:45 Lecture 2: OpenACC organization (Duncan Poole) (15)

● 9:00 Lecture 3: The OpenACC programming model (30)

● 9:30 Lecture 4: Porting a simple example to OpenACC (30)

● 10:00 break (30)

● 10:30 Lecture 5: Advanced OpenACC (40)

● 11:10 Lecture 6: Using CCE with OpenACC (25)

● 11:35 Lecture 7: OpenACC 2.0 and OpenMP 4.0 (25)

● 12:00 close

Contents

6.May.13
78

● Some more advanced OpenACC topics
● the async and cache clauses

● Then we talk about a few tuning tips for OpenACC
● The Golden Rules of Tuning

● information sources

● Tuning data locality

● Tuning kernels
● correcting obvious scheduling errors

● advanced schedule tuning (collapse, worker, vector_length clauses)
● use scalar Himeno code as an example

● Extreme tuning
● source code changes

● reordering data structures

● using CUDA

Cray OpenACC tutorial, CUG

OpenACC async clause

79

● async[(handle)] clause for parallel, update directives
● Launch accelerator region/data transfer asynchronously

● Operations with same handle guaranteed to execute sequentially
● as for CUDA streams

● Operations with different handles can overlap
● if the hardware permits it and runtime chooses to schedule it:

● can potentially overlap:
● PCIe transfers in both directions

● Plus multiple kernels

● can overlap up to 16 parallel streams with Fermi

● streams identified by handle (integer-valued)
● tasks with same handle execute sequentially

● can wait on one, more or all tasks

● !$acc wait: waits for completion of all streams of tasks
● !$acc wait(handle) waits for a specified stream to complete

● Runtime API library functions
● can also be used to wait or test for completion

6.May.13 Cray OpenACC tutorial, CUG

OpenACC async clause

80

● First attempt
● a simple pipeline:

● processes array, slice by slice
● copy data to GPU,

● process on GPU,

● bring back to CPU

● can overlap 3 streams at once
● use slice number as stream handle

● don't worry if number gets too large

● OpenACC runtime maps it back into allowable range (using MOD function)

6.May.13 Cray OpenACC tutorial, CUG

REAL(kind=dp) ::
a(Nvec,Nchunks),b(Nvec,Nchunks)

!$acc data create(a,b)
DO j = 1,Nchunks
!$acc update device(a(:,j)) async(j)

!$acc parallel loop async(j)
 DO i = 1,Nvec
 b(i,j) = <function of a(i,j)>
 ENDDO

!$acc update host(b(:,j)) async(j)

ENDDO
!$acc wait
!$acc end data

OpenACC async results

81

● Execution times (on Cray XK6):
● CPU: 3.76s
● OpenACC, blocking: 1.10s
● OpenACC, async: 0.34s

● NVIDIA Visual profiler:

● time flows left to right
● streams stacked vertically

● only 7 of 16 streams fit in window
● red: data transfer to GPU
● pink: computational on GPU
● blue: data transfer from GPU

● vertical slice shows what is overlapping
● collapsed view at bottom

● async handle modded by number of streams
● so see multiple coloured bars per stream (looking horizontally)

● Alternative to pipelining is task-based overlap

● Harder to arrange; needs knowledge of data flow in specific application
● May (probably will) require application restructuring (maybe helps CPU)
● Some results later in Himeno Case Study

6.May.13 Cray OpenACC tutorial, CUG

Using the cache clause

6.May.13 Cray OpenACC tutorial, CUG
82

● Performance-tuning clause
● Don't worry about this when first accelerating a code

● Apply it later to the slowest kernels of working OpenACC port

● Suggests that compiler could place data into software-
managed cache
● e.g. threadblock-specific "shared" memory on Nvidia GPU

● No guarantee it makes the code faster
● could conflict with automatic caching done by hardware and/or runtime

● Clause inserted inside kernel
● i.e. inside all the accelerated loops

● Written from perspective of a single thread
● Compiler pools statements together for threadblock

● Limited resource: use sparingly and only specify what's needed

● Any non-loop variables should be compile-time parameters (CCE)

cache clause examples

6.May.13 Cray OpenACC tutorial, CUG
83

● Example 1:
● loop-based stencil

● inner loop sequential

● RADIUS should be known at
compile time (parameter or cpp)

!$acc parallel loop copyin(c)
 DO i = 1,N
 result = 0
!$acc cache(in(i-RADIUS,i+RADIUS),c)
!$acc loop seq
 DO j = -RADIUS,RADIUS
 result = result + c(j)*in(i+j)
 ENDDO
 out(i) = result
 ENDDO

cache clause examples

6.May.13 Cray OpenACC tutorial, CUG
84

● Example 2
● from "man openacc.examples"

● multidimensional loopnest
● stencil only in i,j directions

● same principle, but...
● you need to tile the loopnest

● two options currently:
● do it explicitly

● DO jb = 1,N,JBS

● DO j = jb,MIN(jb+JBS-1,N)

● and similarly for i

● use CCE directives, as right

● OpenACC v2.0 will ease this:
● tile clause for loop directive

● more on this later in course

!$acc loop gang
DO k = 1,N
!dir$ blockable(i, j)
!$acc loop worker
!dir$ blockingsize (16)
 DO j = 1,N
!$acc loop vector
!dir$ blockingsize (64)
 DO i = 1,N
!$acc cache(A(i,j,k), &
!$acc B(i-1:i+1,j-1:j+1,k))

 A(i,j,k) = B(i, j, k) - &
 (B(i-1,j-1,k) &
 + B(i-1,j+1,k) &
 + B(i+1,j-1,k) &
 + B(i+1,j+1,k)) / 5
 ENDDO
 ENDDO
ENDDO
!$acc end parallel

Tuning code performance

6.May.13
85

● Remember the Golden Rules of performance tuning:
● always profile the code yourself

● always verify claims like "this is always the slow routine";

● codes/computers change

● optimise the real problem running on the production system
● a small testcase running on a laptop will have a very different profile

● optimise the right parts of the code
● the bits that take the most time

● even if these are not the exciting bits of the code

● e.g. it might not be GPU compute; it might be comms (MPI), I/O...

● keep on profiling
● the balance of CPU/GPU/comms/IO will change as you go

● refocus your efforts appropriately

● Keep on checking for correctness

● Know when to stop (and when to start again)

Cray OpenACC tutorial, CUG

Tuning OpenACC performance

6.May.13
86

● Tuning needs input:
● There are three main sources of information; make sure you use them:

● Compiler feedback (static analysis)
● loopmark files (-hlist=a) for CCE; -Minfo=accel for PGI

● Runtime commentary (CCE only: CRAY_ACC_DEBUG=1 or 2 or 3)

● Code profiling
● CrayPAT

● Nvidia compute profiler

● pgprof for PGI

Cray OpenACC tutorial, CUG

Tuning OpenACC codes

6.May.13
87

● The main optimisation is minimising data movements

● How can I tell if data locality is important?
● CrayPAT will show the proportion of time spent in data transfers

● May need to compile CCE with -hacc_model=auto_async_none to see this

● Loopmark comments will tell you which arrays might be transferred
● Compile CCE with -hlist=a and look at .lst files

● Runtime commentary will tell you which arrays actually moved
● and how often and when in the code

● Compile as usual, export/setenv CRAY_ACC_DEBUG=2 at runtime
● use the runtime API to control the amount of information produced

Cray OpenACC tutorial, CUG

Tuning OpenACC data locality

6.May.13
88

● What can I do?
● Use data regions to keep data resident on the accelerator

● Understanding how data flows in application call tree is crucial, but tricky

● Only transfer the data you need

● if only need to transfer some of an array (e.g. halo data, debugging values),
● rather than use copy* clause, use create and explicit update directives
● packing/sending a buffer may be faster than sending strided array section

● Overlap data transfers with other, independent activities

● use async clause on update directive; then wait for completion later
● typical situations:

● pipelining; send one chunk while another processes on the GPU
● task-based overlap; can be hard to arrange

● typical use case: pack halo buffer and transfer to CPU while GPU updates bulk

● Beware of GPU memory allocation overheads
● if a routine using big temporary arrays is called many times, even create

clause can have a big overhead
● maybe keep array(s) allocated between calls (add to higher data region)

● add it to a higher data region as create and use present clause in subprogram

● (not good for a memory-bound code, of course)

Cray OpenACC tutorial, CUG

Kernel optimisation

6.May.13
89

● Next optimisation: make sure all the kernels vectorise
● How can I tell if this is a problem?

● if a kernel is surprisingly slow on accelerator
● in a wildly different place in the the profile compared to running on CPU

● examine the loopmark compiler commentary files

● loop iterations should be divided over both the threads in a
threadblock (vector) and over the threadblocks (gang)
● CCE: you should see either:

● If a single loop is divided over both levels of parallelism, look for: Gg

● If two different loops divided, look for G and 2 g-s (maybe with numbers between)

● generally want to vectorise the innermost loop
● usually fastest-moving array index, for coalescing

● if not, can the inner loop be vectorised?
● i.e. can loop iterations be computed in any order?

● if not, rewrite code
● avoid loop-carried dependencies

● e.g. buffer packing: calculate rather than increment

● these rewrites will probably perform better on CPU also

Replace:
 i = 0
 DO y = 2,N-1
 i = i+1
 buffer(i) = a(2,y)
 ENDDO
 buffsize = i
By:
 DO y = 2,N-1
 buffer(y-1) = a(2,y)
 ENDDO
 buffsize = N-2

Cray OpenACC tutorial, CUG

Forcing compiler to vectorise

6.May.13
90

● If the loop is vectorisable, guide the compiler
● a gentle hint:

● put "acc loop independent" directive above this loop
● could also use CCE directive "!dir$ concurrent"

● see "man intro_directives" for details

● a direct order:
● put "acc loop vector" directive above this loop

● check the code is still correct and running faster, though:
● the compiler might not be vectorising for a good reason

● If the inner loop is vectorising but performance is still bad
● is the inner loop really the one to vectorise in this case?

● in this example, we should vectorise the i-loop
● because we happen to know mmax is small here

● put "acc loop seq" directive above m-loop
● then executed redundantly by every thread
● also t is now an i-loop private scalar

● rather than a reduction variable (which is slower)

● probably also want to reorder array c for speed
● c(i,m) gives much coalesced memory accesses
● want vector index to be fastest-moving index

!$acc parallel loop
DO i = 1,N
 t = 0
!$acc loop seq
 DO m = 1,mmax
 t = t + c(m,i)
 ENDDO
 a(i) = t
ENDDO
!$acc end parallel loop

Cray OpenACC tutorial, CUG

It's all vectorizing, but still performing badly

6.May.13
91

● Profile the code and start "whacking moles"
● optimise the thing that is taking the time

● if it really is a GPU compute kernels...

● GPUs need lots of parallel tasks to work well

● First look at loop scheduling using OpenACC clauses

● Then might need to consider more extreme measures
● source code changes

● handcoding CUDA kernels

Cray OpenACC tutorial, CUG

Advanced loop scheduling

6.May.13 Cray OpenACC tutorial, CUG
92

● OpenACC loop schedules are limited by the loop bounds
● at least with the current implementation in CCE

● one loop's iterations are divided over gangs

● another loop's iterations are divided over threads in a threadblock

● So...
● "tall, skinny" loopnests (j=1:big; i=1:small) won't schedule well

● if less than 32 iterations won't even fill a warp, so wasted SIMT

● "short, fat" loopnests (j=1:small; i=1:big) also not good
● want lots of threadblocks to swap amongst SMs

● What can we do?
● collapse clause is way of increasing flexibility

● the compiler may use this automatically (look for C in loopmark)

● no guarantee that it is faster
● e.g. index rediscovery requires expensive integer divisions

● need perfectly nested loops for this to work

● worker clause can also do this

Using the collapse clause

6.May.13
93

● Consider a three-level loopnest (i inside j inside k)
● needs to be perfectly nested to use collapse

● Collapse all three loops and schedule across GPU
● "acc parallel loop collapse(3) gang worker vector" above k-loop

● probably don't need "gang worker vector" here

● Schedule inner two loops over threads in threadblock
● "acc parallel loop gang" above k-loop

● "acc loop collapse(2) vector" above j-loop
● don't need "gang"; enough warps are used to cover all the iterations

● Schedule outer two loops over the threadblocks
● "acc parallel loop collapse(2) gang" above k-loop

● "acc loop vector" above i-loop

● Schedule outer two loops together over entire GPU
● "acc loop collapse(2) gang worker vector" above k-loop

● "acc loop seq" above i-loop

● Schedule k-loop and i-loop together over entire GPU
● collapsed loops must be perfectly nested; you'll need to reorder the code

Cray OpenACC tutorial, CUG

workers or vectors?

6.May.13 Cray OpenACC tutorial, CUG
94

● kernel threadblocks are scheduled on SMs
● executed as "warps" i.e. vector instructions of length 32
● threads-per-threadblock>32 automatically decomposed into warps

● OpenACC makes distinction explicit
● worker refers to whole warps (i.e. sets of vector instructions)

● can be generated explicitly by the user using "!$acc loop worker"

● vector refers to threads within a warp
● can be generated automatically by the compiler/runtime

● vector_length > 32 automatically decomposes into (vector_length/32) workers

● CCE: only allows one of the above

● If you don't specify "!$acc loop worker"
● vector_length (default 128) automatically partitioned into workers
● num_workers works the same

● If you specify "!$acc loop worker"
● default, or vector_length explicitly set

● num_workers implicitly set to (vector_length/32)
● vector_length implicitly set to 32 (see loopmark for information)

● num_workers explicitly set
● vector_length set to 32

● num_workers and vector_length>32 explicitly set
● Compiler warning that vector_length value is being overridden and set to 32

Scheduling with and without the worker clause

6.May.13 Cray OpenACC tutorial, CUG
95

● The default scheduling
● k-loop iterations divided over threadblocks
● i-loop iterations divided within a threadblock

● round-robin distribution
● first thread does i=1, V+1, 2*V+1, ...
● V is vector_length value (default 128 with CCE)

● threads automatically grouped into warps
● first warp does i=1:32, V+1:V+32, ...

● each thread does all the j-loop iterations

● With explicit loop worker directive

● k-loop divided as before
● i-loop iterations are divided within a warp

● first thread does i=1, 33, 65, ...
● each warp does all values: i=1:32, 33:64, ...

● j-loop iterations divided over warps
● number of warps, W (see previous):

● either: num_workers value
● or: vector_length value divided by 32

● round-robin distribution
● first warp does j=1, W+1, 2*W+1, ...

!$acc parallel
!$acc loop gang
DO k = 1,N
!$acc loop seq
 DO j = 1,N
!$acc loop vector
 DO i = 1,N

!$acc parallel
!$acc loop gang
DO k = 1,N
!$acc loop worker
 DO j = 1,N
!$acc loop vector
 DO i = 1,N

workers or vectors (contd)?

6.May.13 Cray OpenACC tutorial, CUG
96

● So when might we use "!$acc loop worker"?

● Perfectly nested loops with one or more low tripcounts
● probably better to use the collapse clause

● e.g. "!$acc loop collapse(2) vector"

● we'll see this for scalar Himeno shortly

● Imperfectly nested loops with one or more low tripcounts
● may benefit to put "!$acc loop worker" on the middle loop

● collapse won't work here

Extreme tuning

6.May.13 Cray OpenACC tutorial, CUG
97

● You've tried tuning with OpenACC clauses
● but you think kernel performance can still be improved
● (and this kernel is the performance-limiter in your application)

● Now (and only now) you may need... extreme tuning

● Some examples:
● main source code changes

● What changes will work?
● There is no definitive guide

● Following slides give two cases

● mixed languages

● You could handtune the slow kernel in CUDA
● OpenACC allows interoperability with CUDA (i.e. sharing data)

● Following slides give a very simple example

Avoiding temporary arrays

6.May.13
98

● Perfect loop nests often perform better than imperfect
● Imperfect loopnests often use temporary arrays

● e.g. in a stencil like MultiGrid, to avoid additional duplicated computation

● With OpenACC, these arrays are privatised; too big for shared memory
● Imperfect loop nest also means scheduling decisions are restricted

● Try two approaches; which (if any) faster depends on code
● Remove temporary arrays by manually inlining (eliminate array b)

● one perfect loop nest; cache clause can use shared mem/regs where needed

● Manually privatise arrays and fission the loopnest (b(i)→b(i,j))

DO j = 1,N
 DO i = 0,M+1
 b(i) = a(i,j+1) + a(i,j-1)
 ENDDO
 DO i = 1,M
 c(i,j) = b(i+1) + b(i-1)
 ENDDO
ENDDO

DO j = 1,N
 DO i = 1,M
 c(i,j) = a(i+1,j+1) + a(i+1,j-1) &
 + a(i-1,j+1) + a(i-1,j-1)
 ENDDO
ENDDO DO j = 1,N

 DO i = 0,M+1
 b(i,j) = a(i,j+1) + a(i,j-1)
 ENDDO
ENDDO
DO j = 1,N
 DO i = 1,M
 c(i,j) = b(i+1,j) + b(i-1,j)
 ENDDO
ENDDO Cray OpenACC tutorial, CUG

More drastic performance optimisations

6.May.13
99

● Would reordering your data structures help?

● For instance:
● Nmax particles each have Smax internal properties

● code separately combines the internal properties together for each particle

● CPU code usually stores data as f(Smax,Nmax) or f[Nmax][Smax]
● good cache reuse when we access all the properties of a particle

● GPU code would normally parallelise over the particles
● each thread processes the internal properties of a single particle

● first warp would attempt vector load of sth prop. of first 32 particles: f(s,1:32)

● no coalescing (vector load needs contiguous block of memory)

● very poor performance (even if Smax is small)

● Better to reorder data so site index fastest: fgpu(Nmax,Smax)
● vector load of fgpu(1:32,s) now stride-1 in memory

● if code memory-bandwidth-bound, you will see a big speed-up

● Quite an effort to reorder data structures in the code
● but... may also see benefits on CPU

● especially with AVX (and longer vectors in future CPU processors)

Cray OpenACC tutorial, CUG

host_data directive

6.May.13 Cray OpenACC tutorial, CUG
100

● OpenACC runtime manages GPU memory implicitly
● user does not need to worry about memory allocation/free-ing

● Sometimes it can be useful to know where data is held in
device memory, e.g.:
● so a hand-optimised CUDA kernel can be used to process data

already held on the device

● so a third-party GPU library can be used to process data already held
on the device (Cray libsci_acc, cuBLAS, cuFFT etc.)

● so optimised communication libraries can be used to streamline data
transfer from one GPU to another

● host_data directive provides mechanism for this
● nested inside OpenACC data region

● subprogram calls within host_data region then pass pointer in device
memory rather than in host memory

100

Interoperability with CUDA

● host_data region exposes accelerator memory address on host
● nested inside data region

● Call CUDA-C wrapper (compiled with nvcc; linked with CCE)
● must include cudaThreadSynchronize()

● Before: so asynchronous accelerator kernels definitely finished

● After: so CUDA kernel definitely finished before we return to the OpenACC

● CUDA kernel written as usual

● Or use same mechanism to call existing CUDA library

__global__ void dbl_knl(int *c) {
 int i = \
 blockIdx.x*blockDim.x+threadIdx.x;
 if (i < N) c[i] *= 2;
}

extern "C" void dbl_cuda_(int *b_d) {
 cudaThreadSynchronize();
 dbl_knl<<<NBLOCKS,BSIZE>>>(b_d);
 cudaThreadSynchronize();
}

PROGRAM main
 INTEGER :: a(N)
 <stuff>
!$acc data copy(a)
! <Populate a(:) on device
! as before>
!$acc host_data use_device(a)
 CALL dbl_cuda(a)
!$acc end host_data
!$acc end data
 <stuff>
END PROGRAM main

6.May.13
101

Cray OpenACC tutorial, CUG
101

Using CCE with OpenACC

6.May.13 Cray OpenACC tutorial, CUG

10
2

102

Timetable

6.May.2013 Cray OpenACC tutorial, CUG
103

Monday 6th May 2013

● 8:30 Lecture 1: Introduction to the Cray XK7 (15)

● 8:45 Lecture 2: OpenACC organization (Duncan Poole) (15)

● 9:00 Lecture 3: The OpenACC programming model (30)

● 9:30 Lecture 4: Porting a simple example to OpenACC (30)

● 10:00 break (30)

● 10:30 Lecture 5: Advanced OpenACC (40)

● 11:10 Lecture 6: Using CCE with OpenACC (25)

● 11:35 Lecture 7: OpenACC 2.0 and OpenMP 4.0 (25)

● 12:00 close

103

Contents

6.May.13 Cray OpenACC tutorial, CUG
104

● Cray Compilation Environment (CCE)
● What does CCE do with X?

● -hacc_model=

● Extensions
● Structure shaping

● Deep copy

● Selective deep copy

104

OpenACC in CCE

105

● man intro_openacc

● Which module to use
● craype-accel-nvidia20

● craype-accel-nvidia35

● Forces dynamic linking

● Single object file

● Whole program

● Messages/list file

● Compiles to PTX not cuda

● Debugger sees original program not cuda intermediate

6.May.13 Cray OpenACC tutorial, CUG
105

What does CCE do with OpenACC constructs (1)

● Parallel/kernels
● Flatten all calls

● Package code for kernel

● Insert data motion to and from
device
● Clauses

● Autodetect

● Insert kernel launch code

● Automatic vectorization is
enabled

● Kernels
● Identify kernels

● Loop
● Gang

● Thread Block (TB)

● Worker
● warp

● Vector
● Threads within a warp or TB

● Automatic vectorization is
enabled

● Collapse
● Will only rediscover indices

when required

● Independent
● Turns off safety/correctness

checking for work-sharing of
loop

● Reduction
● Nontrivial to implement
● Does not use multiple kernels
● All loop directives within a loop

nest must list to reduction if
applicable

April 30, 2013 Cray Inc. Proprietary © 2013 - Luiz DeRose

10
6

106

What does CCE do with OpenACC constructs (2)

● Data
● clause(object list)

● create
● allocate at start

● register in “present-table”

● de-allocate at exit

● copy, copyin, copyout
● “create” plus data copy

● present
● Abort at runtime if object is not

in “present table”.

● present_or_copy,
present_or_copyin,
present_or_copyout,
present_or_create

● deviceptr
● Send address directly to kernel

without translation.

● Update
● Implicit !$acc data present(obj)

● For known contiguous memory
● Transfer (Essentially a CUDA

memcpy)

● Not contiguous memory
● Pack into contiguous buffer

● Transfer contiguous

● Unpack from contiguous buffer

April 30, 2013 Cray Inc. Proprietary © 2013 - Luiz DeRose

10
7

107

What does CCE do with OpenACC constructs (3)

● Cache
● Create shared memory “copies” of objects

● Generate copy into shared memory objects

● Generate copy out of shared memory objects

● Release the shared memory

10
8 April 30, 2013 Cray Inc. Proprietary © 2013 - Luiz DeRose

108 108

Extended OpenACC 1.0 runtime routines

/* takes a host pointer */

void* cray_acc_create(void* , size_t);

void cray_acc_delete(void*);

void* cray_acc_copyin(void*, size_t);

void cray_acc_copyout(void*, size_t);

void cray_acc_updatein(void*, size_t);

void cray_acc_updateout(void*, size_t);

int cray_acc_is_present(void*);

int cray_acc_is_present_2(void*, size_t);

void *cray_acc_deviceptr(void*);

/* takes a device and host pointer */

void cray_acc_memcpy_device_host(void*, void*, size_t);

/* takes a host and device pointer */

void cray_acc_memcpy_host_device(void*, void*, size_t);

Version 1. 0
Version 2. 0

/* Takes a pointer to an implementation defined type */

bool cray_acc_get_async_info(void *, int)

/* takes a device and host pointer */

void cray_acc_memcpy_device_host(void*, void*, size_t);

/* takes a host and device pointer */

void cray_acc_memcpy_host_device(void*, void*, size_t);

6.May.13 Cray OpenACC tutorial, CUG
109

Partitioning clause mappings

110

1. !$acc loop gang : across thread blocks

2. !$acc loop worker : across warps within a thread block

3. !$acc loop vector : across threads within a warp

1. !$acc loop gang : across thread blocks

2. !$acc loop worker vector : across threads within a thread block

1. !$acc loop gang : across thread blocks

2. !$acc loop vector : across threads within a thread block

1. !$acc loop gang worker: across thread blocks and the warps within a thread block

2. !$acc loop vector : across threads within a warp

1. !$acc loop gang vector : across thread blocks and threads within a thread block

1. !$acc loop gang worker vector : across thread blocks and threads within a thread
block

6.May.13 Cray OpenACC tutorial, CUG
110

Partitioning clause mappings (cont)

111

You can also force things to be within a single thread
block:

1. !$acc loop worker : across warps within a single thread block

2. !$acc loop vector : across threads within a warp

1. !$acc worker vector : across threads within a single thread block

1. !$acc vector : across threads within a single thread block

6.May.13 Cray OpenACC tutorial, CUG
111

-hacc_model options

● auto_async_(none | kernel | all)
● Compiler automatically adds some asynchronous behavior

● Only overlaps host and accelerator

● No automatic overlap of different accelerator constructs (single
stream)

● May require some explicit user waits
● Host_data

● [no_]fast_addr
● Uses 32 bit variables/calculations for index expressions

● Faster address computation

● Fewer registers

● [no_]deep_copy
● Enable automatic deep copy support

112

Extensions

● Deep copy

● Structure shaping

● Selective deep copy

6.May.13 Cray OpenACC tutorial, CUG
113 113

Flat object model

11
4

● OpenACC supports a “flat” object model
● Primitive types

● Composite types without allocatable/pointer members

struct {

 int x[2]; // static size 2

} *A; // dynamic size 2

#pragma acc data copy(A[0:2])

Host Memory: A[0].x[0] A[0].x[1] A[1].x[0] A[1].x[1]

dA[0].x[0] dA[0].x[1] dA[1].x[0] dA[1].x[1] Device Memory:

6.May.13 Cray OpenACC tutorial, CUG
114

Challenges with pointer indirection

11
5

● Non-contiguous transfers

● Pointer translation

struct {

 int *x; // dynamic size 2

} *A; // dynamic size 2

#pragma acc data copy(A[0:2])

Host Memory:

Device Memory:

A[0].x A[1].x x[0] x[1] x[0] x[1]

6.May.13 Cray OpenACC tutorial, CUG
115

Challenges with pointer indirection

11
6

● Non-contiguous transfers

● Pointer translation

struct {

 int *x; // dynamic size 2

} *A; // dynamic size 2

#pragma acc data copy(A[0:2])

Host Memory:

Device Memory:

Shallow Copy

dA[0].x dA[1].x

A[0].x A[1].x x[0] x[1] x[0] x[1]

6.May.13 Cray OpenACC tutorial, CUG
116

Challenges with pointer indirection

11
7

● Non-contiguous transfers

● Pointer translation

struct {

 int *x; // dynamic size 2

} *A; // dynamic size 2

#pragma acc data copy(A[0:2])

Host Memory:

Device Memory:

A[0].x A[1].x x[0] x[1] x[0] x[1]

dA[0].x dA[1].x x[0] x[1] x[0] x[1]

Deep Copy
6.May.13 Cray OpenACC tutorial, CUG

117

Possible deep-copy solutions

11
8

● Re-write application
● Use “flat” objects

● Manual deep copy
● Issue multiple transfers

● Translate pointers

● Compiler-assisted deep copy
● Automatic for fortran

● -hacc_models=deep_copy

● Dope vectors are self describing

● OpenACC extensions for C/C++
● Pointers require explicit shapes

Appropriate

for CUDA

Appropriate

for OpenACC

6.May.13 Cray OpenACC tutorial, CUG
118

Manual deep-copy

11
9

● Currently works for C/C++

● Portable in OpenACC 2.0, but not usually practical

struct A_t {

 int n;

 int *x; // dynamic size n

};

...

struct A_t *A; // dynamic size 2

/* shallow copyin A[0:2] to device_A[0:2] */

struct A_t *dA = acc_copyin(A, 2*sizeof(struct A_t));

for (int i = 0 ; i < 2 ; i++) {

 /* shallow copyin A[i].x[0:A[i].n] to "orphaned" object */

 int *dx = acc_copyin(A[i].x, A[i].n*sizeof(int));

 /* fix acc pointer device_A[i].x */

 cray_acc_memcpy_to_device(&dA[i].x, &dx, sizeof(int*););

}

6.May.13 Cray OpenACC tutorial, CUG
119

Automatic Fortran deep-copy

12
0

● No aliases on the accelerator

● Must be contiguous

● On or off – no “selective” deep copy

● Only works for Fortran

type A_t

 integer,allocatable :: x(:)

end type A_t

...

type(A_t),allocatable :: A(:)

...

! shallow copy with -hacc_model=no_deep_copy (default)

! deep copy with -hacc_model=deep_copy

!$acc data copy(A(:))

6.May.13 Cray OpenACC tutorial, CUG
120

Proposed “member shape” directives

12
1

● Each object must shape it’s own pointers
● Member pointers must be contiguous
● No polymorphic types (types must be known statically)
● Pointer association may not change on accelerator

(including allocation/deallocation)
● Member pointers may not alias (no cyclic data structures)
● Assignment operators, copy constructors, constructors or

destructors are not invoked

struct A_t {

 int n;

 int *x; // dynamic size n

#pragma acc declare shape(x[0:n])

};

...

struct A_t *A; // dynamic size 2

...

/* deep copy */

#pragma acc data copy(A[0:2])

6.May.13 Cray OpenACC tutorial, CUG
121

Member-shape directive examples

12
2

extern int size_z();

int size_y;

struct Foo

{

 double* x;

 double* y;

 double* z;

 int size_x;

 // deep copy x, y, and z

 #pragma acc declare shape(x[0:size_x], y[1:size_y-1], z[0:size_z()])

};

type Foo

 real,allocatable :: x(:)

 real,pointer :: y(:)

 !$acc declare shape(x) ! deep copy x

 !$acc declare unshape(y) ! do not deep copy y

end type Foo

6.May.13 Cray OpenACC tutorial, CUG
122

Member Shape Status

12
3

● Library
● Support for type descriptors

● Compiler
● Automatic generation of type descriptors for Fortran

● Compiler flag to enable/disable deep copy

● Released in CCE 8.1

● Significant internal testing, moderate customer testing

● Directive-based generation of type descriptors for C/C++
● Planned for release in CCE 8.2

● Limited preliminary internal testing

● Language
● Committee recognizes the utility and need

● Will revisit after OpenACC 2.0

6.May.13 Cray OpenACC tutorial, CUG
123

OpenACC 2.0 & OpenMP 4.0

James C. Beyer

6.May.13 Cray OpenACC tutorial, CUG

12
4

124

Timetable

6.May.2013 Cray OpenACC tutorial, CUG
125

Monday 6th May 2013

● 8:30 Lecture 1: Introduction to the Cray XK7 (15)

● 8:45 Lecture 2: OpenACC organization (Duncan Poole) (15)

● 9:00 Lecture 3: The OpenACC programming model (30)

● 9:30 Lecture 4: Porting a simple example to OpenACC (30)

● 10:00 break (30)

● 10:30 Lecture 5: Advanced OpenACC (40)

● 11:10 Lecture 6: Using CCE with OpenACC (25)

● 11:35 Lecture 7: OpenACC 2.0 and OpenMP 4.0 (25)

● 12:00 close

125

Contents

12
6

● OpenACC 2.0
● New directives

● Status

● OpenMP 4.0 accelerator support
● New directives

● Status

● Differences between OpenACC and OpenMP

● Usage/Porting tips

6.May.13 Cray OpenACC tutorial, CUG
126

OpenACC 2.0 key features

6.May.13 Cray OpenACC tutorial, CUG
127

● Procedure calls, separate compilation

● Nested parallelism

● Device-specific tuning, multiple devices

● Data management features and global data

● Multiple host thread support

● Loop directive additions

● Asynchronous behavior additions

● New API routines

● Default(none)

127

Procedure calls, separate compilation

● In C and C++, the syntax of the routine directive is:
● #pragma acc routine clause-list new-line
● #pragma acc routine (name) clause-list new-line

● In Fortran the syntax of the routine directive is:

● !$acc routine clause-list
● !$acc routine (name) clause-list

● The clause is one of the following:

● gang
● worker
● vector
● seq
● bind(name)
● bind(string)
● device_type(device-type-list)
● nohost

6.May.13 Cray OpenACC tutorial, CUG
128 128

Nested Parallelism

● Actually simply a deletion of two restrictions
● OpenACC parallel regions may not contain other parallel regions or

kernels regions.

● OpenACC kernels regions may not contain other parallel regions or
kernels regions.

● Other changes were mainly cosmetic

● Has significant impact on where objects can be placed in
memory.

6.May.13 Cray OpenACC tutorial, CUG
129 129

Device-specific tuning, multiple devices

● device_type(dev-type)

#pragma acc parallel loop \

 device_type(nvidia) num_gangs(200) …\

 dtype(radeon) num_gangs(400) …

 for(int i = 0; i < n; ++i){

 v[i] += rhs[i];

 matvec(v, x, a, i, n);

 }

6.May.13 Cray OpenACC tutorial, CUG
130 130

Data management features and global data

float a[1000000];

#pragma acc declare create(a)

extern float a[];

#pragma acc declare create(a)

float a[100000];

#pragma acc declare device_resident(a)

float a[100000];

#pragma acc declare link(a)

float *a;

#pragma acc declare create(a)

6.May.13 Cray OpenACC tutorial, CUG
131

Data management features
 unstructured data lifetimes

#pragma acc data copyin(a[0:n])\

 create(b[0:n])

{ … }

#pragma acc enter data copyin(a[0:n])\

 create(b[0:n])

…

#pragma acc exit data delete(a[0:n])

 …

#pragma acc exit data copyout(b[0:n])

void init() {

#pragma acc enter data copyin(a[0:n])\

 create(b[0:n])

}

void fini {

#pragma acc exit data delete(a[0:n])

#pragma acc exit data copyout(b[0:n])

}

6.May.13 Cray OpenACC tutorial, CUG
132

Multiple host thread support

● Share the device context

● Share the device data

● Can create race conditions

● present_or_copy is your friend

● This is what Cray has always done, now it is well defined.

6.May.13 Cray OpenACC tutorial, CUG
133

Loop directive additions

● loop gang may not contain loop gang

● loop worker may not contain loop gang, worker

● loop vector may not contain gang, worker, vector

● added loop auto (compiler selects)

● Tile clause
● tile(16,16) gang vector

● !$acc loop tile(64,4) gang vector
do i = 1, n

 do j = 1, m

 a(j,i) = (b(j-1,i)+b(j+1,i)+ &

 b(j,i-1)+b(j,i+1))*0.25

 enddo

enddo

6.May.13 Cray OpenACC tutorial, CUG
134

Asynchronous behavior additions

● Allow async clause on wait directive
● Join two async streams without waiting on host

● !$acc wait(1) async(2)
● All previous work on async(1) must complete before any new work added to

async(2) can execute

● Adds a join with async(1) in the async(2) queue

● Allow wait clause on any directive that supports async
● Parallel, kernels, update, …

● Allow multiple async identifiers in a wait directive/clause

6.May.13 Cray OpenACC tutorial, CUG
135

New API routines

acc_copyin(ptr, bytes)

acc_create(ptr, bytes)

acc_copyout(ptr, bytes)

acc_delete(ptr, bytes)

acc_is_present(ptr, bytes)

acc_update_device(ptr, bytes)

acc_update_local(ptr, bytes)

acc_deviceptr(ptr)

acc_hostptr(devptr)

acc_map_data(devptr, hostptr, bytes)

acc_unmap_data(hostptr)

6.May.13 Cray OpenACC tutorial, CUG
136

Default(none)

● No implicit data scoping/mapping will be performed

● It is an error if a non-predetermined variable is not in a
data clause

April 30, 2013 Cray Inc. Proprietary © 2013 - Luiz DeRose
137

OpenACC 2.0 status

● All major features accepted

● Closing in on the final feature set

● Plan release for ISC’13
● Biggest risk is the editor’s time

6.May.13 Cray OpenACC tutorial, CUG
138

● A common directive programming model for shared
memory systems

● Announced 15yrs ago

● Works with Fortran, C, C++

● Current version 3.1 (July 2011)

● Accelerator version 4.0 (?? 2013)

● Compiler support
● http://openmp.org/wp/openmp-compilers/

6.May.13 Cray OpenACC tutorial, CUG
139

http://openmp.org/wp/openmp-compilers/
http://openmp.org/wp/openmp-compilers/
http://openmp.org/wp/openmp-compilers/
http://openmp.org/wp/openmp-compilers/
http://openmp.org/wp/openmp-compilers/

OpenMP 4.0 accelerator additions

● Target data
● Place objects on the device

● Target
● Move execution to a device

● Target update
● Update objects on the device or host

● Declare target
● Place objects on the device

● Place subroutines/functions on the device

● Teams
● Start multiple contention groups

● This gains access to the ThreadBlocks

● Distribute
● Similar to the OpenACC loop construct, binds to teams construct

● Array sections

6.May.13 Cray OpenACC tutorial, CUG
140

OpenMP 4.0 status

● Accelerator support version 1 accepted

● Currently in comment period

● Language committee members doing section by section
review

● Hoping for a May release, not very likely

● There were several compromises in this version
● Bitwise copies for both language classes

● No auto-deep copy in fortran

● No constructors in C++ for data motion

● Single type of accelerator per compile

● …

6.May.13 Cray OpenACC tutorial, CUG
141

OpenACC compared to OpenMP

● Parallel (offload)

● Parallel (multiple “threads”)

● Kernels

● Data

● Loop

● Host data

● Cache

● Update

● Wait

● Declare

● Target

● Team/Parallel

●

● Target Data

● Distribute/Do/for

●

●

● Update

●

● Declare

OpenACC 1 OpenMP

6.May.13 Cray OpenACC tutorial, CUG
142

OpenACC compared to OpenMP continued

● enter data

● exit data

● data api

● routine

● async wait

● parallel in parallel

● tile

●

●

●

● declare target

●

● Parallel in parallel or
team

●

143

OpenACC 2 OpenMP

6.May.13 Cray OpenACC tutorial, CUG
143

OpenACC compared to OpenMP continued

●

●

●

●

●

●

●

●

●

● Atomic

● Critical sections

● Master

● Single

● Tasks

● barrier

● get_thread_num

● get_num_threads

● …

144

OpenACC OpenMP

6.May.13 Cray OpenACC tutorial, CUG

OpenMP async

145

● Target does NOT take an async clause!
● Does this mean no async capabilities?

● OpenMP already has async capabilities -- Tasks
● !$omp task

● #pagma omp task

● Is this the best solution?

6.May.13 Cray OpenACC tutorial, CUG

Porting code to OpenACC (kernel level)

146

● Identify parallel opportunities

● For each parallel opportunity
● Add OpenACC Parallel Loop(s)

● Verify correctness

● Avoid data clause when possible, use present_or_* when required

● Optimize “kernel” performance
● Add additional acc loop directives

● Add tuning clause/directives (collapse, cache, num_gangs,
num_workers, vector_length, …)

● Algorithmic enhancements/code rewrites

● Try fast address option

Porting code to OpenACC (application level)

147

● Add data regions/updates
● Try to put data regions as high in the call chain as profitable

● Working with one variable at a time can make things more
manageable

● To identify data correctness issues can add excessive updates and
remove them verifying correctness.

● Try auto async all
● Auto async kernel is default

● Add async clauses and waits
● If synchronization issues are suspected, try adding extra waits and

slowly remove them.

Transition from OpenACC to OpenMP

6.May.13 Cray OpenACC tutorial, CUG
148

● OpenACC 1.0 to OpenMP 4.0 is straight forward

● OpenACC 2.0 to OpenMP 4.0 has issues
● Unstructured data lifetimes

● Tile

● OpenMP 4.1 and 5.0 should close many of the gaps

● Differences are significant enough that OpenACC may
never fold back into OpenMP
● OpenACC aims for portable performance

● OpenMP aims for programmability

