
Debugging Heterogeneous HPC Applications with
Totalview
Cray Users Group 2013, Napa, CA

Chris Gottbrath, Product Manager
May 6th, 2013

©Copyright 2013 Rogue Wave Software, Inc. 2

TotalView

Source Code Debugger

John Hollis

©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc.

Agenda

•  Hour 1 – Basic Topics (1-2 pm)
•  Lecture 30 minutes

•  Lab 30 minutes

•  Hour 2 – Intermediate Topics (2-2:30, 3-3:30)
•  Lecture 30 minutes

•  Lab 30 minutes

•  Hour 3 – Advanced Topics (3:30-4:30)
•  Lecture and Demo

3 ©Copyright 2013 Rogue Wave Software, Inc. 4

Basic Topics

4

•  Introduction
•  Startup
•  UI Navigation and Process

Control
•  Action Points
•  Data Monitoring and

Visualization
•  Lab 30 minutes

©Copyright 2013 Rogue Wave Software, Inc. 5

Intermediate Topics

5

•  Intermediate Debugging for
Parallel Applications

•  Asynchronous Thread Control
•  Lab 30 minutes

©Copyright 2013 Rogue Wave Software, Inc. 6

Advanced Topics

6

•  Reverse Debugging with
ReplayEngine

•  Comparative Debugging
•  CUDA/OpenACC Debugging
•  Xeon Phi Debugging
•  Support and Documentation

©Copyright 2013 Rogue Wave Software, Inc.

INTRODUCTION

7 ©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc.

What is TotalView?

•  Wide compiler & platform
support
•  C, C++, Fortran 77 & 90, UPC
•  Unix, Linux, OS X

•  Handles Concurrency
•  Multi-threaded Debugging
•  Parallel Debugging

•  MPI, PVM, Others
•  Remote and Client/Server

Debugging
•  Integrated Memory Debugging
•  ReplayEngine reverse debugging

•  Supports a Variety of Usage
Models
•  Powerful and Easy GUI

•  Visualization
•  CLI for Scripting
•  Long Distance Remote

Debugging
•  Unattended Batch Debugging

8

A comprehensive debugging solution for demanding
parallel and multi-core applications!

©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc.

Supported Compilers and Architectures

•  Platform Support
•  Linux x86, x86-64, ia64, Power
•  Mac Intel
•  Solaris Sparc and AMD64
•  AIX
•  Cray XT, XE, XK, XC, CS-3000AC
•  IBM BG/L, BG/P, BG/Q

•  Languages / Compilers
•  C/C++, Fortran, UPC, Assembly
•  Many Commercial & Open Source Compilers

•  Parallel Environments
•  MPI

•  MPICH1& 2, Open MPI, Intel MPI, SGI MPT & Propack, SLURM,
poe, MPT, Quadrics, MVAPICH1 & 2, Bullx MPI, & many others ‏

•  UPC

9 ©Copyright 2013 Rogue Wave Software, Inc.

STARTUP

10

©Copyright 2013 Rogue Wave Software, Inc.

Starting TotalView

11

Start New Process

©Copyright 2013 Rogue Wave Software, Inc.

Starting TotalView

12

Start New Process – Select a recent process

©Copyright 2013 Rogue Wave Software, Inc.

Starting TotalView

13

Start New Process – Enable ReplayEngine

©Copyright 2013 Rogue Wave Software, Inc.

Starting TotalView

14

Start New Process – Memory Debugging

©Copyright 2013 Rogue Wave Software, Inc.

Starting TotalView

15

Start New Process – CUDA memory checking

©Copyright 2013 Rogue Wave Software, Inc.

Starting TotalView

16

Start New Process – Arguments tab

©Copyright 2013 Rogue Wave Software, Inc.

Starting TotalView

17

Start New Process – Command-line Args

©Copyright 2013 Rogue Wave Software, Inc.

Starting TotalView

18

Start New Process – set environment variables

©Copyright 2013 Rogue Wave Software, Inc.

Starting TotalView

19

Start New Process – Standard I/O redirection

©Copyright 2013 Rogue Wave Software, Inc.

Starting TotalView

20

Attach to Process

©Copyright 2013 Rogue Wave Software, Inc.

Starting TotalView

21

Attach to Process – Enable Replay Engine

©Copyright 2013 Rogue Wave Software, Inc.

Starting TotalView

22

Open a Core File

©Copyright 2013 Rogue Wave Software, Inc. 23

Starting TotalView

Normal
totalview [tv_args] prog_name [–a prog_args]

Attach to running program
totalview [tv_args] prog_name –pid PID# [–a prog_args]

Attach to remote process
totalview [tv_args] prog_name –remote name [–a prog_args]

Attach to a core file
totalview [tv_args] prog_name corefile_name [–a prog_args]

Via Command Line

©Copyright 2013 Rogue Wave Software, Inc.

UI NAVIGATION AND
PROCESS CONTROL

24

©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc. 25

•  State of all processes
being debugged

•  Process and Thread
status

•  Instant navigation access

•  Sort and aggregate by
status

Root Window

➤ Status Info
• T = stopped

• B = Breakpoint

• E = Error

• W = Watchpoint

• R = Running

• M = Mixed

• H = Held

Interface Concepts

©Copyright 2013 Rogue Wave Software, Inc.

TotalView Root Window

26

Host name

Action Point
ID number

Expand - Collapse
Toggle Process

Status

TotalView
Thread ID #

Rank #
(if MPI program)

Hierarchical/
Linear Toggle

•  Dive to refocus
•  Dive in new window to get a second process window

©Copyright 2013 Rogue Wave Software, Inc.

Process Window Overview

27

Toolbar

Stack Frame Pane

Source Pane

Tabbed Area

Stack Trace Pane

Provides detailed
state of one process,

or a single thread
within a process

A single point of
control for the

process and other
related processes

©Copyright 2013 Rogue Wave Software, Inc.

Stack Trace and Stack Frame Panes

28

Language Name Frame Pointer Local Variables Register Values

•  Click to refocus
 source pane

•  Click to modify
•  Dive for variable window

©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc.

Source Code Pane

29

View as Source - or Assembly - or Both!

©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc. 30

Tabbed Pane

Action Points Tab
all currently defined
action points

Processes Tab
all current
processes

Threads Tab:
all current threads,
ID’s, Status

©Copyright 2013 Rogue Wave Software, Inc.

Process Status

Process/Thread
status is available at
a glance, in both the
Process and Root

Windows

31 ©Copyright 2013 Rogue Wave Software, Inc.

Search Paths

32

©Copyright 2013 Rogue Wave Software, Inc.

Managing Signals
File > Signals

33

Error Stop the process and flag as error
Stop Stop the process
Resend Pass the signal to the target and do nothing: use with signal handlers
Ignore Discard the signal

©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc.

Finding Functions, Variables,
and Source Files

34

©Copyright 2013 Rogue Wave Software, Inc.

Stepping Commands

35

Based on
PC location

©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc.

Stepping Commands

36

©Copyright 2013 Rogue Wave Software, Inc.

Using Set PC to resume execution at an
arbitrary point

37

•  Select the line
•  Thread->Set PC
•  Click Yes to set

the PC

©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc.

Debug Menu

•  Menu Items for extra features
•  Replay Engine

•  MemoryScape

•  CUDA Memcheck

•  More on these features later

38

©Copyright 2013 Rogue Wave Software, Inc.

ACTION POINTS

39 ©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc. 40

Breakpoints

Barrier Points

Conditional
Breakpoints

Evaluation Points

Watchpoints

Action Points

©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc. 41

Setting Breakpoints

•  Setting action points
•  Single-click line number

•  Deleting action points
•  Single-click action point line

•  Disabling action points
•  Single-click in Action Points Tab Pane

•  Optional contextual menu access for all
functions

•  Action Points Tab
•  Lists all action points
•  Dive on an action point to focus it in

source pane
•  Action point properties

•  In Context menu
•  Saving all action points

•  Action Point > Save All

©Copyright 2013 Rogue Wave Software, Inc.

Setting Breakpoints

42

•  Breakpoint->At
Location…
•  Specify function

name or line #

•  Specify class name
and break on all
methods in class,
optionally with
virtuals and
overrides

©Copyright 2013 Rogue Wave Software, Inc.

Setting Breakpoints

43

•  Breakpoint
type

•  What to stop
•  Set conditions
•  Enable/disable
•  In 1 process or

share group

©Copyright 2013 Rogue Wave Software, Inc. 44

Conditional Breakpoint

©Copyright 2013 Rogue Wave Software, Inc.

Evaluation Breakpoint…
Test Fixes on the Fly!

45

•  Test small source code
patches

•  Call functions
•  Set variables
•  Test conditions
•  C/C++ or Fortran
•  Can�t use C++

constructors
•  Use program variables
•  ReplayEngine records

changes but won�t step
through them

©Copyright 2013 Rogue Wave Software, Inc. 46

 TotalView understands C++ templates and gives you a choice ...

Boxes with solid lines around line numbers indicate code that exists at
more than one location.

Setting Breakpoints
With C++ Templates

©Copyright 2013 Rogue Wave Software, Inc.

Watchpoints

•  Watchpoints are set
on a specific memory
region

•  Execution is stopped
when that memory
changes

47

Action Point ->
Create
Watchpoint…

©Copyright 2013 Rogue Wave Software, Inc.

Watchpoints

•  Can create from a
variable window
using Tools ->
Watchpoint

48

©Copyright 2013 Rogue Wave Software, Inc.

Watchpoints

•  Can create from
right-click on
variable in
Source pane

49 ©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc.

Watchpoints

•  Watchpoints are set on a memory region, not
a variable

•  Watch the variable scope and disable
watchpoints when a variable is out of scope

•  Can be conditional, just like other action
points
•  Use $newval and $oldval in your evaluation to find

unexpected changes in value (such as a loop value
changing by more than 1)

50

©Copyright 2013 Rogue Wave Software, Inc.

LAB 1: THE BASICS

51 ©Copyright 2013 Rogue Wave Software, Inc.

DATA MONITORING AND
VISUALIZATION

52

©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc. 53

Diving on Variables

You can use Diving to:
… get more information
… open a variable in a Variable Window.
… chase pointers in complex data structures
… refocus the Process window Source Pane

You can Dive on:
… variable names to open a variable window
… function names to open the source in the Process Window.
… processes and threads in the Root Window.

How do I dive?
• Double-click the left mouse button on selection
• Single-click the middle mouse button on selection.
• Select Dive from context menu opened with the right mouse button

©Copyright 2013 Rogue Wave Software, Inc.

Diving

54

Diving on a Common
Block in the Stack
Frame Pane!

©Copyright 2013 Rogue Wave Software, Inc.

Undiving

55

In a Process Window: retrace the path that has been explored with
multiple dives.

In a Variable Window: replace contents with the previous contents.
You can also remove changes in the variable window with Edit > Reset

Default.

©Copyright 2013 Rogue Wave Software, Inc.

The Variable Window

56

•  Click once on the value
•  Cursor switches into edit more
•  Esc key cancels editing
•  Enter key commits a change
•  Editing values changes the memory of the

program

•  Window contents are updated

automatically
•  Changed values are highlighted
•  “Last Value” column is available

Editing Variables

©Copyright 2013 Rogue Wave Software, Inc.

Expression List Window

57

•  Reorder, delete, add
•  Sort the expressions
•  Edit expressions in place
•  Dive to get more info

•  Updated automatically
•  Expression-based
•  Simple values/expressions
•  View just the values you want to monitor

Add to the expression list using contextual menu with right-click on a
variable, or by typing an expression directly in the window

©Copyright 2013 Rogue Wave Software, Inc.

Viewing Arrays

58

Data Arrays

Structure Arrays

©Copyright 2013 Rogue Wave Software, Inc.

Array Viewer

•  Variable Window select Tools ->
Array Viewer

•  View 2 dimensions of data

59 ©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc.

Slicing Arrays

Slice notation is [start:end:stride]

60

©Copyright 2013 Rogue Wave Software, Inc.

Filtering Arrays

61 ©Copyright 2013 Rogue Wave Software, Inc.

Visualizing Arrays

62

• Visualize array data using Tools > Visualize from the
Variable Window
• Large arrays can be sliced down to a reasonable size
first
• Visualize is a standalone program
• Data can be piped out to other visualization tools

• Visualize allows to spin,
zoom, etc.
• Data is not updated with
Variable Window; You
must revisualize
• $visualize() is a directive
in the expression system,
and can be used in
evaluation point
expressions.

©Copyright 2013 Rogue Wave Software, Inc.

Dive in All

63

Dive in All will display "
 an element in an array "
 of structures as if "
 it were a simple array."

©Copyright 2013 Rogue Wave Software, Inc.

Looking at Variables across Processes

64

•  TotalView allows you to
look at the value of a
variable in all MPI
processes!

•  Right Click on the
variable "

•  Select the View > View
Across"

•  TotalView creates an array
indexed by process !

•  You can filter and visualize

•  Use for viewing distributed
arrays as well.

©Copyright 2013 Rogue Wave Software, Inc.

Typecasting Variables

65

•  Edit the type of a variable
•  View data as type…
•  Often used with pointers

•  int[10]* Pointer to an array of 10 int
•  int*[10] Array of 10 pointers to int

Type Casts Read from Right to Left

•  Cast float * to float [100]* to see a dynamic array�s values
•  Cast to built-in types like $string to view a variable as a null-terminated
string
•  Cast to $void for no type interpretation or for displaying regions of
memory

The Bottom Line
Give TotalView a starting memory address and you can tell TotalView how

to interpret your memory from that starting location.

©Copyright 2013 Rogue Wave Software, Inc.

Typecasting a Dynamic Array

66

©Copyright 2013 Rogue Wave Software, Inc.

C++ Class Hierarchies

67

Note:
•  Virtual public base classes appear each time they are referenced
•  The vtable entry here is part of the C++ implementation but can provide useful

information

Variable Window shows class hierarchy using indentation

•  derived2 inherits from base1 and derived1
•  derived1 inherits from base1

Example:

©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc.

Fortran 90 Modules
Tools > Fortran Modules

68

©Copyright 2013 Rogue Wave Software, Inc.

STLView

69

STLView transforms templates into readable and
understandable information

– STLView supports std::vector, std::list, std::map, std::string

– See doc for which STL implementations are supported

©Copyright 2013 Rogue Wave Software, Inc.

STLView

70

STLView transforms
templates into
readable and

understandable
information

©Copyright 2013 Rogue Wave Software, Inc.

LAB 2: VIEWING, EXAMING,WATCHING AND
EDITING DATA

71 ©Copyright 2013 Rogue Wave Software, Inc.

DEBUGGING FOR
PARALLEL APPLICATIONS

72

©Copyright 2013 Rogue Wave Software, Inc.

TotalView Startup with MPI
TVT Launch

73

In the Parallel tab, select:

your MPI preference, number of tasks, and number of nodes.
… then add any additional starter arguments

©Copyright 2013 Rogue Wave Software, Inc.

TotalView Startup with MPI

IBM totalview poe -a myprog -procs 4 -rmpool 0

QUADRICS
Intel Linux

under SLURM

totalview srun -a -n 16 -p pdebug myprog

MVAPICH
Opteron Linux
under SLURM

totalview srun -a -n 16 -p pdebug myprog

SGI totalview mpirun -a myprog -np 16
Sun totalview mprun -a myprog -np 16

MPICH mpirun -np 16 -tv myprog
MPICH2
Intel MPI

Totalview python –a ‘which mpiexec’ –tvsu
-np 16 myprog

The order of arguments and executables is important,
and differs between platforms.

74

©Copyright 2013 Rogue Wave Software, Inc.

Architecture for Cluster Debugging

75

•  Single Front End (TotalView)‏
•  GUI
•  debug engine

•  Debugger Agents (tvdsvr)‏
•  Low overhead, 1 per node
•  Traces multiple rank processes

•  TotalView communicates
 directly with tvdsvrs
•  Not using MPI
•  Protocol optimization

Compute Nodes

Provides Robust, Scalable and efficient operation with Minimal
Program Impact

©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc.

Process Control Concepts

•  Each process window is always focused on a specific
process.

•  Process focus can be easily switched

•  P+/P-, Dive in Root window and Process tab

•  Processes can be �held� - they will not run till unheld.

•  Process > Hold

•  Breakpoints can be set to stop the process or the
group

•  Breakpoint and command scope can be simply
controlled

76

©Copyright 2013 Rogue Wave Software, Inc.

Basic Process Control

77

• Control Group
– All the processes created or attached together

Groups

• Share Group
– All the processes that share the same image

• Workers Group
– All the threads that are not recognized as
manager or service threads

• Lockstep Group
– All threads at the same PC

• Process, Process (Workers), Process (Lockstep)
– All process members as above

• User Defined Group
– Process group defined in Custom Groups dialog

©Copyright 2013 Rogue Wave Software, Inc.

Call Graph

78
Dive on a node in the call graph to create a Call Graph group.

•  Quick view of
program state
•  Each call stack is a

path

•  Functions are nodes

•  Calls are edges
•  Labled with the MPI rank

•  Construct process
groups

•  Look for outliers

©Copyright 2013 Rogue Wave Software, Inc.

Parallel Back Trace

79 ©Copyright 2013 Rogue Wave Software, Inc.

 User Defined Groups

•  Group > Custom Groups,
to create a process
group of some other
specification

•  Group Membership
shown in Processes Tab

•  User defined groups
appear in the “Go” drop-
down menu

80

©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc.

Preferences

81 ©Copyright 2013 Rogue Wave Software, Inc.

Subset Attach

•  Connecting to a subset of a job reduces
tokens and overhead

•  Can change this during a run
•  Groups->Subset Attach

82

©Copyright 2013 Rogue Wave Software, Inc.

View MPI Message Queues

83

•  Information visible
whenever MPI rank
processes are halted

•  Provides information from
the MPI layer
•  Unexpected messages

•  Pending Sends

•  Pending Receives

•  Use this info to debug
•  Deadlock situations

•  Load balancing

•  May need to be
enabled in the MPI library
•  --enable-debug

©Copyright 2013 Rogue Wave Software, Inc.

Message Queue Graph

84

•  Hangs &
Deadlocks

•  Pending
Messages
•  Receives
•  Sends
•  Unexpected

•  Inspect
•  Individual

entries

•  Patterns

©Copyright 2013 Rogue Wave Software, Inc.

Message Queue Graph

85

•  Filtering
•  Tags
•  MPI Communicators

•  Cycle detection
•  Find deadlocks

Message Queue
Debugging

©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc.

Strategies for Large Jobs

•  Reduce N
•  Problem: Each process added requires overhead

•  Strategy: Reduce the number of processes TotalView is attached to

•  Simply reducing N is best, however data or algorithm may require
large N

•  Technique: subset attach mechanism

•  Focus Effort
•  Problem: Some debugger operations are much more intensive than

others, and when multiplied by N this could be significant

•  Strategy: Reduce the interaction between the debugger and the
processes

•  Technique: Use TotalView's process control features to

•  Avoid single stepping

•  Focus on one or a small set of processes

86

©Copyright 2013 Rogue Wave Software, Inc.

LAB 3: EXAMINING AND CONTROLLING A
PARALLEL APPLICATION

87 ©Copyright 2013 Rogue Wave Software, Inc.

ADVANCED
ASYNCHRONOUS CONTROL

88

©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc.

Why Asynchronous Control

•  Parallel codes are very difficult to debug
•  Breaking down the problem to smaller pieces

helps narrow down issues

•  Stepping individual processes, threads, or
groups can help narrow down a problem

89 ©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc.

TotalView Asynchronous Control Features

•  Built in control groups
•  User-defined control groups

•  Action points can target threads, processes
or groups

•  Typical debugging commands can target
groups or individual processes and threads
(Next, Step, etc.)

90

©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc.

Groups

•  By default, TotalView defines the following groups:
•  Control Group: everything
•  Share Group: all processes and their threads with same

image
•  Workers Group: all threads in all control group processes
•  Lockstep Group: all threads at the same breakpoint
•  Process: current process with debugger focus
•  Process Workers: all threads in the process
•  Process Lockstep: all threads at the same breakpoint in one

process
•  Thread: current thread with focus

•  Only the Workers group can be modified by the user
•  CLI, use dworker 0 to remove from the workers group or

dworker 1 to add

91 ©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc.

Customizing Groups

•  Only the Workers group can be modified by
the user
•  CLI, use dworker 0 to remove from the workers group or

dworker 1 to add

•  Create a Custom Group from the Group menu

92

©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc.

Creating a Custom Group

•  Enter the group name
•  Select processes to be members of the group

•  Add… button to create more groups

93 ©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc.

Custom Groups in the CLI

•  In the CLI, use the dgroups command to
create & modify groups
dgroups –new t|p [–g groupname] [id_list]
dgroups –add [–g groupname] [id_list]
dgroups –remove [–g groupname] [id_list]
dgroups –intersect [–g groupname id_list]
dgroups –delete [–g groupname]

t or p – can also use thread or process, is it a thread or process
group
groupname is your name for the new group
id_list is a TCL list of ids to add to the new group

•  You can also use dworker to add/remove
threads from the process workers group
dfocus t1.1 dworker 0

94

©Copyright 2013 Rogue Wave Software, Inc.

Custom Groups in CLI

95 ©Copyright 2013 Rogue Wave Software, Inc.

Custom Groups in CLI

96

©Copyright 2013 Rogue Wave Software, Inc.

Custom Groups in CLI

97 ©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc.

Breakpoints

•  Control where they are planted, defaults to
the Share Group
•  Uses the SHARE_ACTION_POINT variable, true plants

in the Share Group, false plants in the focus process
only

•  Control what is stopped by hitting the
breakpoint, the group, the process, or just the
thread
•  Uses the STOP_ALL variable set to: group, process, or

thread
•  Use the –g, -p, or –t flag to dbreak in the CLI to override

98

©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc.

Breakpoints

•  Control what is stopped and finer control over
when it is stopped by using eval option and
writing test code
•  Code can be C, C++, FORTRAN 77, Fortran 9x, or

assembler
•  Can use TotalView-specific values and commands like

$tid, $pid, $stop
•  Use –lang and –e flags to dbreak in CLI

99 ©Copyright 2013 Rogue Wave Software, Inc.

Breakpoints in UI

100

©Copyright 2013 Rogue Wave Software, Inc.

Eval Breakpoints in UI

101 ©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc.

Barriers

•  Control where they are planted, defaults to
the Share Group
•  Uses the SHARE_ACTION_POINT variable, true plants

in the Share Group, false plants in the focus process
only

•  Control what is stopped by hitting the
breakpoint, the group, the process, or just the
thread
•  Uses the BARRIER_STOP_ALL variable set to: group,

process, or none

•  Use –stop_when_hit flag in CLI to override default

102

©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc.

Barriers

•  Control what is stopped when the barrier is
satisfied, the group or the process
•  Uses the BARRIER_STOP_WHEN_DONE variable set

to: group, process, or none (same as process for a
process barrier)

•  Use –stop_when_done flag in CLI to override default

103 ©Copyright 2013 Rogue Wave Software, Inc.

Barriers Satisfaction Group in UI

104

©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc.

Barriers – Satisfaction Group

•  Satisfaction Group determines how many
times barrier needs to be reached before it is
satisfied and can release all threads that have
reached it.
•  In the UI, you can select from Control group, Process,

or Workers
•  If you have created custom groups, they should also

appear in the drop down list in the UI
•  CLI uses the intersection of the current focus and the

share group to determine the satisfaction group
•  BE SURE YOUR ENTIRE SATISFACTION GROUP

CAN REACH THE BARRIER OR YOU CAN BE
DEADLOCKED

•  Barriers can also create deadlocks if a thread held by
the barrier is holding a lock or another thread is
dependent on a held thread’s output, etc.

105 ©Copyright 2013 Rogue Wave Software, Inc.

Barriers – Select Satisfaction Group UI

106

©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc.

Asynchronous Controls

•  Once things are stopped, now what?
•  CLI commands operate on the current focus,

so you can step, next, go, etc. based on your
focus of a group, process, or thread

•  UI has separate menus for Group, Process,
and Thread control

107 ©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc.

Asynchronous Controls

•  UI also has a drop down list control to control
what the buttons will affect

108

©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc.

Holds

•  Group, Process, Thread can all be held
•  Anything that is held won’t run or step again

until it is unheld

•  Hold status is indicated in dstatus, in the
Process Window, and also under the toolbar
in the UI

•  Hold status also applies to anything that is
held at a barrier prior to the satisfaction group
completing the barrier

109 ©Copyright 2013 Rogue Wave Software, Inc.

Holds

110

©Copyright 2013 Rogue Wave Software, Inc.

Holds - CLI

111 ©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc.

Holds

•  When something is held, you must “un-hold”
it

•  Set focus to the held thread/process, then
release the hold

112

©Copyright 2013 Rogue Wave Software, Inc.

Holds - releasing

113 ©Copyright 2013 Rogue Wave Software, Inc.

LAB 9: ASYNCHRONOUS CONTROL

114

115 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

•  Reverse Debugging: Radically simplify your debugging
–  Captures and Deterministically Replays Execution

•  Not just logging or “checkpoint and restart”
–  Eliminate the Restart Cycle and Hard-to-Reproduce Bugs
–  Step Back and Forward by Function, Line, or Instruction

•  Specifications

–  A feature included in TotalView on Linux x86 and x86-64
•  No recompilation or instrumentation
•  Explore data and state in the past just like in a

live process, including C++View transformations
–  Replay on Demand: enable it when you want it
–  Supports MPI on Ethernet, Infiniband, Cray XE Gemini
–  Supports Pthreads, and OpenMP

ReplayEngine

116 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

Record Mode
•  Captures Input

•  Function calls
•  Network and file IO

•  Captures Non-Determinism
•  Forces single thread execution at a

time
•  Records context switches

•  Stores “images” of memory contents
throughout runtime

•  Can be used with the TotalView Memory
Debugger.!

•  Can be activated during the middle of
the run!

Replay Mode
•  Provides you with the ability to review

any part of the program execution (see
all variables) from the beginning of the
run to the current time

•  Like a “rewind” button on a DVR
•  Use breakpoints, watchpoints, and some

conditional breakpoints when running
forward or backwards in replay mode!

•  Searches for relevant events behind the
scenes but provides a streamlined “step
backwards” experience!

•  Provides Determinism within a
debugging session!

ReplayEngine modes

117 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

ReplayEngine controls

Replay Engine – The right way to debug

Step forward over functions

Step forward into functions

Advance forward out of current
Function, after the call

Advance forward to selected line

Step backward over functions

Step backward into functions

Advance backward out of current
Function, to before the call

Advance backward to selected line

Advance forward to “live” session

Run forward Run backward

118 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

Demo

119 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

Comparative Debugging

120 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

Comparative Debugging with TotalView

•  Two options
–  Separate TV sessions, one for A and the other for B
–  Single TotalView session attached to both A and B

•  Separate sessions
–  On different architectures
–  Separate batch submissions
–  Drive as two separate parallel jobs
–  Some tricks for comparing data which we will discuss later

121 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

Debugging two programs in one session of TotalView

•  TotalView handles Multiple Program Multiple Data
–  TotalView does not assume that all the parts of a parallel job are identical
–  Part of the same control group if they are launched from the same

mpiexec
•  TotalView can also launch a second process or parallel job while

attached to the first one
–  These two are part of separate control groups
–  They can be placed in the same control group after the fact though
–  Once in the same control group you can issue single commands that

apply to both processes or sets of processes.
•  This can be augmented by using ReplayEngine in both jobs ..

–  Follow difference back to root causes

122 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

Techniques for comparative debugging with TotalView

•  Use background color setting to distinguish the two debug
sessions
–  Requires two instances of the debugger

•  Use the ability to save breakpoints to share a breakpoint set
between the two instances
–  TotalView will try to be smart about restoring breakpoints ... it can deal

with small code changes such as line number offsets due to adding lines
to functions earlier in the program.

•  Consider using scripted commands for any complex operations

123 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

Case Study: Physical Simulation

•  Semi-Automated Parallel Program Debugging

Jeff Keasler
LLNL

Alejandro Hernandez
UC Santa Barbara, LLNL Intern

The following materials are adapted from a BOF talk at SC11 and are used
with the authors permission

124 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

Debugging of Large-Scale OO Programs is
Increasingly Challenging

!  Rich OO design patterns are
already here

!  Debugging through an object
hierarchy has proven to be difficult
!  Object inheritance
!  Objects composed of other objects

!  Most debuggers display objects as
a collection of atomic types
!  Often displays irrelevant data to the

code developer
!  Need a more automated way to

isolate bugs in rich object
environments

125 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

Some Common Debugging Issues in Science
Codes are Difficult to Address

!  Need a way to debug halo-layer issues.
!  Need an efficient way to compare two versions of the same code

!  Algorithm changes (New algorithms, updates, etc.)
!  Compiler porting (new flags/version, icpc, g++, etc.)
!  Platform porting (x86 cluster, BG/P, etc.)

126 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

C++View Interface Provides Custom Debugging Support

•  TV_display_type(const class X *obj)
–  A user defined function that can be overloaded for each specific class/

struct/union type of interest.
–  In TV, diving into an object of type class X invokes the associated

TV_display_type() function, if present.
–  Unrestricted use of C++ within these functions.

•  TV_add_row(char *name, char *type, void *ptrToType)

–  This function is called from within a TV_display_type() function to display
a row of data in Totalview’s data display window. Example:
TV_add_row(“count”, “int”, &obj->count) ;

127 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

Advanced Example – NaN/Inf/etc.

This example shows how fields containing bogus values
can be flagged in the output. Here, whenever bad values
are detected, an extra line of output is created describing
the nature of the numerical errors.

128 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

Debugging Large-Scale OO Programs Can
Be Simplified

!  Semi-Automated Data
Comparison Debugging:
!  Compare two different

versions of the same code
to search for data
differences

!  Data compared within the
program

!  Comparison information
displayed within the
TotalView debugger

Semi-Automated Data Comparison Debugging

129 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

Differences Displayed as Integrated Part of Debugger

130 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

The Next Step is To Visualize Field Data…

Diving on a Field will display the field
with respect to a submesh context

131 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

…and Visualize Computed Differences between code
Versions

132 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

Semi-Automated Data-Comparison Debugging
Provides an Additional Tool for Finding Bugs

!  Time saver
!  Comparison of a collection of data, possibly very large, is done quickly for

the user
!  Easily integrated into pre-existing programs

!  Does not interfere with pre-existing code
!  Implemented once and used through the entire development

cycle of the application

133 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

CUDA/OpenACC Debugging

•  Some of the slides here are marked with
–  These contain content developed by Sandra Wienke and are used with

permission.

134 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

TotalView for CUDA

•  Characteristics
–  Full visibility of both Linux threads and

GPU device threads
–  Fully represent the hierarchical

memory
–  Supports Unified Virtual Addressing

and GPUDirect
–  Thread and Block Coordinates
–  Device thread control
–  Handles CUDA function inlining and

CUDA stacks
–  Support for C++ and inline PTX
–  Reports memory access errors
–  Handles CUDA exceptions
–  Multi-Device Support
–  Can be used with MPI

135 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

Starting TotalView

•  You can debug the CUDA host code using the normal
TotalView commands and procedures

When a new kernel is loaded you get the
option of setting breakpoints

136 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

TotalView CUDA Debugging Model

137 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

CUDA Debugging

"  Debugger thread IDs in Linux CUDA process

# Host thread: positive no.

# CUDA thread: negative no.

"  GPU thread navigation

# Logical coordinates: blocks (3 dimensions), threads (3 dimensions)

# Physical coordinates: device, SM, warp, core/lane

# Only valid selections are permitted

138 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

CUDA Debugging

"  Warp: group of 32 threads

# Share one PC

# Advance synchronously

"  Single Stepping

# Advances all GPU hardware threads within same warp

# Stepping over a __syncthreads() call advances all threads within the

block
"  Advancing more than just one warp

# “Run To” a selected line number in the source pane

# Set a breakpoint and “Continue” the process
"  Halt

# Stops all the host and device threads

Problem: Diverging threads
if (threadIdx.x > 2)
{...} else {...}

139 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

CUDA Debugging

"  Displaying CUDA device
properties

# “Tools” - “CUDA Devices”

# Helps mapping between

logical & physical

coordinates
"  PCs across SMs, warps,

lanes

# GPU thread divergence?

Different PC
within warp

Diverging

threads

140 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

GPU Memory Hierarchy

•  Hierarchical memory
•  Local (thread)

•  Local
•  Register

•  Shared (block)
•  Global (GPU)

•  Global
•  Constant
•  Texture

•  System (host)

141 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

TotalView Type Storage Qualifiers

@parameter Address is an offset within parameter storage.

@local Address is an offset within local storage.

@shared Address is an offset within shared storage.

@constant Address is an offset within constant storage.

@global Address is an offset within global storage.

@register Address is a PTX register name.

142 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

CUDA Variables

•  Storage qualifiers appear in the data type

143 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

CUDA Segmentation Faults

•  TotalView displays segmentation faults as expected
•  Must enable CUDA memory checking

144 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

CUDA Built-in Runtime Variables

•  Supported built-in runtime variables are:
•  struct dim3_16 threadIdx;
•  struct dim2_16 blockIdx;
•  struct dim3_16 blockDim;
•  struct dim2_16 gridDim;
•  int warpSize;

145 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

TotalView for OpenACC

•  Compatibility with Cray
 CCE 8 OpenACC now
•  Investigating PGI and
 CAPS support

•  Step host & device
•  View variables
•  Set breakpoints

OpenACC®$
DIRECTIVES FOR ACCELERATORS$

!

146 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

CUDA Debugging - Tips

"  Check CUDA API calls

# All CUDA API routines return error code (cudaError_t)

# Or cudaGetLastError() returns last error from a CUDA runtime call

#  cudaGetErrorString(cudaError_t) returns corresponding message

1.  Write a macro to check CUDA API return codes or use SafeCall and

CheckError macros from cutil.h (NVIDIA GPU Computing SDK)

2.  Use TotalView to examine the return code

#  Evaluate the CUDA API call in the expression list

#  If needed, dive on the error value and typecast it to an cudaError_t

type

#  You can also surround the API call by cudaGetErrorString() in the

expression field and typecast it to char[XX]*

147 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

CUDA Debugging - Tips

"  Check + use available hardware features

#  printf statements are possible within kernels (since Fermi)

# Use double precision floating point operations (since GT200)

# Enable ECC and check whether single or double bit errors occurred

using nvidia-smi -q (since Fermi)

"  Check final numerical results on host

# While porting, it is recommended to compare all computed GPU results

with host results

1.  Compute check sums of GPU and host array values

2.  If not sufficient, compare arrays element-wise

# See TotalView’s comparative debugging approach (Lab 3), e.g. statistics

view
148 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

CUDA Debugging - Tips

"  Check intermediate results
#  If results are directly stored in global memory: dive on result array

#  If results are stored in on-chip memory (e.g. registers) # tedious
debugging

#  TotalView: View of variables across CUDA threads not possible yet

1. Create additional array on host for intermediate results with size
#threads * #results * sizeof(result)
Use array on GPU: each thread stores its result at unique index
Transfer array back to host and examine the results

2. If having a limited number of thread blocks: create additional array in
shared memory within kernel function: __shared__ myarray[size]
Use defines to exchange access to on-chip variable with array access
Examine results by diving on array and switching between blocks

# Use filter, array statistics, freeze, duplicate, last values and watch points
 (see Lab 2)

149 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

Xeon Phi

150
| Copyright © 2013 Rogue Wave Software | All Rights Reserved

Spectrum of Execution Models

General'purpose'
serial'and'
parallel'

compu0ng'

Codes&with&
highly.¶llel&

phases&

Highly.parallel&
codes&

Codes&with&
balanced&needs&

CPU-Centric Intel® Xeon Phi-Centric
Many-Core Hosted Symmetric Offload Multi-core Hosted

Main(')'
Foo(')'
MPI_*()'

Foo(')'

Main(')'
Foo(')'
MPI_*()'

Main()'
Foo(')'
MPI_*()'

Main(')'
Foo(')'
MPI_*()'

Main(')'
Foo(')'
MPI_*()'

Multi-core

Many-core

Productive Programming Models Across the Spectrum

Intel® Xeon Phi

PCIe

Intel® Xeon Processor

151
| Copyright © 2013 Rogue Wave Software | All Rights Reserved

Key to Success:

 Working closely with Intel
Development Team

Key Features:
–  Full visibility of both host and

coprocessor threads
–  Full support of MPI programs
–  Symmetric debugging of

heterogeneous applications with
offloaded code

–  Remote debugging of Xeon Phi-
native applications

–  Asynchronous thread control on
both Xeon and Xeon Phi

XeonPhiPortofTotalView$

152 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

Remote$Debugging$of$Applica<ons$on$Xeon$Phi$
$

•  Just run as
 totalview –r hostN-micM <program>

•  Attach to running application

•  See thread private data

•  Investigate individual threads

•  Analyze core crashes on Xeon Phi

153 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

DebuggingMPIApplica<ons$

•  Start multi-host multi
card MPI job

•  Attach to subset of
processes on MIC
coprocessor

•  Set breakpoints
•  Debug “as usual” MPI

154 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

Debugging$Applica<ons$with$Offloaded$Code$

Xeon side Xeon Phi side

One debugging session for Xeon Phi-accelerated code

155 | Copyright © 2012 Rogue Wave Software | All Rights Reserved

TotalView
process

tvdsvr_mic

Host0

Host0-mic0

mpiexec

mpi processes

tvdsvr_mic
Host0-mic1

mpi processes

tvdsvr_mic

Host1

Host1-mic0

mpi processes

tvdsvr_mic
Host1-mic1

mpi processes

Conditions:

1.  Each card has its own IP

address and is accessible from
front host node, running
TotalView.

2a. TotalView is installed in global
 area and is accessible from
 each card in allocation, so that
 you can start tvd mic-server on
 each mic-card from the partition
 OR
2b. You can copy tvdsvr using
 mic_native_server_launch_string

Mul<Chost,$Mul<Ccard$$PhiCna<veMPIDebugging$
in$TotalView$8.12$

156 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

Single server launch (default)
•  totalview -args mpiexec -np 240 -hosts host1-mic0,host1-mic1,host2-mic0,host2-mic1 ./

tx_basic_mpi
•  set env TVDSVRLAUNCHCOMMAND=<your ssh command to card> (ssh,micssh)
•  Set TV::server_launch_string preference

MIC Native Launch
•  totalview –mmic -args mpiexec -np 240 -hosts host1-mic0,host1-mic1,host2-mic0,host2-

mic1 ./tx_basic_mp
•  Set: dset TV::mic_native_server_launch_string {
 ssh -n %R "/bin/rm -f /tmp/tvdsvrmain%K"; //1
 scp %B/tvdsvrmain%K %R:/tmp/tvdsvrmain_mic; //2
 ssh -n %R -n "/tmp/tvdsvrmain%K -callback %L -set_pw %P -verbosity %V %F“ //3 }

1.  Removes your previous tvdsvrmain_mic
2.  Copies it from the installation directory to the /tmp/ directory on the coprocessor
3.  Starts the server on the Xeon Phi coprocessor.

Mul<Chost,$Mul<Ccard$$MPI$Debugging$
in$TotalView$8.12$

157 | Copyright © 2013 Rogue Wave Software | All Rights Reserved

Demo

©Copyright 2013 Rogue Wave Software, Inc.

SUPPORT AND
QUESTIONS

158

©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc.

TotalView Customer Support

•  Email: tvsupport@roguewave.com
•  Use our web site for documentation, demos,

FAQs and to contact support

159 ©Copyright 2013 Rogue Wave Software, Inc.

TotalView Customer Support

160

http://www.roguewave.com

©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc.

TotalView Customer Support

161 ©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc.

TotalView Documentation

162
162

©Copyright 2013 Rogue Wave Software, Inc. ©Copyright 2013 Rogue Wave Software, Inc.

TotalView Documentation

163 ©Copyright 2013 Rogue Wave Software, Inc.

Thanks!

164

QUESTIONS?

