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Abstract—Today’s computational science demands have 
resulted in larger, more complex parallel computers. Their 
PFSs (Parallel File Systems) generally perform well for N-N 
I/O (Input/Output), but often perform poorly for N-1 I/O. 
PLFS (Parallel Log-Structured File System) is a PFS layer 
under development that addresses the N-1 I/O shortcoming 
without requiring the application to rewrite its I/O. The PLFS 
concept has been covered in prior papers. In this paper, we will 
focus on an evaluation of PLFS with Lustre underlying it 
versus Lustre alone on a Cray XE6 system. We observed 
significant performance increases when using PLFS over these 
applications’ normal N-1 I/O implementations without 
significant degradation in the N-N I/O implementations. While 
some work remains to make PLFS production-ready, it shows 
great promise to provide an application and underlying file 
system agnostic means of allowing programmers to use the N-1 
I/O model and obtain near N-N I/O model performance 
without maintaining custom I/O implementations. 
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I.  INTRODUCTION [1] 
Because today’s large, complex parallel computers 

contain many components; applications must protect 
themselves from component failures that interrupt the run. 
This is done through application checkpointing, where the 
state of the calculation is saved to persistent storage so that 
the application can be restarted from its last saved state and 
eventually complete. 

A natural, flexible, and less metadata-intensive I/O 
pattern is N-1. Figure 1 depicts this I/O pattern. 

 

 

Figure 1: N-1 I/O Pattern 
In this paper when we say, “N-1”, we specifically mean 

N-1 strided. In this pattern the processes write multiple 
small regions at many different offsets within the file. The 
challenge to the PFS is that these offsets are typically not 
aligned with file system block boundaries. This results in 
many concurrent accesses to the same file at different 
locations. Consequently, the HDDs (hard disk drives) must 
perform many seek operations and multiple writes to the 
same file system block will be serialized. Hence, N-1 is 
poorly served by current PFSs, especially at very large 
scale. To a lesser extent PFSs must implement a file region 
locking scheme to ensure POSIX compliance. 

Because of performance issues with N-1, some 
applications have changed to N-N, and can obtain good 
performance on today’s PFSs. In N-N, each process does I/O 
to a handful of reasonably sized files. Figure 2 depicts this 
I/O pattern (where “File” can be more than one file, but 
usually just a few). 

 

 
Figure 2: N-N I/O Pattern 

 
Nevertheless, even this model is showing signs of 

scalability issues when applications put all these files in a 
single directory. Some applications have implemented 
custom directory hierarchies to address the issue of 
overloading a directory with too many files. In the N-N 
model, PLFS distributes the files to multiple directories, 
alleviating the application of this responsibility. 

The rest of the paper is organized as follows. We present 
more detailed background and motivation in Section II 
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describe our method for evaluation in Section III and our 
evaluation results in Section IV. We present the lessons we 
learned in Section V, and summarize in Section VI. 

II. BACKGROUND [1] 
PLFS is publicly available at https://github.com/plfs/plfs-

core. Anyone may download and use it. While LANL and its 
PLFS development partners have been the primary users to 
date, others have downloaded and used it. We have had some 
communications with a handful of other users experimenting 
with PLFS for their parallel I/O workloads. 

There are three interfaces to use PLFS. They are: using 
MPI/IO (Message Passing Interface I/O) through MPI’s 
ADIO (Abstract Device Interface for I/O); the normal 
POSIX (Portable Operating System Interface) file system 
interface using PLFS FUSE (File System in User Space) 
mount points; and the PLFS-specific API (Application 
Programmer’s Interface). 

The MPI/IO interface is simple to use, but it does require 
work on the part of those who maintain the development 
environment. There is a well-documented patching 
procedure for MPI/IO that requires access to the MPI source 
code. Once this is completed the application developer needs 
to link against that patched MPI and the corresponding PLFS 
library. The application developer needs to make one small 
change to the filename parameter of MPI_File_open. That 
change is to prepend the string, “plfs:” to the filename that is 
opened. Every subsequent call to a MPI/IO function is done 
as before. This is the recommended interface as it yields the 
highest performance for the least change to the application. 

There is no application change to use the PLFS FUSE 
interface. It is as simple as using a standard POSIX filename 
in a POSIX open statement. Be warned that FUSE serializes 
all I/O requests. Running N-1 through a PLFS FUSE mount 
on a single node will result in very poor performance. To use 
this interface the System Administrators must install the 
PLFS FUSE daemon application and configure it to provide 
POSIX file system mount points that are usable by user 
applications. We have found that the default FUSE read and 
write buffer size is only 128 KiB. This small size creates a 
lot of overhead for applications, such as archive utilities, that 
would otherwise move data in much larger chunk sizes, 
which is much more efficient. Using read and write buffers 
closer to the size of the transfers these applications use or 
that is commonly used to write the file is best. At LANL, this 
size is 4 MiB to 12 MiB. There is a known patch to the 
Linux kernel and the FUSE kernel module that increases the 
buffer sizes. Even after implementing this change to provide 
larger FUSE buffers, there is still execution overhead using 
FUSE. In order to allow users to use non-MPI applications 
to, for example, copy or archive files these PLFS FUSE 
mount points are required and are the recommended 
interface to use for these purposes. 

The PLFS API yields good performance, and it does not 
require additional System Administration work to provide 
PLFS FUSE mount points. Nevertheless, using this interface 
requires a substantial change to the application. Any MPI/IO 
or POSIX I/O call must be changed to the corresponding call 
from the PLFS_API. For example, instead of calling 

MPI_File_open or POSIX’s fopen the application must call 
plfs_open. If a special-purpose application to perform some 
operation on PLFS files is needed, this is a good choice 
because it will yield excellent performance, not require PLFS 
FUSE mount points, and it is no more work to use PLFS API 
calls than it is to use MPI/IO or POSIX I/O calls. 

PLFS currently supports three workload types. These are 
N-1, N-N, and 1-N. They are also known as “shared_file”, 
“file_per_proc”,and “small_file”, respectively. The first two 
were briefly covered in the Introduction, section I. 

The primary driver for developing PLFS was the N-1 
workload because it is a popular way for large, parallel 
applications to checkpoint their state and PFSs have 
traditionally not handled this workload well. In a nutshell, 
PLFS converts N-1 into N-N in a directory hierarchy. When 
parallel applications write a file using N-1, they typically 
barrier so that all processes are ready to write before any 
writing begins. Next, the processes are released from the 
barrier and begin to write the data for which they are 
responsible. Finally, when the processes are done writing 
they reach another barrier. Once all processes have 
completed writing and are at the barrier the file is closed, the 
data is synced to the PFS, and the processes resume 
computing. A consequence of this algorithm is that there is 
no guarantee that the data arrives to be written to storage in 
order. For example, it is very possible for 1 MiB of data 
intended to start at offset 0 (zero) in the file to arrive after 1 
MiB of data intended to start at offset 3 MiB in the file. If we 
were to attempt to reorder the data and write it so that it 
physically lands at its logical location, write performance 
would suffer due to buffering, reordering and storage device 
seek latencies. As indicated in its name, PLFS is a log-
structured file system. That is, it physically writes the data to 
storage in the order the data arrives, irrespective of its logical 
position in the file. PLFS maintains an index mechanism that 
maps a write’s logical position in the file to the physical 
position to which it was actually written when the data 
arrived. Thus, when a PLFS file is read, the index is 
consulted and the data is accessed directly. There can be 
many write cycles, and, generally, just one read – when the 
application restarts, it reads its last known state one time. 
Experience has shown that reading a PLFS file in this 
manner performs well. The one drawback is a scalable and 
well-performing index management mechanism is needed 
for very large files. We are currently working on this 
problem, and it will be discussed at the end of this paper. By 
converting the N-1 workload to an N-N and writing data as it 
arrives, PLFS overcomes the two major issues that slow N-1 
performance on PFSs, namely HDD seeks and file region 
locking. 

In order to transform how an N-1 application does I/O to 
something that is more efficient for the underlying PFSs, N-
N, there is some overhead. All the interfaces create a small 
number of directories and files used to manage the files and 
information PLFS uses to access the files as if they were a 
single N-1 file. The number of overhead directories and files 
depends on the interface used. We won’t go into detail on the 
small variations, but we are happy to provide those details to 
interested parties. Generally speaking the overhead is: for the 
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MPI’s ADIO interface, 2 * number of writers files – one data 
file and one index file per writer; for the PLFS FUSE 
interface, number of writers files + number of nodes files – 
one data file per writer and one index file per node; and for 
the PLFS API interface, 3 * number of writers files – one 
data file per writer, one index file per writer, and one meta 
file per writer. 

For example, there are 16 cores per node on ACES’s 
(Advanced Computing at Extreme Scale, ACES is a 
partnership of LANL (Los Alamos National Laboratory) and 
SNL (Sandia National Laboratory)) Cray XE6. A typical 
MPI application will have 16 MPI processes per node. An 
application doing N-1 through MPI’s ADIO, where every 
process is a writer, would create 32 files per node: 16 data 
files and 16 index files. Additionally, a small number of files 
and directories will be created that are used by PLFS itself 
for tracking, debug, and other management purposes. 

At this time most applications that use N-N will achieve 
slightly better performance by not using PLFS. This is 
because currently, most applications do not create so many 
files that the PFS’s metadata server and directory locking 
function are overwhelmed because of file count. Some PFSes 
claim they can handle up to 10 million files in a single 
directory without a reduction in performance. As HPC 
systems move towards Exascale, even 10 million files may 
become a small number for HPC applications. Some 
applications have already implemented a hierarchical 
directory structure to address the performance issues. Using 
PLFS for N-N addresses the coming Exascale file count 
issue by physically distributing the files in a hierarchical 
directory structure for the application. However, it logically 
presents to the users as if all the files were in a single 
directory. Although most N-N applications will not achieve a 
performance improvement using PLFS, N-N applications 
with access to multiple PFSs may benefit from PLFS 
because PLFS enables the aggregation of multiple PFSs into 
a single virtual PFS with more hardware and MDSs to use 
concurrently [2]. There is no file count overhead for N-N. 
When one creates a directory on a N-N mount point a 
directory is created on each PLFS backend storage device 
over which the N files are distributed. 

The final PLFS workload is in an experimental stage. We 
became aware of a couple of users’ need to write many small 
files per process, a few KiB or less each. One application 
estimated that if it converted to this workload it would write 
up to 400,000 files per process, each file containing 2 KiB – 
10 KiB. Writing so little data to each file does not allow a 
PFS to amortize the file creation/sync/close overhead over 
much data and consequently the PFS performs very poorly 
with such a workload. PLFS overcomes this issue by actually 
reducing the number of files created. Instead of N processes 
* M files/process, it creates N files (one per process) and 
stacks the other M files within the one file. Each process also 
creates two small files in which it keeps metadata. It 
logically presents to the user as if there were N * M files. We 
call this workload 1-N. We have some very preliminary 
numbers for the file creation process and creating many files 
per process and writing a very small amount of data to each 
file. These numbers give us hope that we can help 

applications creating many thousands of small files per 
process. In order to achieve good performance the workload 
is not completely POSIX-compliant. Explicit sync calls are 
required to ensure the latest data is on storage if a thread on 
another node needs it before the application doing the 
writing terminates. There is a file count overhead for 1-N. 
One file is the data log for all the files. One file is almost a 
traditional PLFS index dropping but each index entry needs 
another field to specify which file it refers to in the data log. 
Normal N-1 PLFS index entries don’t need this since the 
data in the data log only belongs to a single file. Since we 
intersperse data for many files into one data log in 1-N, the 
index entry needs this new field to identify to which file the 
data chunk belongs. This field could hold a string for the file 
name but that would make the index log too big and would 
introduce variable-length fields since some filenames are 
short and some are long. So, we just put an integer into that 
file_id field. Finally, we need a third file that maps that 
integer to a string name. 

III. METHOD FOR EVALUATION 
The primary means of evaluation was using a benchmark 

application and full-scale simulation applications from two 
key project teams at LANL. These are detailed in the 
subsequent subsections. 

A small effort was made to perform some basic file 
operations that are done by the application users in their 
day-to-day management of their files. 

A. fs_test Benchmark 
fs_test is an open source I/O pattern emulation 

benchmark application developed at LANL. It is freely 
available at https://github.com/orgs/fs-test [3]. 

This benchmark application can be used to emulate a real 
applications I/O pattern. It supports the MPI/IO, POSIX, and 
PLFS API I/O interfaces. For the purposes of this evaluation 
we used this benchmark application to generate a maximum 
write and read bandwidth scenario where a lot of data is 
written to amortize away the overhead of open/sync/close 
operations. We ran tests using MPI/O to compare PLFS and 
Lustre PFSs. 

B. Silverton Applications 
Silverton is a project with applications that implement a 

computational fluid dynamics capability developed at LANL 
for the study of high-speed compressible flow and high-rate 
material deformation. Silverton’s applications implement a 
three-dimensional Eulerian finite difference code, solving 
problems with a wide variety of EOSs (equations of state), 
material strength, and explosive modeling options [4]. 

Scientists simulate large-scale physical phenomena using 
this suite of applications, and have done so for many years. 
Consequently, there are many problems that exist for the 
applications that can provide intense bursts of checkpoint 
I/O. The applications have a handful of I/O types from which 
to choose. One of them is MPI/IO N-1 with node 
aggregation. That is, all MPI ranks on a node send their data 
to one rank, which aggregates the data and performs the I/O 
on behalf of the node’s MPI ranks. On the ACES Cray XE6 
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this meant one of every 16 MPI ranks doing checkpoint I/O. 
This I/O type improves the N-1 performance by amortizing 
fewer open/sync/close operations over more data. 

C. EAP (Eulerian Applications Project) Applications 
EAP is a project with applications such as xRAGE 

(Radiation Adaptive Grid Eulerian), which is a radiation-
hydrodynamics code using a Godunov solver on an Eulerian 
mesh with an AMR (Adaptive Mesh Refinement) algorithm, 
and a radiation diffusion algorithm. It solves the Euler 
equations for compressible gas dynamics using finite-volume 
methods. It has been used to study fluid flow in highly 
distorted systems [5]. 

This suite of applications has been evolving at LANL for 
many decades. They are the true workhorse applications at 
LANL for this type of computation. Here too, there are 
many, many well-understood problems that generate 
appropriately sized checkpoint I/O for our comparison 
purposes. Furthermore, there was a recent problem of interest 
that generated one of the largest checkpoint files we’d been 
able to use, at 23 TiB. This file was a good test of the Lustre 
PFS, PLFS, and our archive. These applications also have a 
handful of I/O types from which to choose. One of them is a 
custom I/O model that was modified for the Cray XE6’s 
Lustre PFS to stripe a file over 160 OSTs (Object Storage 
Targets, which are logical storage units, for example, RAIDx 
LUN or a Zpool) and set the stripe size (the number of bytes 
written to an OST before moving to the next OST) to a large 
value. This I/O method uses one writer per OST over which 
the file is striped. Each writer aggregates data until it has one 
stripe width of data buffered and then writes it to an OST. By 
this manner, each writer writes the maximum data allowed in 
a stripe to its own OST with each write, thus maximizing its 
I/O bandwidth. It was a great challenge for PLFS, a general-
purpose solution, to compare against this I/O method, a 
custom solution that is tuned to maximize bandwidth for 
each PFS to which it is ported. PLFS was used for these 
applications’ MPI/IO method where each process does its 
own I/O. 

Also, using the 23 TiB file was a great opportunity for us 
to measure how PLFS’s performance scales when we 
combine multiple PFSs into one virtual PFS. The ACES 
Cray XE6 has divided its PFS capability into three Lustre 
PFSs: lscratch2 is a ¼-sized PFS; lscratch3 is a ½-sized PFS; 
and lscratch4 is another ¼-sized PFS. PLFS, unlike any other 
I/O mechanism of which we are aware, allows us to combine 
these three PFSs into one very large virtual PFS. 

D. Basic File Operations 
Users commonly need to adjust their files. The most 

common operations, other than simple listings (e.g. ls) are 
renaming (mv), copying (cp), removing (rm or unlink) and 
archiving (hsi). Simple experiments were conducted on files 
up to 2.2 TiB to compare PLFS and Lustre PFSs’ 
performance for these operations. 

IV. EVALUATION RESULTS 
The Lustre file system has mitigated the effects of N-1 

through OST striping. By telling Lustre to lay the file out 

over many OSTs and how much to write to each OST before 
moving to the next an application can concurrently engage 
many of the Lustre file system components. For example, 
suppose an application chooses to aggregate I/O to 160 
writing processes and sets up so that each process writes 12 
MiB each time it writes. The application can tell Lustre that 
it wants the file striped over 160 OSTs and to write 12 MiB 
stripe sizes. This can be done through ioctl (I/O Control) 
calls or interactively. Interactively it is done with this lfs 
(Lustre file system) command: 

 
% lfs setstripe -c 160 -s 12M <filename> 

 
The main issue with this is that it is file system-specific. 

When the application runs on a system with a different PFS 
the means for achieving the highest possible I/O rate 
changes. PLFS removes this issue by being configured to get 
the best performance from the underlying PFS while 
providing the same I/O interface to the application from 
system to system. 

A. fs_test Benchmark 
We used fs_test to generate a maximum write and read 

bandwidth scenario where a lot of data is written to amortize 
away the overhead of open/sync/close operations. Each 
process wrote/read 48 MiB per write/read for 5 minutes. We 
ran tests using MPI/O to compare PLFS and Lustre PFSs. 
fs_test provides performance results for “Effective” and 
“Raw” bandwidths. The former includes the overhead time 
for the open/sync/close operations as well as the write and 
read operations. This is indicative of the user experience. 
The latter excludes the open/sync/close overhead time. It is 
an indication of the write and read bandwidths that the PFSs 
can achieve. 

Figures 3 - 6 show the fs_test results. There are a couple 
of missing measurements where jobs were not run because of 
system resource demands for the real applications. 
Specifically, these were the 32768 and 65536 processors 
runs for N-1. 

These experiments were run while other jobs ran. 
Consequently, they were competing for PFS resources. The 
measurements were taken using the ACES Cray XE6 
lscratch3 PFS. 

It appears that the 32768 processors run for PLFS N-1 
saw reduced performance due to another application 
probably doing I/O at the same time. 
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Figure 3: fs_test Maximum Effective Write Bandwidth 
Results 

 

 
 

Figure 4: fs_test Maximum Raw Write Bandwidth Results 
 

 
 

Figure 5: fs_test Maximum Effective Read Bandwidth 
Results 

 

 
 

Figure 6: fs_test Maximum Raw Read Bandwidth Results 
 

In this scenario we observe that PLFS N-N and Lustre N-
N performance is nearly identical. More importantly we 
observe that PLFS N-1 significantly outperforms Lustre N-1, 
and what is more, it is generally within 10% of the PLFS and 
Lustre N-N performance. 

These results indicated to us that PLFS might do very 
well at improving the N-1 performance of real applications. 
And so we moved on to experiment with the Silverton and 
EAP applications. 

B. Silverton Applicatons 
The first order of business was to modify the Silverton 

applications’ shared code that opens a file via MPI/IO. This 
involved a very small change to declare some temporary 
variables and prepend the required PLFS prefix for MPI/IO, 
“plfs:” to the filename to be opened. Next we enhanced 
Silverton’s setup script to define the environment to point to 
the patched MPI and PLFS installations that support PLFS 
use. Finally we had to add a reference to 
${PLFS_LDFLAGS} to Silverton’s Makefiles so that the 
applications linked in the proper libraries. 

Once we had applications that could use PLFS, it was 
time to make some measurements. We started with a smaller 
problem to test the waters. 

Silverton’s I/O mode, “mpiio”, is N-1 where data is 
aggregated to a single writer on each node and that writer 
writes 1 MiB each write. To maximize its performance we 
set the stripe count to 137 because this was the number we 
recalled being used by EAP’s BulkIO (it was actually 136), 
and the stripe size to 1 MiB. We later changed to the stripe 
count to the maximum allowed value of 160, but that did not 
significantly change the results. 

These experiments were run while other jobs ran. 
Consequently, they were competing for PFS resources. The 
measurements were taken using the ACES Cray XE6 
lscratch3 PFS. The results were promising. 

Figures 7 - 8 show the write bandwidth results for the 
two largest output file types in a Silverton application 
simulation. The restart file was 1.15 TiB and the graphics file 
was 215.33 GiB.  
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Figure 7: Silverton Small Restart Write Bandwidth Results 
 

 
 
Figure 8: Silverton Small Graphics Write Bandwidth Results 
 

PLFS outperformed Lustre by 1.68x for the restart file 
and by 2.85x for the graphics file. 

The graphics file is processed by another application. We 
briefly experimented with that process for the large problem 
and those results will be discussed where large file results are 
presented. 

We did restart the simulation from the restart file. PLFS 
read performance was better than Lustre by 1.28x. See 
Figure 9. 

 

 
 

Figure 9: Silverton Small Restart Read Bandwidth Results 
 

Encouraged by the results with the small test problem, we 
wanted to try a larger problem. Unable to acquire access to a 
large active calculation, we worked with a Silverton 
developer to create a problem that would generate large 
restart dumps, ~17 TiB at 32K pes. 

Silverton has a N-1 mode called, “mpiio_ctg”.  Each 
process has a segment of the N-1 file where it writes its 
results contiguously. Generically, we call this N-1 
segmented. We widely striped this file to a stripe count of 
160 and used the same 1 MiB stripe size. 

We ran an apples-to-apples comparison for this problem 
on lscratch3. We compared Silverton’s N-1 (“mpiio”), N-1 
segmented (“mpiio_ctg”), and N-N (“mpiio_fms”), all for 
PLFS and Lustre. We discovered a bug in Silverton’s N-1 
segmented mode for the graphics file, but we show the 
results for the restart file in figures 10 and 11. Figure 10 
shows the average performance over a handful of runs (6 for 
512 processors with a file size of 274.63 GiB; 6 for 4096 
processors with a file size of 2.15 TiB; and 3 for 32768 
processors with a file size of 17.16 TiB). Because 
performance variance can occur in a non-dedicated system, 
in Figure 11 we show the maximum write bandwidth as an 
indicator of potential I/O rates. 
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Figure 10: Silverton Large Average Restart Write Bandwidth 

Results 
 

 
 

Figure 11: Silverton Large Restart Maximum Write 
Bandwidth Results 

 
At 512 processors, N-1 outperformed PLFS N-1. By 

32768 processors PLFS N-1’s advantage was 1.5x. This is 
likely because at 512 processors there were only 32 writers, 
which is well under the OST count for the file, so it was not 
suffering the concurrent access problem. By 4096 processors 
(256 writers) there were slightly more writers than OSTs, 
and at 32768 processors (2048 writers) there were many 
more writers than OSTs. PLFS N-1 segmented always 
outperformed N-1 segmented. At 32768 processors its 
performance advantage was 4.7x. PLFS N-N is generally in 
the same performance regime as N-N. This is likely because 
the concurrence problem for traditional N-1 was more 
present since the number of writers was equal to the number 
of processors, so 16x the number of writers as with N-1. 

The shapes of the curves are similar, though at 512 
processors N-N has more of an advantage over PLFS. 
However, as the processor count grows, especially at 32768 
processors, PLFS is even closer to being the same as N-N. 

In order to visualize Silverton graphics files with Ensight 
they must be converted to the Ensight format. The Silverton 

gd_es application does this. The test problem started with 
one 76 GiB graphics file and produced one 2.4 GiB file, 
sixteen 2.2 GiB files, one 400 byte file, and one 11 KiB file. 
The time for this conversion on Lustre was 00:05:37, and on 
PLFS it took 00:06:49, a 1.2x advantage for Lustre. There 
were issues getting multiple Ensight servers working and the 
data set was too large for a single server, so we were unable 
to time the Ensight ingestion times. 

C. EAP Applications 
EAP had previously modified its code and input deck 

parameters to allow for PLFS use. The extent of the changes 
was to introduce a hint key parameter that sets the prefix, 
“plfs:” that is prepended to the file specification when the 
target PFS is PLFS. EAP has a custom cshrc file that sets up 
the build environment. The only changes necessary here are 
to load a MPI module that has been patched for PLFS and 
load the PLFS module. 

Initial measurements were made with the EAP Asteroid 
test problem, which generates a 627.93 GiB restart file. We 
compared BulkIO, MPIIND, and PLFS through MPIIND. a 
BulkIO is a custom N-1 that works as previously described. 
MPIIND is N-1 where each process does its own I/O. This 
problem does one run that writes a restart dump 20 times. 
The measurements are all directly from the EAP code’s 
output. The measurements were taken using the ACES Cray 
XE6 lscratch4 PFS The results were promising. 

The experiments were run while other jobs ran. 
Consequently, they were competing for PFS resources. 

In Figure 12 we see that PLFS MPIIND outperformed 
BulkIO by 3.5x and MPIIND by 3.8x for writes, on average 
over 20 restart dumps. 
 

 
 
Figure 12: EAP Asteroid Restart Average Write Bandwidth 

 
Because of the aforementioned performance variance that 

occurs in a non-dedicated system, we looked at the 
maximum write bandwidth as an indicator of potential I/O 
rates. PLFS still had a slight advantage. Figure 13 shows that 
the maximum write bandwidth for PLFS MPIIND 
outperformed BulkIO by 1.1x and MPIIND by 1.94x. 
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Figure 13: EAP Asteroid Restart Maximum Write 
Bandwidth 

 
We did restart the Asteroid problem from the restart file. 

PLFS read performance was better than BulkIO by 1.58x, 
and relatively equal to MPIIND. See Figure 14. 
 

 
 

Figure 14: EAP Asteroid Restart Read Bandwidth 
 

Encouraged by the results with the Asteroid problem, we 
wanted to try a large-scale problem from an active 
calculation. The EAP personnel provided an input deck and 
restart dump of 23 TiB that was well into its calculation so 
that it wasn’t sparse. We call this problem “MD” for Marcus 
Daniels, the EAP developer who helped us to run this 
problem. 

We ran an apples-to-apples comparison for this problem 
on lscratch2. We wanted to see how BulkIO did with the 
largest PFS we could use, so we ran this problem on 
lscratch3. Finally we wanted to assess PLFS MPIIND on the 
largest PFS we could use for it. Since PLFS has the ability to 
combine multiple PFSs into a single virtual PFS, we 

configured a combination of lscratch2, lscratch3, and 
lscratch4 for that run. 

Using lscratch2 PLFS MPIIND outperformed BulkIO by 
1.5x. When we targeted the larger lscratch3 with BulkIO we 
gained some performance. Targeting the virtual PFS with 
PLFS MPIIND used 2x the PFS hardware and outperformed 
BulkIO on lscratch3 by 3.1x. This would suggest that for this 
problem we should expect to see the 1.5x apples-to-apples 
performance gain for PLFS MPIIND over BulkIO. See 
Figure 15. 
 

 
 

Figure 15: EAP MD Restart Write Bandwidth 
 

Initially we could not restart from the PLFS MPIIND 
“MD” restart file because the index was so large that the read 
would not complete before memory was exhausted. Our 
work on this problem is discussed in the Scalable Index 
Management subsection of the Lessons Learned from the 
Evaluation section. We implemented a workaround that 
assumed we were restarting with the same number of 
processors that wrote the file and then we were able to 
successfully read the restart file. Nevertheless, we could not 
continue with “MD” as it reached a point where a memory 
exhaustion problem in the application was encountered. This 
was an application error, not an I/O issue. 

While PLFS MPPIND outperformed BulkIO by 2.1x on 
lscratch2 for read bandwidth, and BulkIO increased its 
performance by doubling the PFS hardware by using 
lscratch3, we did not see the PLFS MPIIND increased read 
performance scale by quadrupling the PFS hardware when 
we combined lscratches 2, 3, and 4 into a single virtual PFS. 
Read results are shown in Figure 16. 
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Figure 16: EAP MD Restart Read Bandwidth 
 

We did not assess the usability of EAP’s data inspection 
and analysis tools when the files are on a PLFS PFS. 
However, we do not expect to see anything different than we 
saw with the same experiments we did with Silverton’s files 
on a PLFS PFS. Those results are documented in the next 
subsection, Basic File Operations., of this section. 

D. Basic File Operations 
Users commonly need to adjust their files. The most 

common operations, other than simple listings (e.g. ls) are 
renaming (mv), copying (cp), removing (rm or unlink), and 
archiving (psi, parallel storage interface, and hsi, hierarchical 
storage interface). Simple experiments were conducted 
selecting from 2.2 TiB, 601 GiB, and 18 GiB Silverton files 
to compare these operations on PLFS and Lustre. 

In order to do these operations a mount point is required 
for the PLFS PFS. These mount points are provided using 
FUSE. 

There was no distinguishable difference renaming a file. 
On both PLFS and Lustre PFSs the operation took ~1 
second. 

We tested all four combinations of copying a file: Lustre 
to Lustre (L-L), PLFS to PLFS (P-P), Lustre to PLFS (L-P), 
and PLFS to Lustre (P-L). The copy operations for the two 
larger files were taking a very long time, so we used the 
smallest file, 18 GiB. The L-L copy was the fastest so we 
normalize that to 1.0x. The P-P copy was 9.5x. The L-P copy 
was 8.7x. The P-L copy was 5x. After completing the 
archive testing we made a discovery about the size of the 
FUSE buffers that increased the archive performance that 
will be discussed in the archive operation performance 
results. We have not had the opportunity to repeat the copy 
operations, but we expect this change to help the simple copy 
operations in PLFS be comparable to Lustre. 

The Linux rm command does a lot more work involving 
metadata server interaction for the file that is removed than 
the unlink command. Since PLFS converts a single file into 
many files, it was believed that it would pay an overhead 
price due to its many files versus the one file that would be 

on a Lustre file system. So, we tested rm and unlink, where 
unlink just removes the file’s entry in the metadata server 
rather than first stat’ing, then removing the entry, then 
stat’ing again to ensure it is gone. The 601 GiB file was 
removed from PLFS and Lustre in less than 1 second. Unlink 
operations were even faster, 0.02 seconds. 

To test archive operations we began with the LANL-
developed psi. Initially, archiving from PLFS to HPSS (High 
Performance Storage System, LANL’s archive system) was 
14x slower than archiving from Lustre to HPSS. 

LANL was in the process of converting from using psi to 
hsi. Working with Michael Gleicher, developer and 
maintainer of hsi, and David Sherrill, a LANL archive 
developer, we were able to determine the sizes of hsi’s 
buffers and I/O requests to the PFS, which were 8 MiB and 4 
MiB, respectively. Using PLFS debug tools we were able to 
see that FUSE was receiving 128 KiB I/O requests and 
asking PLFS to read that much at a time. That means that hsi 
was issuing two 4 MiB I/O requests to fill its buffer, which 
were turned into sixty-four 128 KiB I/O requests to the 
actual PFS. 

Through a LANL colleague, H. B. Chen, we learned how 
to patch the Linux kernel and FUSE kernel module to use 
larger buffers that matched the buffers being used by PLFS 
client applications. A few members of the LANL HPC 
System Administration team integrated these changes into 
their configuration management system and produced a FTA 
(File Transfer Agent, a separate system of nodes that LANL 
uses solely to move files between file systems or between 
file systems and archive) with Linux and FUSE patched to 
use 4 MiB buffers so that we could measure transfers from 
PLFS to HPSS and show that these transfers were actually 
faster than transfers from Lustre to HPSS by 1.36x - 2.39x, 
depending on the size of the file transferred. 

V. LESSONS LEARNED FROM THE EVALUATION 
There are a couple known shortcomings that prevent 

PLFS from being used as a production application PFS 
capability. These are overcoming the lack of performance of 
some basic file operations using Linux or third-party 
utilities on PLFS FUSE mount points and the lack of a 
scalable index management capability. 

A. Basic File Operations 
We think we have solved this issue by increasing the 

FUSE read/write buffer sizes. We need to prove this through 
testing. 

Unfortunately, FUSE read/write buffer sizes can not be 
changed using a configuration file, but rather source code 
patches and a Linux kernel and FUSE kernel module rebuild 
are required. It is impractical to rewrite every Linux or third-
party utility to use the PLFS API and avoid using PLFS 
FUSE mount points. 

We highly recommend patching the Linux kernel and 
FUSE kernel module to use at least 4 MiB read/write buffers. 
By this manner the performance of basic file operations 
commands is greatly improved to be on par with or better 
than for non-PLFS PFSs. PLFS will not do an I/O request 
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larger than the size used in any individual write when writing 
the file. In order to get the maximum benefit, the PLFS 
threadpool_size configuration parameter in the PLFSRC file 
should be set so that the enough threads are spawned to 
concurrently fill the buffer by dividing the buffer size by the 
size of the individual writes. 

That said, the threadpool_size is on a per-request basis. 
So if multiple threads issue reads, then PLFS will create a 
separate thread pool for each thread doing reads. Therefore, 
it is possible that a highly concurrent workload on top of 
PLFS will result in PLFS spawning a crippling number of 
threads. Caveat emptor. 

B. Scalable Index Management 
PLFS’s major drawback is that in order to read a file, 

every processor in the parallel job must read the entire index 
into memory. When this was done with the 23 TiB file, the 
index consumed ~750 MiB per processor and the application 
soon exhausted the node’s DRAM. In order to read larger 
files, which tend to have larger indexes (though if an 
application does many small writes the index can also be 
large), a scalable index management capability is required. It 
is not scalable for each processor to read the entire index into 
memory. 

We are currently in the assessment phase of what appears 
to be a promising approach to address this problem, MDHIM 
(Multi-Dimensional Hashing Indexing Middleware). 

MDHIM is a parallel key/value store framework written 
in MPI. Unlike other big data solutions, MDHIM has been 
designed for an HPC environment and to take advantage of 
high-speed networks [6]. It provides a high-performance, 
distributed index look-up capability that scales because it 
does not require an application to load the entire index into 
memory and because it can distribute the indexes over a non-
fixed number of servers. 

VI. SUMMARY 
We observed as much as 5x improvement in write 

performance for the benchmark application. We observed a 
1.5x write performance improvement for the Silverton and 
EAP applications when using lscratch3, and a 3x write 
performance improvement when we doubled the size of the 
file system for PLFS, as PLFS is capable of combining 
multiple file systems into one larger virtual file system.  

While some work remains to make PLFS production-
ready, it shows great promise to provide an application and 
underlying PFS-agnostic means of allowing programmers to 
use N-1 and obtain near N-N performance without 
maintaining custom I/O implementations. 
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