
LA-‐UR-‐14-‐21447

Lustre and PLFS Parallel I/O Performance on a Cray XE6
Comparison of File Systems

Brett M. Kettering
HPC-5

Los Alamos National Laboratory
Los Alamos, USA
brettk@lanl.gov

David Bonnie

HPC-3
Los Alamos National Laboratory

Los Alamos, USA
dbonnie@lanl.gov

Alfred Torrez
HPC-5

Los Alamos National Laboratory
Los Alamos, USA
atorrez@lanl.gov

David Shrader

HPC-3
Los Alamos National Laboratory

Los Alamos, USA
dshrader@lanl.gov

Abstract—Today’s computational science demands have
resulted in larger, more complex parallel computers. Their
PFSs (Parallel File Systems) generally perform well for N-N
I/O (Input/Output), but often perform poorly for N-1 I/O.
PLFS (Parallel Log-Structured File System) is a PFS layer
under development that addresses the N-1 I/O shortcoming
without requiring the application to rewrite its I/O. The PLFS
concept has been covered in prior papers. In this paper, we will
focus on an evaluation of PLFS with Lustre underlying it
versus Lustre alone on a Cray XE6 system. We observed
significant performance increases when using PLFS over these
applications’ normal N-1 I/O implementations without
significant degradation in the N-N I/O implementations. While
some work remains to make PLFS production-ready, it shows
great promise to provide an application and underlying file
system agnostic means of allowing programmers to use the N-1
I/O model and obtain near N-N I/O model performance
without maintaining custom I/O implementations.

Keywords-File System, N-1, Parallel, I/O, Performance

I. INTRODUCTION [1]
Because today’s large, complex parallel computers

contain many components; applications must protect
themselves from component failures that interrupt the run.
This is done through application checkpointing, where the
state of the calculation is saved to persistent storage so that
the application can be restarted from its last saved state and
eventually complete.

A natural, flexible, and less metadata-intensive I/O
pattern is N-1. Figure 1 depicts this I/O pattern.

Figure 1: N-1 I/O Pattern
In this paper when we say, “N-1”, we specifically mean

N-1 strided. In this pattern the processes write multiple
small regions at many different offsets within the file. The
challenge to the PFS is that these offsets are typically not
aligned with file system block boundaries. This results in
many concurrent accesses to the same file at different
locations. Consequently, the HDDs (hard disk drives) must
perform many seek operations and multiple writes to the
same file system block will be serialized. Hence, N-1 is
poorly served by current PFSs, especially at very large
scale. To a lesser extent PFSs must implement a file region
locking scheme to ensure POSIX compliance.

Because of performance issues with N-1, some
applications have changed to N-N, and can obtain good
performance on today’s PFSs. In N-N, each process does I/O
to a handful of reasonably sized files. Figure 2 depicts this
I/O pattern (where “File” can be more than one file, but
usually just a few).

Figure 2: N-N I/O Pattern

Nevertheless, even this model is showing signs of

scalability issues when applications put all these files in a
single directory. Some applications have implemented
custom directory hierarchies to address the issue of
overloading a directory with too many files. In the N-N
model, PLFS distributes the files to multiple directories,
alleviating the application of this responsibility.

The rest of the paper is organized as follows. We present
more detailed background and motivation in Section II

Node	 1
.
.
.

Node	 n

File

Node	 1
.
.
.

Node	 n

File1
.
.
.

File	 n

LA-‐UR-‐14-‐21447

describe our method for evaluation in Section III and our
evaluation results in Section IV. We present the lessons we
learned in Section V, and summarize in Section VI.

II. BACKGROUND [1]
PLFS is publicly available at https://github.com/plfs/plfs-

core. Anyone may download and use it. While LANL and its
PLFS development partners have been the primary users to
date, others have downloaded and used it. We have had some
communications with a handful of other users experimenting
with PLFS for their parallel I/O workloads.

There are three interfaces to use PLFS. They are: using
MPI/IO (Message Passing Interface I/O) through MPI’s
ADIO (Abstract Device Interface for I/O); the normal
POSIX (Portable Operating System Interface) file system
interface using PLFS FUSE (File System in User Space)
mount points; and the PLFS-specific API (Application
Programmer’s Interface).

The MPI/IO interface is simple to use, but it does require
work on the part of those who maintain the development
environment. There is a well-documented patching
procedure for MPI/IO that requires access to the MPI source
code. Once this is completed the application developer needs
to link against that patched MPI and the corresponding PLFS
library. The application developer needs to make one small
change to the filename parameter of MPI_File_open. That
change is to prepend the string, “plfs:” to the filename that is
opened. Every subsequent call to a MPI/IO function is done
as before. This is the recommended interface as it yields the
highest performance for the least change to the application.

There is no application change to use the PLFS FUSE
interface. It is as simple as using a standard POSIX filename
in a POSIX open statement. Be warned that FUSE serializes
all I/O requests. Running N-1 through a PLFS FUSE mount
on a single node will result in very poor performance. To use
this interface the System Administrators must install the
PLFS FUSE daemon application and configure it to provide
POSIX file system mount points that are usable by user
applications. We have found that the default FUSE read and
write buffer size is only 128 KiB. This small size creates a
lot of overhead for applications, such as archive utilities, that
would otherwise move data in much larger chunk sizes,
which is much more efficient. Using read and write buffers
closer to the size of the transfers these applications use or
that is commonly used to write the file is best. At LANL, this
size is 4 MiB to 12 MiB. There is a known patch to the
Linux kernel and the FUSE kernel module that increases the
buffer sizes. Even after implementing this change to provide
larger FUSE buffers, there is still execution overhead using
FUSE. In order to allow users to use non-MPI applications
to, for example, copy or archive files these PLFS FUSE
mount points are required and are the recommended
interface to use for these purposes.

The PLFS API yields good performance, and it does not
require additional System Administration work to provide
PLFS FUSE mount points. Nevertheless, using this interface
requires a substantial change to the application. Any MPI/IO
or POSIX I/O call must be changed to the corresponding call
from the PLFS_API. For example, instead of calling

MPI_File_open or POSIX’s fopen the application must call
plfs_open. If a special-purpose application to perform some
operation on PLFS files is needed, this is a good choice
because it will yield excellent performance, not require PLFS
FUSE mount points, and it is no more work to use PLFS API
calls than it is to use MPI/IO or POSIX I/O calls.

PLFS currently supports three workload types. These are
N-1, N-N, and 1-N. They are also known as “shared_file”,
“file_per_proc”,and “small_file”, respectively. The first two
were briefly covered in the Introduction, section I.

The primary driver for developing PLFS was the N-1
workload because it is a popular way for large, parallel
applications to checkpoint their state and PFSs have
traditionally not handled this workload well. In a nutshell,
PLFS converts N-1 into N-N in a directory hierarchy. When
parallel applications write a file using N-1, they typically
barrier so that all processes are ready to write before any
writing begins. Next, the processes are released from the
barrier and begin to write the data for which they are
responsible. Finally, when the processes are done writing
they reach another barrier. Once all processes have
completed writing and are at the barrier the file is closed, the
data is synced to the PFS, and the processes resume
computing. A consequence of this algorithm is that there is
no guarantee that the data arrives to be written to storage in
order. For example, it is very possible for 1 MiB of data
intended to start at offset 0 (zero) in the file to arrive after 1
MiB of data intended to start at offset 3 MiB in the file. If we
were to attempt to reorder the data and write it so that it
physically lands at its logical location, write performance
would suffer due to buffering, reordering and storage device
seek latencies. As indicated in its name, PLFS is a log-
structured file system. That is, it physically writes the data to
storage in the order the data arrives, irrespective of its logical
position in the file. PLFS maintains an index mechanism that
maps a write’s logical position in the file to the physical
position to which it was actually written when the data
arrived. Thus, when a PLFS file is read, the index is
consulted and the data is accessed directly. There can be
many write cycles, and, generally, just one read – when the
application restarts, it reads its last known state one time.
Experience has shown that reading a PLFS file in this
manner performs well. The one drawback is a scalable and
well-performing index management mechanism is needed
for very large files. We are currently working on this
problem, and it will be discussed at the end of this paper. By
converting the N-1 workload to an N-N and writing data as it
arrives, PLFS overcomes the two major issues that slow N-1
performance on PFSs, namely HDD seeks and file region
locking.

In order to transform how an N-1 application does I/O to
something that is more efficient for the underlying PFSs, N-
N, there is some overhead. All the interfaces create a small
number of directories and files used to manage the files and
information PLFS uses to access the files as if they were a
single N-1 file. The number of overhead directories and files
depends on the interface used. We won’t go into detail on the
small variations, but we are happy to provide those details to
interested parties. Generally speaking the overhead is: for the

LA-‐UR-‐14-‐21447

MPI’s ADIO interface, 2 * number of writers files – one data
file and one index file per writer; for the PLFS FUSE
interface, number of writers files + number of nodes files –
one data file per writer and one index file per node; and for
the PLFS API interface, 3 * number of writers files – one
data file per writer, one index file per writer, and one meta
file per writer.

For example, there are 16 cores per node on ACES’s
(Advanced Computing at Extreme Scale, ACES is a
partnership of LANL (Los Alamos National Laboratory) and
SNL (Sandia National Laboratory)) Cray XE6. A typical
MPI application will have 16 MPI processes per node. An
application doing N-1 through MPI’s ADIO, where every
process is a writer, would create 32 files per node: 16 data
files and 16 index files. Additionally, a small number of files
and directories will be created that are used by PLFS itself
for tracking, debug, and other management purposes.

At this time most applications that use N-N will achieve
slightly better performance by not using PLFS. This is
because currently, most applications do not create so many
files that the PFS’s metadata server and directory locking
function are overwhelmed because of file count. Some PFSes
claim they can handle up to 10 million files in a single
directory without a reduction in performance. As HPC
systems move towards Exascale, even 10 million files may
become a small number for HPC applications. Some
applications have already implemented a hierarchical
directory structure to address the performance issues. Using
PLFS for N-N addresses the coming Exascale file count
issue by physically distributing the files in a hierarchical
directory structure for the application. However, it logically
presents to the users as if all the files were in a single
directory. Although most N-N applications will not achieve a
performance improvement using PLFS, N-N applications
with access to multiple PFSs may benefit from PLFS
because PLFS enables the aggregation of multiple PFSs into
a single virtual PFS with more hardware and MDSs to use
concurrently [2]. There is no file count overhead for N-N.
When one creates a directory on a N-N mount point a
directory is created on each PLFS backend storage device
over which the N files are distributed.

The final PLFS workload is in an experimental stage. We
became aware of a couple of users’ need to write many small
files per process, a few KiB or less each. One application
estimated that if it converted to this workload it would write
up to 400,000 files per process, each file containing 2 KiB –
10 KiB. Writing so little data to each file does not allow a
PFS to amortize the file creation/sync/close overhead over
much data and consequently the PFS performs very poorly
with such a workload. PLFS overcomes this issue by actually
reducing the number of files created. Instead of N processes
* M files/process, it creates N files (one per process) and
stacks the other M files within the one file. Each process also
creates two small files in which it keeps metadata. It
logically presents to the user as if there were N * M files. We
call this workload 1-N. We have some very preliminary
numbers for the file creation process and creating many files
per process and writing a very small amount of data to each
file. These numbers give us hope that we can help

applications creating many thousands of small files per
process. In order to achieve good performance the workload
is not completely POSIX-compliant. Explicit sync calls are
required to ensure the latest data is on storage if a thread on
another node needs it before the application doing the
writing terminates. There is a file count overhead for 1-N.
One file is the data log for all the files. One file is almost a
traditional PLFS index dropping but each index entry needs
another field to specify which file it refers to in the data log.
Normal N-1 PLFS index entries don’t need this since the
data in the data log only belongs to a single file. Since we
intersperse data for many files into one data log in 1-N, the
index entry needs this new field to identify to which file the
data chunk belongs. This field could hold a string for the file
name but that would make the index log too big and would
introduce variable-length fields since some filenames are
short and some are long. So, we just put an integer into that
file_id field. Finally, we need a third file that maps that
integer to a string name.

III. METHOD FOR EVALUATION
The primary means of evaluation was using a benchmark

application and full-scale simulation applications from two
key project teams at LANL. These are detailed in the
subsequent subsections.

A small effort was made to perform some basic file
operations that are done by the application users in their
day-to-day management of their files.

A. fs_test Benchmark
fs_test is an open source I/O pattern emulation

benchmark application developed at LANL. It is freely
available at https://github.com/orgs/fs-test [3].

This benchmark application can be used to emulate a real
applications I/O pattern. It supports the MPI/IO, POSIX, and
PLFS API I/O interfaces. For the purposes of this evaluation
we used this benchmark application to generate a maximum
write and read bandwidth scenario where a lot of data is
written to amortize away the overhead of open/sync/close
operations. We ran tests using MPI/O to compare PLFS and
Lustre PFSs.

B. Silverton Applications
Silverton is a project with applications that implement a

computational fluid dynamics capability developed at LANL
for the study of high-speed compressible flow and high-rate
material deformation. Silverton’s applications implement a
three-dimensional Eulerian finite difference code, solving
problems with a wide variety of EOSs (equations of state),
material strength, and explosive modeling options [4].

Scientists simulate large-scale physical phenomena using
this suite of applications, and have done so for many years.
Consequently, there are many problems that exist for the
applications that can provide intense bursts of checkpoint
I/O. The applications have a handful of I/O types from which
to choose. One of them is MPI/IO N-1 with node
aggregation. That is, all MPI ranks on a node send their data
to one rank, which aggregates the data and performs the I/O
on behalf of the node’s MPI ranks. On the ACES Cray XE6

LA-‐UR-‐14-‐21447

this meant one of every 16 MPI ranks doing checkpoint I/O.
This I/O type improves the N-1 performance by amortizing
fewer open/sync/close operations over more data.

C. EAP (Eulerian Applications Project) Applications
EAP is a project with applications such as xRAGE

(Radiation Adaptive Grid Eulerian), which is a radiation-
hydrodynamics code using a Godunov solver on an Eulerian
mesh with an AMR (Adaptive Mesh Refinement) algorithm,
and a radiation diffusion algorithm. It solves the Euler
equations for compressible gas dynamics using finite-volume
methods. It has been used to study fluid flow in highly
distorted systems [5].

This suite of applications has been evolving at LANL for
many decades. They are the true workhorse applications at
LANL for this type of computation. Here too, there are
many, many well-understood problems that generate
appropriately sized checkpoint I/O for our comparison
purposes. Furthermore, there was a recent problem of interest
that generated one of the largest checkpoint files we’d been
able to use, at 23 TiB. This file was a good test of the Lustre
PFS, PLFS, and our archive. These applications also have a
handful of I/O types from which to choose. One of them is a
custom I/O model that was modified for the Cray XE6’s
Lustre PFS to stripe a file over 160 OSTs (Object Storage
Targets, which are logical storage units, for example, RAIDx
LUN or a Zpool) and set the stripe size (the number of bytes
written to an OST before moving to the next OST) to a large
value. This I/O method uses one writer per OST over which
the file is striped. Each writer aggregates data until it has one
stripe width of data buffered and then writes it to an OST. By
this manner, each writer writes the maximum data allowed in
a stripe to its own OST with each write, thus maximizing its
I/O bandwidth. It was a great challenge for PLFS, a general-
purpose solution, to compare against this I/O method, a
custom solution that is tuned to maximize bandwidth for
each PFS to which it is ported. PLFS was used for these
applications’ MPI/IO method where each process does its
own I/O.

Also, using the 23 TiB file was a great opportunity for us
to measure how PLFS’s performance scales when we
combine multiple PFSs into one virtual PFS. The ACES
Cray XE6 has divided its PFS capability into three Lustre
PFSs: lscratch2 is a ¼-sized PFS; lscratch3 is a ½-sized PFS;
and lscratch4 is another ¼-sized PFS. PLFS, unlike any other
I/O mechanism of which we are aware, allows us to combine
these three PFSs into one very large virtual PFS.

D. Basic File Operations
Users commonly need to adjust their files. The most

common operations, other than simple listings (e.g. ls) are
renaming (mv), copying (cp), removing (rm or unlink) and
archiving (hsi). Simple experiments were conducted on files
up to 2.2 TiB to compare PLFS and Lustre PFSs’
performance for these operations.

IV. EVALUATION RESULTS
The Lustre file system has mitigated the effects of N-1

through OST striping. By telling Lustre to lay the file out

over many OSTs and how much to write to each OST before
moving to the next an application can concurrently engage
many of the Lustre file system components. For example,
suppose an application chooses to aggregate I/O to 160
writing processes and sets up so that each process writes 12
MiB each time it writes. The application can tell Lustre that
it wants the file striped over 160 OSTs and to write 12 MiB
stripe sizes. This can be done through ioctl (I/O Control)
calls or interactively. Interactively it is done with this lfs
(Lustre file system) command:

% lfs setstripe -c 160 -s 12M <filename>

The main issue with this is that it is file system-specific.

When the application runs on a system with a different PFS
the means for achieving the highest possible I/O rate
changes. PLFS removes this issue by being configured to get
the best performance from the underlying PFS while
providing the same I/O interface to the application from
system to system.

A. fs_test Benchmark
We used fs_test to generate a maximum write and read

bandwidth scenario where a lot of data is written to amortize
away the overhead of open/sync/close operations. Each
process wrote/read 48 MiB per write/read for 5 minutes. We
ran tests using MPI/O to compare PLFS and Lustre PFSs.
fs_test provides performance results for “Effective” and
“Raw” bandwidths. The former includes the overhead time
for the open/sync/close operations as well as the write and
read operations. This is indicative of the user experience.
The latter excludes the open/sync/close overhead time. It is
an indication of the write and read bandwidths that the PFSs
can achieve.

Figures 3 - 6 show the fs_test results. There are a couple
of missing measurements where jobs were not run because of
system resource demands for the real applications.
Specifically, these were the 32768 and 65536 processors
runs for N-1.

These experiments were run while other jobs ran.
Consequently, they were competing for PFS resources. The
measurements were taken using the ACES Cray XE6
lscratch3 PFS.

It appears that the 32768 processors run for PLFS N-1
saw reduced performance due to another application
probably doing I/O at the same time.

LA-‐UR-‐14-‐21447

Figure 3: fs_test Maximum Effective Write Bandwidth
Results

Figure 4: fs_test Maximum Raw Write Bandwidth Results

Figure 5: fs_test Maximum Effective Read Bandwidth
Results

Figure 6: fs_test Maximum Raw Read Bandwidth Results

In this scenario we observe that PLFS N-N and Lustre N-
N performance is nearly identical. More importantly we
observe that PLFS N-1 significantly outperforms Lustre N-1,
and what is more, it is generally within 10% of the PLFS and
Lustre N-N performance.

These results indicated to us that PLFS might do very
well at improving the N-1 performance of real applications.
And so we moved on to experiment with the Silverton and
EAP applications.

B. Silverton Applicatons
The first order of business was to modify the Silverton

applications’ shared code that opens a file via MPI/IO. This
involved a very small change to declare some temporary
variables and prepend the required PLFS prefix for MPI/IO,
“plfs:” to the filename to be opened. Next we enhanced
Silverton’s setup script to define the environment to point to
the patched MPI and PLFS installations that support PLFS
use. Finally we had to add a reference to
${PLFS_LDFLAGS} to Silverton’s Makefiles so that the
applications linked in the proper libraries.

Once we had applications that could use PLFS, it was
time to make some measurements. We started with a smaller
problem to test the waters.

Silverton’s I/O mode, “mpiio”, is N-1 where data is
aggregated to a single writer on each node and that writer
writes 1 MiB each write. To maximize its performance we
set the stripe count to 137 because this was the number we
recalled being used by EAP’s BulkIO (it was actually 136),
and the stripe size to 1 MiB. We later changed to the stripe
count to the maximum allowed value of 160, but that did not
significantly change the results.

These experiments were run while other jobs ran.
Consequently, they were competing for PFS resources. The
measurements were taken using the ACES Cray XE6
lscratch3 PFS. The results were promising.

Figures 7 - 8 show the write bandwidth results for the
two largest output file types in a Silverton application
simulation. The restart file was 1.15 TiB and the graphics file
was 215.33 GiB.

LA-‐UR-‐14-‐21447

Figure 7: Silverton Small Restart Write Bandwidth Results

Figure 8: Silverton Small Graphics Write Bandwidth Results

PLFS outperformed Lustre by 1.68x for the restart file
and by 2.85x for the graphics file.

The graphics file is processed by another application. We
briefly experimented with that process for the large problem
and those results will be discussed where large file results are
presented.

We did restart the simulation from the restart file. PLFS
read performance was better than Lustre by 1.28x. See
Figure 9.

Figure 9: Silverton Small Restart Read Bandwidth Results

Encouraged by the results with the small test problem, we
wanted to try a larger problem. Unable to acquire access to a
large active calculation, we worked with a Silverton
developer to create a problem that would generate large
restart dumps, ~17 TiB at 32K pes.

Silverton has a N-1 mode called, “mpiio_ctg”. Each
process has a segment of the N-1 file where it writes its
results contiguously. Generically, we call this N-1
segmented. We widely striped this file to a stripe count of
160 and used the same 1 MiB stripe size.

We ran an apples-to-apples comparison for this problem
on lscratch3. We compared Silverton’s N-1 (“mpiio”), N-1
segmented (“mpiio_ctg”), and N-N (“mpiio_fms”), all for
PLFS and Lustre. We discovered a bug in Silverton’s N-1
segmented mode for the graphics file, but we show the
results for the restart file in figures 10 and 11. Figure 10
shows the average performance over a handful of runs (6 for
512 processors with a file size of 274.63 GiB; 6 for 4096
processors with a file size of 2.15 TiB; and 3 for 32768
processors with a file size of 17.16 TiB). Because
performance variance can occur in a non-dedicated system,
in Figure 11 we show the maximum write bandwidth as an
indicator of potential I/O rates.

LA-‐UR-‐14-‐21447

Figure 10: Silverton Large Average Restart Write Bandwidth

Results

Figure 11: Silverton Large Restart Maximum Write
Bandwidth Results

At 512 processors, N-1 outperformed PLFS N-1. By

32768 processors PLFS N-1’s advantage was 1.5x. This is
likely because at 512 processors there were only 32 writers,
which is well under the OST count for the file, so it was not
suffering the concurrent access problem. By 4096 processors
(256 writers) there were slightly more writers than OSTs,
and at 32768 processors (2048 writers) there were many
more writers than OSTs. PLFS N-1 segmented always
outperformed N-1 segmented. At 32768 processors its
performance advantage was 4.7x. PLFS N-N is generally in
the same performance regime as N-N. This is likely because
the concurrence problem for traditional N-1 was more
present since the number of writers was equal to the number
of processors, so 16x the number of writers as with N-1.

The shapes of the curves are similar, though at 512
processors N-N has more of an advantage over PLFS.
However, as the processor count grows, especially at 32768
processors, PLFS is even closer to being the same as N-N.

In order to visualize Silverton graphics files with Ensight
they must be converted to the Ensight format. The Silverton

gd_es application does this. The test problem started with
one 76 GiB graphics file and produced one 2.4 GiB file,
sixteen 2.2 GiB files, one 400 byte file, and one 11 KiB file.
The time for this conversion on Lustre was 00:05:37, and on
PLFS it took 00:06:49, a 1.2x advantage for Lustre. There
were issues getting multiple Ensight servers working and the
data set was too large for a single server, so we were unable
to time the Ensight ingestion times.

C. EAP Applications
EAP had previously modified its code and input deck

parameters to allow for PLFS use. The extent of the changes
was to introduce a hint key parameter that sets the prefix,
“plfs:” that is prepended to the file specification when the
target PFS is PLFS. EAP has a custom cshrc file that sets up
the build environment. The only changes necessary here are
to load a MPI module that has been patched for PLFS and
load the PLFS module.

Initial measurements were made with the EAP Asteroid
test problem, which generates a 627.93 GiB restart file. We
compared BulkIO, MPIIND, and PLFS through MPIIND. a
BulkIO is a custom N-1 that works as previously described.
MPIIND is N-1 where each process does its own I/O. This
problem does one run that writes a restart dump 20 times.
The measurements are all directly from the EAP code’s
output. The measurements were taken using the ACES Cray
XE6 lscratch4 PFS The results were promising.

The experiments were run while other jobs ran.
Consequently, they were competing for PFS resources.

In Figure 12 we see that PLFS MPIIND outperformed
BulkIO by 3.5x and MPIIND by 3.8x for writes, on average
over 20 restart dumps.

Figure 12: EAP Asteroid Restart Average Write Bandwidth

Because of the aforementioned performance variance that

occurs in a non-dedicated system, we looked at the
maximum write bandwidth as an indicator of potential I/O
rates. PLFS still had a slight advantage. Figure 13 shows that
the maximum write bandwidth for PLFS MPIIND
outperformed BulkIO by 1.1x and MPIIND by 1.94x.

LA-‐UR-‐14-‐21447

Figure 13: EAP Asteroid Restart Maximum Write
Bandwidth

We did restart the Asteroid problem from the restart file.

PLFS read performance was better than BulkIO by 1.58x,
and relatively equal to MPIIND. See Figure 14.

Figure 14: EAP Asteroid Restart Read Bandwidth

Encouraged by the results with the Asteroid problem, we
wanted to try a large-scale problem from an active
calculation. The EAP personnel provided an input deck and
restart dump of 23 TiB that was well into its calculation so
that it wasn’t sparse. We call this problem “MD” for Marcus
Daniels, the EAP developer who helped us to run this
problem.

We ran an apples-to-apples comparison for this problem
on lscratch2. We wanted to see how BulkIO did with the
largest PFS we could use, so we ran this problem on
lscratch3. Finally we wanted to assess PLFS MPIIND on the
largest PFS we could use for it. Since PLFS has the ability to
combine multiple PFSs into a single virtual PFS, we

configured a combination of lscratch2, lscratch3, and
lscratch4 for that run.

Using lscratch2 PLFS MPIIND outperformed BulkIO by
1.5x. When we targeted the larger lscratch3 with BulkIO we
gained some performance. Targeting the virtual PFS with
PLFS MPIIND used 2x the PFS hardware and outperformed
BulkIO on lscratch3 by 3.1x. This would suggest that for this
problem we should expect to see the 1.5x apples-to-apples
performance gain for PLFS MPIIND over BulkIO. See
Figure 15.

Figure 15: EAP MD Restart Write Bandwidth

Initially we could not restart from the PLFS MPIIND
“MD” restart file because the index was so large that the read
would not complete before memory was exhausted. Our
work on this problem is discussed in the Scalable Index
Management subsection of the Lessons Learned from the
Evaluation section. We implemented a workaround that
assumed we were restarting with the same number of
processors that wrote the file and then we were able to
successfully read the restart file. Nevertheless, we could not
continue with “MD” as it reached a point where a memory
exhaustion problem in the application was encountered. This
was an application error, not an I/O issue.

While PLFS MPPIND outperformed BulkIO by 2.1x on
lscratch2 for read bandwidth, and BulkIO increased its
performance by doubling the PFS hardware by using
lscratch3, we did not see the PLFS MPIIND increased read
performance scale by quadrupling the PFS hardware when
we combined lscratches 2, 3, and 4 into a single virtual PFS.
Read results are shown in Figure 16.

LA-‐UR-‐14-‐21447

Figure 16: EAP MD Restart Read Bandwidth

We did not assess the usability of EAP’s data inspection
and analysis tools when the files are on a PLFS PFS.
However, we do not expect to see anything different than we
saw with the same experiments we did with Silverton’s files
on a PLFS PFS. Those results are documented in the next
subsection, Basic File Operations., of this section.

D. Basic File Operations
Users commonly need to adjust their files. The most

common operations, other than simple listings (e.g. ls) are
renaming (mv), copying (cp), removing (rm or unlink), and
archiving (psi, parallel storage interface, and hsi, hierarchical
storage interface). Simple experiments were conducted
selecting from 2.2 TiB, 601 GiB, and 18 GiB Silverton files
to compare these operations on PLFS and Lustre.

In order to do these operations a mount point is required
for the PLFS PFS. These mount points are provided using
FUSE.

There was no distinguishable difference renaming a file.
On both PLFS and Lustre PFSs the operation took ~1
second.

We tested all four combinations of copying a file: Lustre
to Lustre (L-L), PLFS to PLFS (P-P), Lustre to PLFS (L-P),
and PLFS to Lustre (P-L). The copy operations for the two
larger files were taking a very long time, so we used the
smallest file, 18 GiB. The L-L copy was the fastest so we
normalize that to 1.0x. The P-P copy was 9.5x. The L-P copy
was 8.7x. The P-L copy was 5x. After completing the
archive testing we made a discovery about the size of the
FUSE buffers that increased the archive performance that
will be discussed in the archive operation performance
results. We have not had the opportunity to repeat the copy
operations, but we expect this change to help the simple copy
operations in PLFS be comparable to Lustre.

The Linux rm command does a lot more work involving
metadata server interaction for the file that is removed than
the unlink command. Since PLFS converts a single file into
many files, it was believed that it would pay an overhead
price due to its many files versus the one file that would be

on a Lustre file system. So, we tested rm and unlink, where
unlink just removes the file’s entry in the metadata server
rather than first stat’ing, then removing the entry, then
stat’ing again to ensure it is gone. The 601 GiB file was
removed from PLFS and Lustre in less than 1 second. Unlink
operations were even faster, 0.02 seconds.

To test archive operations we began with the LANL-
developed psi. Initially, archiving from PLFS to HPSS (High
Performance Storage System, LANL’s archive system) was
14x slower than archiving from Lustre to HPSS.

LANL was in the process of converting from using psi to
hsi. Working with Michael Gleicher, developer and
maintainer of hsi, and David Sherrill, a LANL archive
developer, we were able to determine the sizes of hsi’s
buffers and I/O requests to the PFS, which were 8 MiB and 4
MiB, respectively. Using PLFS debug tools we were able to
see that FUSE was receiving 128 KiB I/O requests and
asking PLFS to read that much at a time. That means that hsi
was issuing two 4 MiB I/O requests to fill its buffer, which
were turned into sixty-four 128 KiB I/O requests to the
actual PFS.

Through a LANL colleague, H. B. Chen, we learned how
to patch the Linux kernel and FUSE kernel module to use
larger buffers that matched the buffers being used by PLFS
client applications. A few members of the LANL HPC
System Administration team integrated these changes into
their configuration management system and produced a FTA
(File Transfer Agent, a separate system of nodes that LANL
uses solely to move files between file systems or between
file systems and archive) with Linux and FUSE patched to
use 4 MiB buffers so that we could measure transfers from
PLFS to HPSS and show that these transfers were actually
faster than transfers from Lustre to HPSS by 1.36x - 2.39x,
depending on the size of the file transferred.

V. LESSONS LEARNED FROM THE EVALUATION
There are a couple known shortcomings that prevent

PLFS from being used as a production application PFS
capability. These are overcoming the lack of performance of
some basic file operations using Linux or third-party
utilities on PLFS FUSE mount points and the lack of a
scalable index management capability.

A. Basic File Operations
We think we have solved this issue by increasing the

FUSE read/write buffer sizes. We need to prove this through
testing.

Unfortunately, FUSE read/write buffer sizes can not be
changed using a configuration file, but rather source code
patches and a Linux kernel and FUSE kernel module rebuild
are required. It is impractical to rewrite every Linux or third-
party utility to use the PLFS API and avoid using PLFS
FUSE mount points.

We highly recommend patching the Linux kernel and
FUSE kernel module to use at least 4 MiB read/write buffers.
By this manner the performance of basic file operations
commands is greatly improved to be on par with or better
than for non-PLFS PFSs. PLFS will not do an I/O request

LA-‐UR-‐14-‐21447

larger than the size used in any individual write when writing
the file. In order to get the maximum benefit, the PLFS
threadpool_size configuration parameter in the PLFSRC file
should be set so that the enough threads are spawned to
concurrently fill the buffer by dividing the buffer size by the
size of the individual writes.

That said, the threadpool_size is on a per-request basis.
So if multiple threads issue reads, then PLFS will create a
separate thread pool for each thread doing reads. Therefore,
it is possible that a highly concurrent workload on top of
PLFS will result in PLFS spawning a crippling number of
threads. Caveat emptor.

B. Scalable Index Management
PLFS’s major drawback is that in order to read a file,

every processor in the parallel job must read the entire index
into memory. When this was done with the 23 TiB file, the
index consumed ~750 MiB per processor and the application
soon exhausted the node’s DRAM. In order to read larger
files, which tend to have larger indexes (though if an
application does many small writes the index can also be
large), a scalable index management capability is required. It
is not scalable for each processor to read the entire index into
memory.

We are currently in the assessment phase of what appears
to be a promising approach to address this problem, MDHIM
(Multi-Dimensional Hashing Indexing Middleware).

MDHIM is a parallel key/value store framework written
in MPI. Unlike other big data solutions, MDHIM has been
designed for an HPC environment and to take advantage of
high-speed networks [6]. It provides a high-performance,
distributed index look-up capability that scales because it
does not require an application to load the entire index into
memory and because it can distribute the indexes over a non-
fixed number of servers.

VI. SUMMARY
We observed as much as 5x improvement in write

performance for the benchmark application. We observed a
1.5x write performance improvement for the Silverton and
EAP applications when using lscratch3, and a 3x write
performance improvement when we doubled the size of the
file system for PLFS, as PLFS is capable of combining
multiple file systems into one larger virtual file system.

While some work remains to make PLFS production-
ready, it shows great promise to provide an application and
underlying PFS-agnostic means of allowing programmers to
use N-1 and obtain near N-N performance without
maintaining custom I/O implementations.

ACKNOWLEDGMENT
We wish to thank the DOE’s (Department of Energy)

NNSA (National Nuclear Security Administration) ASC
(Advanced Simulation & Computing) Program at LANL for
funding this work.

We are grateful to our CRADA (Cooperative Research
and Development Agreement) partner, EMC, for its
contribution to furthering PLFS capabilities.

We thank CMU’s (Carnegie Mellon University) PDL
(Parallel Data Laboratory), under the direction of Professor
Garth Gibson, for its contributions to PLFS.

Cray has been supportive by integrating the PLFS MPI
ADIO interface to Cray’s proprietary MPI.

The following people were contributors to the work that
was done to write this paper.

PLFS: Aaron Torres, David Bonnie, Alfred Torrez,
David Shrader, Chuck Cranor (CMU), John Bent (EMC),
EMC's Engineering Team, and William Tucker (Cray).

Smog/Cielito/Cielo and Archive Support: H. B. Chen,
Tim Harrington, Kathleen Kelly, David Sherrill, Quellyn
Snead, and Jim Williams.

Silverton: Rob Kelsey, Martin Torrey, and Wayne
Weseloh.

EAP: Marcus Daniels, Dave Nystrom, Mike McKay,
Bob Weaver and Chuck Wingate.

Viz: Paul Weber.
HSI: Michael Gleicher, of Gleicher Enterprises.
FUSE: H. B. Chen, LANL.

REFERENCES
[1] J. Bent, G. Gibson, G. Grider, B. McClelland, P.

Nowoczynski, J. Nunez, M. Polte, M. Wingate. “PLFS: A
Checkpoint Filesystem for Parallel Applications”, SC 2009,
Nov. 2009.

[2] J. Bent, G. Grider, B. Kettering, A. Manzanares, M.
McClelland, A. Torres, A. Torrez. “Storage Challenges at Los
Alamos National Lab”, 28th IEEE Symposium on Massive
Storage Systems and Technologies, MSST 2012, 2012.

[3] J. Bent, D. Bonnie, G. Grider, B. Kettering, M. McClelland, J.
Nunez, D. Shrader, A. Torres, A. Torrez. fs_test with problem
setup and execution environment, https://github.com/orgs/fs-
test, 2014.

[4] W. Weseloh. Standard description of the Silverton Project’s
code, Jan. 2014.

[5] E.S. Dodd, J.H. Schmidt, J.H. Cooley. “A base-line model for
direct-drive ICF implosions in the xRAGE code”, 55th Annual
Meeting of the APS Division of Plasma Physics, Volume 58
Number 16, Nov. 2013.

[6] G. Grider, H. Greenberg. MDHIM, https://github.com/mdhim.

