
ORNL is managed by UT-Battelle
for the US Department of Energy

Designing
Service-Oriented
Tools
for HPC Account
Management and
Reporting

Adam G. Carlyle
Robert D. French
William A. Renaud

2

Projects: OLCF and NCRC

3

Outline of Topics

• Tenets of service-orientation
• Case: non-service-oriented application
• Shortcomings of non-service-orientation
• Case: redesign using service-oriented principles
• Benefits of service-orientation
• Service plugins
• Reporting as a service

4

Tenets of Service-orientation

5

(4) Tenets of Service-Orientation

•  “Service” = modular, reusable software component
to carry out a business function of an organization

• No industry standards that exactly define service-
orientation

• Microsoft’s Don Box - Simple Object Access
Protocol (SOAP) and SOA:
1.  Service boundaries are explicit
2.  Services are autonomous
3.  Services share schema and contract, not class
4.  Service compatibility is determined based on policy

6

(4) Tenets of Service-Orientation

1.  Service boundaries are explicit
–  Careful control over communication channels exposed

2.  Services are autonomous
–  Individual data stores and support infrastructure
–  Assume all incoming message data could be malformed

and/or malicious

3.  Services share schema and contract, not class
–  Consistent APIs, not just common data structures

4.  Service compatibility is determined based on
policy

–  machine-readable policy statement lists capabilities

7

Case: A Non-service-oriented
Application

8

Downtime Tracking System

• Currently provide slick auto-downtime notifications
• Want to provide more comprehensive downtime info
• Want bookmark-able center status page on web
• But don’t want to store info in web CMS

9

Downtime Tracking System

Database 1

GUI

Browser

Website 2

Website 1

Ops
Scripts

Database 2 Database 3

Script A Script B Script C

Staging Filesystem Docroot 2

Docroot 1

•  No boundaries
•  No autonomy

•  No schema contract

10

Non-SOA Shortcomings

• Many points of failure
– Multiple scripts
– Multiple cron jobs
– Multiple filesystems

• Slow due to file syncing
• Hard to document and maintain
• Each script must validate inputs independently
• Schema changes nearly impossible

11

Case: Redesign Using
Service-oriented Principles

12

Redesign: “StatusCast” Service

Database

GUI API

PHP
Lib

Python
Lib

Ruby
Lib Perl Lib Browser

Website(s) Service Plugin(s)

StatusCast Service

JS Lib

•  Distinct service boundary
•  Autonomous application

•  Explicit, stable API

13

API Over HTTPS / REST

•  Limit actions to “SCRUD”
•  (120) exposed URLs namespaced into (3) distinct sets:

•  https://<base>/gui/<resource>/<action>
–  Graphical interface via browser
–  Restrict to certain domains. 2-factor authentication.

•  https://<base>/api/<version>/secure/<resource>/<action>
–  “Destructive” API calls (e.g. create, update, destroy records).
–  Restrict to certain domains. API token (1-factor) authentication.

•  https://<base>/api/<version>/open/<resource>/<action>
–  “Non-destructive” API calls (e.g. show, search records).
–  Unrestricted on domains. API token (1-factor) authentication.

14

SOA Benefits

• Fewer points of failure
• Centralized input validation
• Centralized logging
• Schema changes need not propagate to API layer
• Decentralized developer effort and communication
• More maintainable

15

Service Plugins

16

Service Plugins

• Not every utility can be fully SOA compliant service
• Service plugins are small and make use of one or

more services
• Can be written in Python, Perl, Ruby, Javascript, or

PHP using provided libraries
• Service registry to store all plugin metadata for

reference

17

Simple APIs

•  Include the StatusCast lib for language (x):

•  Make API calls with API token:

•  Get payload, check <hash>[‘code’]. Data is in <hash>[‘body’]:

$	 irb	
>>	 load	 “<path>/statuscast.rb”	
>>	 include	 Statuscast	

>>	 sys	 =	 statuscast_show(‘systems’,	 1,	 ‘ekrjDKJS8kfhskfhje’)	

>>	 sys	 	
{	 ”code”	 =>	 200,	
	 	 ”message”	 =>	 ”OK”,	
	 	 	 	 	 ”body”	 =>	 {	
	 	 	 	 	 	 	 	 	 ”system”	 =>	 {	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ”id”	 =>	 1,	
	 	 	 	 	 	 	 	 	 	 	 	 	 ”name”	 =>	 ”titan”,	 	 ...	

18

Conclusions

19

Conclusion
• Service boundaries are explicit
• Services are autonomous
• Services share contract, not class
• Service-orientation offers substantial benefits once

applications reach certain size, scope
– More maintainable
– More flexible
– More reliable
–  Better logging
–  Better schema validation

20

Questions?

