
Designing Service-Oriented Tools for HPC Account Management and Reporting

Adam G. Carlyle, Robert D. French, William A. Renaud
National Center for Computational Sciences (NCCS)

Oak Ridge National Laboratory (ORNL)
Oak Ridge, Tennessee, USA

{carlyleag, frenchrd, brenaud}@ornl.gov

Abstract—The User Assistance Group at the National
Center for Computational Sciences (NCCS) at Oak Ridge
National Laboratory (ORNL) maintains detailed records
and auxiliary data for thousands of HPC user accounts
every year. These data are used across every part of the
center in system administration scripts, written reports,
and end-user communications.

Record storage tools in use today evolved in an ad-
hoc fashion as the center’s needs changed; now they are
at risk of becoming inflexible and unmaintainable. They
also exhibit some scalability issues both with respect to
computational time, and—perhaps more importantly—
with respect to staff effort and to the triage of new
development tasks.

The solutions needed to address these issues must be
strongly service-oriented. At the center of the service-
oriented approach lies the concept of isolation. Isolated
services/applications contain their own codebase and
business logic, use their own data store, and have their
own support teams. The underlying data is accepted and
served by the application through a well-defined, ver-
sioned API and associated language-specific API client
libraries. Incoming data is validated at the API level.
Direct writes to the data store from outside of the service
are eliminated. Code maintainability is improved since
support teams can make changes to the internals of
any given service without affecting the service API, and
therefore, without affecting other people or applications
that interact with it.

This paper details recent efforts at NCCS to redesign
the center’s two primary record-management solutions
into service-oriented applications capable of meeting
these future challenges of scalability and maintainability.

Keywords-service-oriented; SOA; account manage-
ment; RATS; ORNL; NOAA;

I. INTRODUCTION

The User Assistance Group at the National Center
for Computational Sciences (NCCS) at Oak Ridge Na-
tional Laboratory (ORNL) maintains detailed records

for thousands of HPC user accounts every year. Data
pertaining to users, projects, allocation levels, com-
pleted jobs, etc., are maintained for use in system
administration scripts and for reporting purposes. In
addition, data pertaining to the state of HPC systems,
the state of individual jobs, center announcements,
software availability, etc., are stored for reporting pur-
poses as well as for wide dissemination to the center’s
user base via the web and a host of other communi-
cation channels. These data are the cornerstone of the
center’s day-to-day operations.

There are two primary applications we use to
manage these data. The NCCS’s Resource Alloca-
tion Tracking System (RATS) is the primary record-
management application for the center. It began as a
simple database and has evolved into a complex appli-
cation as the center has grown. It stores hundreds of
millions of business-sensitive records on user accounts,
projects, and HPC jobs that the center needs for day-
to-day operations. StatusCast is a recently developed
service-oriented application that will be used to store
data that must be disseminated widely and openly to
the center’s user base.

RATS evolved in an ad-hoc fashion as the cen-
ter’s needs changed; now it is at risk of becoming
inflexible and unmaintainable. Getting the right data in
the right format typically requires considerable person-
hours, particularly for one-off report requests. Getting
the right data quickly and efficiently is considerably
more challenging. It also exhibits some scalability
issues both with respect to computational effort, and—
perhaps more importantly—with respect to staff effort
and to the triage of new development tasks.

The demands placed on our center mandate record-
management tools capable of servicing many hun-
dreds of different types of record requests from dif-
ferent hosts and/or individuals. Stored records must



be searchable and retrievable using both automated
techniques and interactive ones. The resulting datasets
must be easily parsable by a number of different high-
level languages, yet also easily adapted for inclusion
into graphs and tables for written reports. Although
challenging to develop, data storage and retrieval so-
lutions that can deliver such varied datasets quickly
and easily have the potential to save the center many
thousands of person-hours in effort annually. Any such
solutions would need to be strongly service-oriented.

The remainder of this paper details the recent efforts
at NCCS to redesign RATS into a modern service
capable of meeting future challenges, the ground-
up design of StatusCast, the first service within our
new SOA framework, and the creation of a flexible
reporting service.

II. TENETS OF SERVICE-ORIENTATION

Service-orientation is a set of guiding engineering
principles for the design of interconnected computer
software components, called services. Services are
standalone applications designed to handle a small
subset of related operational needs for the organization.
Service-oriented applications, in turn, comprise many
individual services with the end goal of automating
the business logic of an organization. Applications
designed in this way are said to have adopted a service-
oriented architecture (SOA).

Service-orientation gained popularity in the mid-
2000s as major tech companies[1][2] adopted service-
orientation and its promise of increased return-on-
investment and operational agility. A number of web
service protocols and best-practices emerged alongside
the paradigm, and many such as REST[3], SOAP[4],
and JSON-RPC[5] remain popular in service-oriented
applications today.

Don Box’s work on Microsoft’s Indigo project was
among the first industry projects to feature a well-
defined functional implementation of a SOA.[6] Project
Indigo later became Windows Communication Founda-
tion; a set of APIs in the .NET Framework for building
service-oriented applications. His writeup on project
Indigo lays out the following four tenets of service-
oriented development:

1) Service boundaries are explicit
2) Services are autonomous
3) Services share schema and contract, not class

4) Service compatibility is determined based on
policy

Each of these tenets has implications for us as we
wrestle with the business operations of our HPC center.

A. Service Boundaries are Explicit

SOAs are based on a model of isolated services com-
municating via explicit message passing (a paradigm
with which we in the HPC community should be very
comfortable). Each service aims to keep its “surface
area” as small as possible by carefully controlling the
communication channels it exposes between itself and
other services.

This concept of isolation results in the most immedi-
ate benefits to our center compared with our historical
approaches to information management. Further devel-
opment of our current information management tools
is most primarily constrained by the lack of boundaries
between (what could be) individual services.

B. Services are Autonomous

Individual services within a service-oriented applica-
tion are developed and deployed as self-sustaining ap-
plications. They have individual data stores, individual
support infrastructure, and often, individual developers
and support teams. Services expect that their eventual
consumers can and will fail, sometimes silently. They
also assume all incoming message data may be mal-
formed or transmitted for malicious purposes.

C. Services Share Schema and Contract, Not Class

The terms schema and contract in SOA refer to the
rules around how data will be transmitted to the service
and in what form. In practice, the contract is often
enforced through authentication mechanisms built into
the service (e.g. API tokens) and the schema through
input validations and made public through a published
application programming interface (API). In contrast
to object-oriented design which relies on common data
structures, service-oriented design relies on consistent
APIs for each service. Services expect that their con-
sumers will be reliant on the service for long periods
of time and across many different hosts and/or physical
locations. This assumption mandates a relatively stable
API over time. Underlying changes to the internal logic
of the service are managed internally so as to not
propagate up to the API level. When an underlying
change to the service cannot be accommodated by



the current API, the API is often versioned, and the
new service remains backwards-compatible with the
old API version for some amount of time during which
consuming services can be updated.

D. Service Compatibility is Determined by Policy

In addition to schema and contract enforcement,
SOA imposes the requirement of a policy upon indi-
vidual services and the application as a whole. Each
service makes available a machine-readable, explicit
policy statement that lists capabilities of the service
and requirements to use it. An SOA application may
also impose a policy for the minimum level and type
of testing each service should implement to assure
reliability. Often an SOA registry, itself a service,
provides a catalog of information about the available
services in the SOA implementation.

This particular tenet is of the least concern to our
center at the moment, due to the very small number
of services needed to carry out our design goals. We
see it becoming more important in the future as our
service catalog grows.

III. EXAMPLE OF A NON-SERVICE-ORIENTED

APPLICATION

RATS, in its current form, is a database-backed web
application. NCCS staff authenticates to the application
through a standard web browser, manipulates data,
and logs out when finished. It has no well-defined
API, and as such, programmatic input and output of
data to/from the application are made directly through
SQL statements running via an array of scripts that
authenticate directly to the underlying RATS database.
No real effort has been made to limit connectivity
or channel it though any standardized SOA service
contract nor SOA service schema. It is, by definition,
not currently service-oriented.

The limitations of the current application give rise to
a number of inefficiencies, all which have contributed
to the desire to redesign the application:

• The application cannot enforce a complex service
schema. That is, except for foreign key constraints
and non-NULL validations at the database level,
it cannot prevent a script from writing malformed
or incomplete records or sets of records, nor can
it issue useful error messages in the event of
malformed input.

• The application cannot adequately log in-
put/output. Any script with valid read/write
database user credentials can modify the database
with little record of exactly who (person) made
the request, and why.

• The application is difficult to shut down for main-
tenance. Since there is no single point of access
for the application, there is no definitive commu-
nication channel for all of the various scripts and
script maintainers who have a vested interest in
the application’s availability. Currently, one can
only take the application offline and hope that the
array of scripts trying to access the application
fail gracefully in its absence, and that all staff
stakeholders know about the outage.

• The application cannot selectively expose
datasets. Except for defining hundreds of
database users with very specific grants which
can run specific queries (cumbersome), the
application cannot easily serve selected subsets
of data while restricting others.

Each of these shortcomings has practical impact on
routine tasks we wish to carry out during the day-to-
day operation of the center. Take, for example, the
last enumerated shortcoming above as it pertains to
the all-too-common HPC center task of communicating
a project’s allocation utilization metrics via multiple
channels: on the command line of a computational
resource, on an access-controlled website for end-
users, and within an access-controlled website for
center management.

Of course, utilization metrics change moment-to-
moment as a project’s jobs complete. Within our cur-
rent application, the steps required to complete the task
above are as follows:

1) Jobs complete and are written out to log files
by the computational resource’s job sched-
uler/resource manager.

2) Every Q minutes, cron executes script A which
parses the log file and writes records directly to
the application database.

3) Every R minutes, cron executes script B which
connects directly to the database, aggregates
records related to project utilization, and writes
the results to a flat file on a staging file system.

4) Every S minutes, cron executes script C which
rsyncs data on the staging file system to various



website docroots. The staging filesystem is not
mounted on web servers for security safeguards,
so the files must be synced over.

5) Data on the staging file system and/or a website
docroot is accessed by a command line utiliy or
browser request, as appropriate.

IV. PROBLEMS WITH NON-SERVICE-ORIENTED

APPLICATIONS

The limitations of the non-service oriented approach
to RATS become apparent upon examination of this
process:

• The process takes up to (Q + R + S) minutes to
complete.

• The process has many points of failure (multiple
cron jobs, multiple scripts, multiple filesystems)

• The scripts must each separately enforce the
proper application data schema.

• The process is difficult to document and under-
stand since it lacks well-defined boundaries for
what components it contains.

Figure 1 shows the components involved in data
management for the process, and are typical for a non-
service-oriented application.

The components involved are managed by many
individuals in the center, making coordination difficult
and development tasks prone to error due to unknown
dependencies across components. Applications in this
state are difficult to develop, and lacking significant
staff effort, begin to erode as the supporting soft-
ware packages (database technologies, server software
stacks) evolve and move forward. Required changes to
the application are also difficult to test, since there is
no real constraint on how the data is being consumed
and used.

V. A SERVICE-ORIENTED REDESIGN

With these limitations in mind, we in NCCS User
Assistance set out to redesign a separate, smaller
application to see if we could increase operational
efficiency using a SOA approach.

The NCCS’s Auto-Downtime System has been a
primary source of system status information for several
years. This system, previously described as imple-
mented within the National Climate-Computing Re-
search Center (NCRC) project[7], consists of a suite
of Perl scripts that parse Nagios logs to determine
the status of a computational resource. This status is

then written to files that are parsed and displayed on
user-facing websites in a process very similar to that
described previously in our example use case. Basic
checks are put in place to minimize false positives. In
addition to the functionally previously described, the
system provides active notifications to users via email
and Twitter[8].

The existing status system, while helpful to users,
is not without several shortcomings. It provides only
current status; however, since it uses a database for
back-end storage it could potentially provide prior
status change information. Unfortunately, any such
changes would have to be generated by someone
knowledgeable of the database schema as having a
script or program directly access the database is the
only way to pull information. The existing database is
also lacking in the level of detail it can provide about
previous outages and does not provide the capability
for entering planned outages. It shows the existence
of an outage, not the reason for one. It too exhibits
many of the hallmarks and limitations of non-service-
oriented design patterns.

A. StatusCast

A new service-oriented initiative, called StatusCast,
aims to overcome these shortcomings. Similar to the
existing system, StatusCast will rely on a back-end
database; a redesigned version of the database used by
the Auto-Downtime System. In addition to providing
similar features (storage of each down/up state encoun-
tered for a system, logging the notifications about those
state changes, etc) it also provides the capability for
storing detailed entries for each downtime. Addition-
ally, it provides for entry of system announcements and
for the storage of other details of a system’s status, such
as job load.

SOA has been adopted from the ground up with
StatusCast. StatusCast is, at its core, a service API
through which utilities and people interact with the
back-end database. The automated status script, system
administrators entering details about an upcoming (or
previous) downtime, staff members entering announce-
ments, and utilities storing other pieces of status infor-
mation will utilize the StatusCast API to add (or edit)
data in the database. Furthermore, consumers of that
data (websites and myriad other potential utilities) are
provided with a lightweight, easy-to-use mechanism by
which they can access data.



Database

Stage
FS

Doc
Root 1

Doc
Root N

Website 1

Aggregation
Script 1

End-user

Aggregation
Script N

Operations
Scripts

GUI

Website NMisc
Media

Input
Script N

Input
Script 1

Figure 1. Data management process for a typical non-service-oriented application. Note the reliance on multiple staging areas on physical
disk.

StatusCast uses hypertext transfer protocol for data
transmission within the architectural constraints laid
out by representational state transfer (REST). The
service API backend is implemented in Ruby with the
popular Ruby on Rails framework. It exposes a few
hundred URLs for interacting with the service and the
RESTful resources it tracks. StatusCast also provides
a series of language-specific service libraries to ease
adoption of the service by NCCS staff. Libraries pro-
vide a largely consistent development interface by cen-
tering library functions around the standard actions on
persisted storage (search, create, read, update, delete).
It provides a GUI for end-users based around the same
consistent end-user experience, and enforces access
controls via two-factor authentication for the GUI and
via API token for the API.

Through this approach, we gain many advantages
over the previous design:

• All requests, both through the GUI and API, are
validated for service schema compatibility at the
application layer. Validations can be, and are, very
complex. Malformed requests can trigger useful
error messages for the end-user.

• All requests, both through the GUI and API, are
adequately logged, and in a completely customiz-
able format, easing integration with data indexing
engines like Splunk.

• The application can be shut down for maintenance
easily. When the database is down, the GUI/API

layer can say so. When the GUI/API layer is
down, the wrapper libraries can say so.

• The application can selectively expose datasets
in any form. Only the internal functions exposed
through URLs can be accessed at all from outside
the service, and this is completely customizable.

Recall our earlier use case—communicating a
project’s allocation utilization metrics via multiple
channels. Within a service-oriented design such as
employed by StatusCast, the steps required to complete
the task could be as follows:

1) The resource manager/job scheduler epilogue
calls a python script that uses the service’s
Python wrapper library to write a job resource
record to the service.

2) Websites and command line utilities use PHP,
Javascript, and Python wrapper libraries as ap-
propriate to access utilization data within the
service, on-demand.

Figure 2 shows the components involved in data
management for the process, as typical for a service
within a SOA.

VI. FLEXIBILITY THROUGH SERVICE PLUGINS

As discussed in the previous section, StatusCast,
in and of itself, is neither the presenter of data
to interested parties nor the source of information
from monitoring software, system administrators, user
support staff, etc. Rather, it serves as a information



Database

End-user

API

Operat.
Script N

GUI

Website N Misc
Media

PHP
Lib

Ruby
Lib

Python
Lib

JS
Lib

Website 1

Figure 2. Data management process for a typical service within a SOA. Data to/from the service is posted/requested in real-time via a
well-defined API.

broker service by which user-facing and center-facing
processes access the service’s central data store. We
recognize that not every producer process nor con-
sumer process of the StatusCast service will have the
need to (nor the resources to) be implemented as
a fully SOA-compliant service itself. To add more
flexibility to the SOA application as a whole, we
define the concept of a service plugin to describe any
“outside” producers or consumers of the data stored
within an application service that are not fully SOA-
compliant services themselves. Service plugins, then,
are typically small utilities or scripts developed by
center staff (and potentially others) that make use of
one or more services within the SOA application at
large. The StatusCast service provides an API call that
can be used to store service plugin parameters for those
plugins that require limited amounts of plugin-related
data to be persisted (e.g. time of last run).

Prior to recent redesign efforts, staff developers
often needed access to information stored within our
non-service-oriented applications like RATS or the
Auto-Downtime System. Such tools, which we’ll call
application plugins, were difficult to develop at the
center in the past. Coordination issues were inevitable
when multiple users wished to provide and/or ac-
cess data within the application. Without sufficiently

service-oriented infrastructure in place, those devel-
opers needed to know the low-level details of the
application’s back-end database to effectively use it.
Keeping developers up-to-date on current database
design (since the schema is subject to change) was
a huge administrative challenge for the application
maintainers as well as the developers. With no way
of isolating modifications to the database layer, even
minor changes in the database schema would cause all
remotely-developed tools to fail.

Such tools also needed to run on a system with
special access the database, and needed one-off authen-
tication credentials with which to access the database.
As a result, application plugins were very limited
in where they could run due to the access control
concerns. As hosts are upgraded and decommissioned,
application plugins were shuffled around and subse-
quently failed due to firewall rules and host-specific
database grants. Clearly, this design was suboptimal
from both administrative and security perspectives.

Finally, with no centralized service/plugin registry
in place to communicate the center’s current capabili-
ties, development of application plugins was disparate
and completely individualized. This resulted in several
scripts, databases, and support systems that all handled
similar data. At one point, no less than three different
databases all held different pieces of downtime infor-



mation.

A. Interacting with a Service API via Plugins

With a service-oriented approach StatusCast over-
comes these limitations and permits centralization of
these data. The hypertext protocol approach permits
plugins to run on any system that can access the
URL’s domain (typically limited to other systems on
the center’s network). Changes to the database schema
need not be exposed at the API layer. This model
of operation also isolates the service plugin from
database credentials, which is beneficial from both
administrative (no need to create and distribute specific
credentials to a group of developers) and security
perspective.

Plugin developers are encouraged to always use the
provided wrapper libraries to access the service API.
The hypertext protocol approach has its advantages but
has the disadvantage of requiring URL query strings
that can quickly become unwieldy and therefore error-
prone. The wrapper libraries handle the generation of
the API URL in a controlled manner across multiple
programming languages. This allows service plugins
to retain a friendly, function-oriented and/or object-
oriented approach to gathering and updating informa-
tion.

Some service plugins will be developed by center
staff, but the API will certainly accommodate a larger
group of developers. These developers will have the
tools to readily access only data they need, while
requiring minimal knowledge of service back-end. The
API can be distributed to a larger corps of developers
to permit them to generate service plugins that provide
highly customized data if they find that, for example,
the available service-provided data formats do not meet
their needs.

While the most common view of a plugin is a
consumer of data—that is, a utility to read data from
the service’s data store and display it—it is important
to remember that plugins can also appear on the
producer side. The scripts that provide system status
information, the automated mechanisms that permit
system administrators to enter downtimes, and the
utilities that support staff will use to enter announce-
ments in an automated fashion are also considered
service plugins. These producer plugins interact with
the service identically to consumer plugins—they use
the service API.

B. Future Direction of Plugin Development

Initial development of service plugins have been
carried out solely by divisional staff. Plugins in de-
velopment for the initial release of StatusCast include
an automated status plugin to update and control the
recorded state of a computational resource, a system
queue utilization plugin to track snapshots of a com-
putational resource’s job queue, plugins for command-
line creation of downtime and announcement entries,
and a plugin that generates a user status page on
NCCS websites. As StatusCast matures, its develop-
ment model can be extended to permit service plugin
development by other divisions within the lab. A small
amount of coordination may be needed with center
staff, but this is anticipated to be minimal. Ultimately,
StatusCast will permit center staff to work more effi-
ciently in presenting status information to users of our
center.

VII. FLEXIBLE REPORTING AS A SERVICE

The NCCS encounters new reporting needs on an
almost daily basis. These reports are requested by
varying audiences such as center management, our
Resource Utilization Council, our program sponsors at
the Department of Energy, our users, and our outreach
staff. The nature of business intelligence is that many
of the requests we see are similar to prior requests,
but distinct enough that attempts to build a generalized
software solution are often inadequate or inflexible. As
such, the reporting tools that have evolved for use by
our center still require many person-hours of manual
effort.

The current process follows a general framework
which attempts to leverage the similar nature of the
reports: First, the report developer will construct a set
of SQL queries to retrieve appropriate records from
RATS, our central accounting database. The developer
usually begins this task by referencing existing report
scripts in order to ensure that similar queries are carried
out in a uniform manner. For example, when reporting
on the utilization of Titan, both job records and down-
time records must be aggregated, with the caveat that
planned outages are separated from unplanned outages.
Expressing this constraint in SQL can be non-trivial,
especially when considering edge cases such as jobs
that span calendar borders (i.e., should a job be counted
in the month when it starts or the month when it
finishes?).



Second, the report developer will craft a post-
processing script (usually in PHP) to drive the SQL
queries and transform their results into a single web
page. These scripts are executed daily as cron tasks,
and the resulting HTML pages are staged to an appro-
priate web server which is accessible by the report’s
audience. Again, the similarity of the reports lends
itself to developing new report scripts by the same
“copy-and-tweak” method described above, but it is
still difficult to generalize these scripts to handle more
than a few types of request.

Lastly, the report developer must verify that the
figures being produced are accurate, and that they
answer the same question which the report audience
has asked. This too can be a non-trivial, as the report
audience will likely be familiar with neither the schema
of our accounting database nor (more importantly)
the system processes which supply records to that
database. Understanding the context in which the data
was created is vital to verifying that report information
is dependable.

This process is time consuming, prone to error, and
produces reports in only one format. Ideally, report
data could be produced in different formats (spread-
sheets, slideshows, etc.) to support the varying needs of
our audience, and reports should be programmatically
queryable.

A. Unsuitability of Existing Solutions

Many excellent business intelligence tools exist (no-
tably On-line Analytics Processing or “OLAP”-style
solutions), and many of them come with GUI tools
for visual report development. After reviewing these
tools and their capabilities, we were concerned with
the following: Many of these tools are enterprise-
class solutions, and anticipate a staff dedicated to
data modeling and report development. At the NCCS,
reports are developed by the User Assistance group,
who are HPC experts and largely not data modeling
professionals.

Using the GUI tools to allow our stakeholders to
develop their own reports was initially promising,
but after further consideration is seemed likely that
users could easily misinterpret the data schema and
unknowingly craft misleading reports.

Further, the reporting needs we face do not require
reports to be generated more frequently than every 24
hours. This is an advantage, but as many OLAP tools

are designed for “on-line” or “real-time” analytics pro-
cessing; selecting one of these solutions would involve
signifcant overhead in infrastructure which would go
unused.

B. Towards a Service-Oriented Solution

The middle-ground between a full-stack OLAP so-
lution and a manually maintained set of one-off scripts
is an infrastructure that aides the report developer in
minimizing effort. Our aim was that all database inter-
action would be centralized, with common queries bro-
ken down into small, self-contained, and reasonably-
generalized actions which are provided by the reporting
service. Instead of copying code from old scripts, new
report scripts could be developed with more confidence
by leveraging the queries provided by the reporting
service, and service plugin developers can extend the
reporting service with new methods as needed.

Using as an example the utilization query described
above, the reporting service would provide the capa-
bility to answer the reasonably-general question “What
fraction of system X was utilized from time Y until
time Z?”. Report scripts can then be developed which
call this method for all appropriate utilization informa-
tion, thus assuring consistency across reports.

In order for report scripts to consume the output
of reporting service API calls, the service schema of
this output must be published alongside the method
calls themselves, so that report developers can make
accurate use of existing queries.

C. Future Direction

Moving forward, we see an opportunity to imple-
ment robust, flexible reporting as a service within the
larger SOA framework of our center. We believe that
many simple reports could be represented as linear lists
of reporting service queries, together with appropriate
input parameters and guidance for displaying output. In
many cases, new reports could be developed using sim-
ple (likely JSON-formatted) configuration files instead
of having to be developed in a scripting language. This
would allow for software to programmatically define
new reports, and could support the creation of a very
limited ad-hoc reporting environment.

VIII. CONCLUSION

Within User Assistance at NCCS, we have taken the
initial steps to move our information management tools



to a SOA design, and future projects will be designed
from the ground up to fit within the SOA approach.

The potential benefits of service-oriented architec-
tures are becoming widely understood across industries
outside of HPC, and the operational efficiencies of the
approach can certainly be leveraged within the business
logic prevalent in our field. Open-source frameworks
are available in all of the popular high-level scripting
languages to aid in creation of service APIs and asso-
ciated service GUIs. Open-source libraries for object-
relational mapping make interacting with data stores
like relational databases and key-value stores easier
than ever before. The technology is relatively mature,
having been adopted and expanded by many of the
large tech firms over the past five to ten years.

The demand for HPC operational data is ever-
changing and ever-growing; we feel that SOA will
be an instrumental part of any successful strategy
for maintaining control of information management
processes in this dynamic environment.

REFERENCES

[1] (2014) About aws. Amazon Web Services, Inc. [Online].
Available: http://aws.amazon.com/about-aws/

[2] L. Cherbakov, G. Galambos, R. Harishankar,
S. Kalyana, and G. Rackham, “Impact of service
orientation at the business level,” IBM Systems Journal,
vol. 44, no. 4, pp. 653–668, 2005.

[3] R. Fielding, “Architectural styles and the design
of network-based software architectures,” Ph.D.
dissertation, UC Irvine, 2000. [Online]. Avail-
able: http://www.ics.uci.edu/˜fielding/pubs/dissertation/
rest arch style.htm

[4] (2014) Soap version 1.2 messaging framework.
World Wide Web Consortium. [Online]. Available:
http://www.w3.org/TR/soap12-part1/

[5] (2014) Json-rpc 2.0 specification. JSON-
RPC Working Group. [Online]. Available:
http://www.jsonrpc.org/specification

[6] D. Box. (2004) A guide to developing and running
connected systems with indigo. Microsoft Corporation.
[Online]. Available: http://msdn.microsoft.com/en-
us/magazine/cc164026.aspx

[7] A. Carlyle, R. Miller, D. Leverman, W. Renaud,
and D. Maxwell, “Practical support solutions for a
workflow-oriented cray environment,” in CUG Confer-
ence Proceedings, Stuttgart, Germany, May 2012.

[8] OLCF. (2014) Communications to users. [On-
line]. Available: https://www.olcf.ornl.gov/kb articles/
communications-to-users


