
1

HPCHadoop: MapReduce on Cray X-series

Scott Michael
Research Analytics
Indiana University

Cray User Group Meeting

May 7, 2014

2

Outline

•  Motivation & Design of HPCHadoop
•  HPCHadoop demo
•  Benchmarking Methodology
•  Benchmark Results
•  Future Work

3

Why Hadoop on a Cray?

•  Many users have heard about Big Data
and Hadoop and want to try it out

•  Some users already have Hadoop
code

•  Being a relatively simple framework,
Hadoop can lower the barrier to entry
for distributed computing

•  At IU departmental resources can be
scarce, and HPC resources are “free”
to faculty

4

Why Hadoop on a Cray?

MPI/OpenMP	
 MapReduce/Hadoop	

5

Hadoop is all Java, right?

6

Hadoop is all Java, right?

•  The Hadoop framework is Java based
•  But Map and Reduce functions can be written in any language and

streamed to the framework via Hadoop streaming
•  For certain types of data reduction and analysis Hadoop can be a

good fit
–  Astronomical image analysis
–  Medical image analysis
–  Genome analysis

7

Java just runs everywhere, right?

•  There are two major challenges in deploying Hadoop on a traditional
HPC resource
–  Shared scheduling
–  Hadoop’s “shared nothing” architecture

•  The framework has to address these issues and be easy to configure
and run

8

Java just runs everywhere, right?

•  Hadoop is generally deployed across an entire cluster that doesn’t
change or only changes infrequently

•  HPCHadoop takes information from the scheduler, configures and
launches a Hadoop instance on your nodes

•  HDFS can be instantiated on node local disks, or
•  HDFS can be set up on a shared file system

9

•  Motivation & Design of HPCHadoop

•  HPCHadoop demo
•  Benchmarking Methodology
•  Benchmark Results
•  Future Work

10

Wordcount Example

11

Just two functions
map : (k1,v1)→ list(k2,v2)
public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter
reporter) throws IOException {

 String line = value.toString();
 StringTokenizer tokenizer = new StringTokenizer(line);
 while (tokenizer.hasMoreTokens()) {
 word.set(tokenizer.nextToken());
 output.collect(word, one);
 }
 }	

12

Just two functions
reduce : (k2, list(v2))→ list(k3,v3)

public static class Reduce extends MapReduceBase
implements Reducer<Text, IntWritable, Text, IntWritable>
{
 public void reduce(Text key, Iterator<IntWritable>
values, OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {
 int sum = 0;
 while (values.hasNext()) {
 sum += values.next().get();
 }
 output.collect(key, new IntWritable(sum));
 }
 }	

13

To the Terminal…

•  Three configuration files need to be modified
–  conf/env.sh
–  conf/hadoop_commands.sh
–  PBS script

•  Set inputs and outputs
•  Set up a directory for HDFS

14

•  Motivation & Design of HPCHadoop
•  HPCHadoop demo

•  Benchmarking Methodology
•  Benchmark Results
•  Future Work

15

Many Choices in Benchmarks

•  There are many “standard” Hadoop benchmarks, but there is a lot of
parameter space to explore

•  We settled on the Intel Hadoop Benchmarking Suite called HiBench
https://github.com/intel-hadoop/hibench

•  Benefits & Drawbacks
–  Standard Suite gets you many benchmarks
–  Framework can get in the way and insists on HDFS for some

benchmarks

16

Intel HiBench Suite

•  HiBench gives a broad sampling of potential Hadoop workloads by
including: Bayes, DFSIOE, Kmeans, Nutchindex, Pagerank, Terasort,
and Wordcount

•  The HiBench framework is relatively easy to set up and run, though it
has a very large number of tunables

•  We decided at minimum to optimize the numbers of mappers/
reducers and input data size
–  Mapper/reducer ratio -- 4:3
–  Input data size -- 2.5x default data size

17

Benchmark Hardware

•  Big Red II
–  Cray XE6/XK7
–  32 cores/node (XE6)
–  64 GB mem/node (XE6)

•  Quarry
–  Intel based gigbit cluster
–  8 cores/node
–  16 GB mem/node

•  Data Capacitor II
–  5 PB Lustre filesystem

18

•  Motivation & Design of HPCHadoop
•  HPCHadoop demo
•  Benchmarking Methodology

•  Benchmark Results
•  Future Work

19

Some Results

•  In all 20 runs of HiBench across the two machines; 160 individual
benchmark results

0	

200	

400	

600	

3	
 5	
 9	
 17	
 33	
 th
ro
ug
hp

ut
	
 (M

B/
se
c)
	

number	
 of	
 nodes	

Wordcount	

local	
 disk	
 DC	
 2	

0	

500	

1000	

1500	

5	
 9	
 17	
 33	
 th
ro
ug
hp

ut
	
 (M

B/
se
c)
	

number	
 of	
 nodes	

Wordcount	

in	
 memory	
 DC	
 2	

	
 Big	
 Red	
 II	
 Wordcount	
 scalability	
 	
 Quarry	
 Wordcount	
 scalability	

20

Not everything scales well

•  This could be due to the algorithm, or simply require further
optimization

	
 Big	
 Red	
 II	
 Nutchindexing	
 scalability	
 	
 Quarry	
 Nutchindexing	
 scalability	

0	

1	

2	

3	

5	
 9	
 17	
 33	
 th
ro
ug
hp

ut
	
 (M

B/
se
c)
	

number	
 of	
 nodes	

Nutchindexing	

in	
 memory	
 DC	
 2	

0	

1	

2	

3	

3	
 5	
 9	
 17	
 33	
 th
ro
ug
hp

ut
	
 (M

B/
se
c)
	

number	
 of	
 nodes	

Nutchindexing	

local	
 disk	
 DC	
 2	

21

X-series can perform well

•  Comparing Cray X-series to gigabit connected cluster for Terasort up
to 4.25x faster

	
 Big	
 Red	
 II	
 vs.	
 Quarry	
 for	
 Terasort	
 on	
 Lustre	

0	

100	

200	

300	

5	
 9	
 17	
 33	

th
ro
ug
hp

ut
	
 (M

B/
se
c)
	

number	
 of	
 nodes	

Terasort	

BR	
 2	
 Quarry	

22

•  Motivation & Design of HPCHadoop
•  HPCHadoop demo
•  Benchmarking Methodology
•  Benchmark Results

•  Future Work

23

Future Work

•  Initial incarnation of HPCHadoop is a proof of concept, several
additional features are in the works

•  Support for schedulers other than PBS
•  Further optimization for HiBench and comparison to other

MapReduce systems like MARIANE
•  Support for native use of shared parallel file systems such as GPFS and

Lustre
–  Have begun collaborating with Intel on their Lustre compatibility

module

24

Conclusions

•  Hadoop is not for everyone and does not solve all “Big Data”
problems

•  However, for the problems that fit well into a Hadoop framework HPC
resources are sometimes the only computational option for
researchers

•  HPCHadoop allows for easy set up and launching of Hadoop jobs on
batch scheduled systems including the Cray X-series

25

Questions?

email questions to: scamicha@iu.edu
https://github.com/scamicha/HPCHadoop

