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Why Hadoop on a Cray? 

•  Many users have heard about Big Data 
and Hadoop and want to try it out 

•  Some users already have Hadoop 
code 

•  Being a relatively simple framework, 
Hadoop can lower the barrier to entry 
for distributed computing  

•  At IU departmental resources can be 
scarce, and HPC resources are “free” 
to faculty 
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Why Hadoop on a Cray? 

MPI/OpenMP	
   MapReduce/Hadoop	
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Hadoop is all Java, right? 
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Hadoop is all Java, right? 

•  The Hadoop framework is Java based 
•  But Map and Reduce functions can be written in any language and 

streamed to the framework via Hadoop streaming 
•  For certain types of data reduction and analysis Hadoop can be a 

good fit 
–  Astronomical image analysis 
–  Medical image analysis 
–  Genome analysis 
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Java just runs everywhere, right? 

•  There are two major challenges in deploying Hadoop on a traditional 
HPC resource 
–  Shared scheduling 
–  Hadoop’s “shared nothing” architecture 

•  The framework has to address these issues and be easy to configure 
and run  
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Java just runs everywhere, right? 

•  Hadoop is generally deployed across an entire cluster that doesn’t 
change or only changes infrequently 

•  HPCHadoop takes information from the scheduler, configures and 
launches a Hadoop instance on your nodes 

•  HDFS can be instantiated on node local disks, or 
•  HDFS can be set up on a shared file system 
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Wordcount Example 
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Just two functions 
map :     (k1,v1)→ list(k2,v2 )
public void map(LongWritable key, Text value, 
OutputCollector<Text, IntWritable> output, Reporter 
reporter) throws IOException { 

  String line = value.toString(); 
  StringTokenizer tokenizer = new StringTokenizer(line); 
  while (tokenizer.hasMoreTokens()) { 
   word.set(tokenizer.nextToken()); 
   output.collect(word, one); 
  } 
 }	
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Just two functions 
reduce :     (k2, list(v2 ))→ list(k3,v3)

public static class Reduce extends MapReduceBase 
implements Reducer<Text, IntWritable, Text, IntWritable> 
{ 
 public void reduce(Text key, Iterator<IntWritable> 
values, OutputCollector<Text, IntWritable> output, 
Reporter reporter) throws IOException { 
        int sum = 0; 
        while (values.hasNext()) { 
          sum += values.next().get(); 
        } 
        output.collect(key, new IntWritable(sum)); 
      } 
    }	
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To the Terminal… 

•  Three configuration files need to be modified 
–  conf/env.sh 
–  conf/hadoop_commands.sh 
–  PBS script 

•  Set inputs and outputs 
•  Set up a directory for HDFS 
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Many Choices in Benchmarks 

•  There are many “standard” Hadoop benchmarks, but there is a lot of 
parameter space to explore 

•  We settled on the Intel Hadoop Benchmarking Suite called HiBench 
https://github.com/intel-hadoop/hibench 

•  Benefits & Drawbacks 
–  Standard Suite gets you many benchmarks 
–  Framework can get in the way and insists on HDFS for some 

benchmarks 
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Intel HiBench Suite 

•  HiBench gives a broad sampling of potential Hadoop workloads by 
including: Bayes, DFSIOE, Kmeans, Nutchindex, Pagerank, Terasort, 
and Wordcount 

•  The HiBench framework is relatively easy to set up and run, though it 
has a very large number of tunables 

•  We decided at minimum to optimize the numbers of mappers/
reducers and input data size 
–  Mapper/reducer ratio -- 4:3 
–  Input data size -- 2.5x default data size 
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Benchmark Hardware 

•  Big Red II  
–  Cray XE6/XK7 
–  32 cores/node (XE6) 
–  64 GB mem/node (XE6) 

•  Quarry 
–  Intel based gigbit cluster 
–  8 cores/node 
–  16 GB mem/node 

•  Data Capacitor II 
–  5 PB Lustre filesystem 
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Some Results 

•  In all 20 runs of HiBench across the two machines; 160 individual 
benchmark results 
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Not everything scales well 

•  This could be due to the algorithm, or simply require further 
optimization 
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X-series can perform well 

•  Comparing Cray X-series to gigabit connected cluster for Terasort up 
to 4.25x faster 
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Future Work 

•  Initial incarnation of HPCHadoop is a proof of concept, several 
additional features are in the works 

•  Support for schedulers other than PBS 
•  Further optimization for HiBench and comparison to other 

MapReduce systems like MARIANE 
•  Support for native use of shared parallel file systems such as GPFS and 

Lustre 
–  Have begun collaborating with Intel on their Lustre compatibility 

module 
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Conclusions 

•  Hadoop is not for everyone and does not solve all “Big Data” 
problems 

•  However, for the problems that fit well into a Hadoop framework HPC 
resources are sometimes the only computational option for 
researchers 

•  HPCHadoop allows for easy set up and launching of Hadoop jobs on 
batch scheduled systems including the Cray X-series 
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Questions? 

email questions to: scamicha@iu.edu 
https://github.com/scamicha/HPCHadoop 
  


