HPCHadoop: A framework to run Hadoop on Cray
X-series supercomputers

Scott Michael, Abhinav Thota, and Robert Henschel
Pervasive Technology Institute
Indiana University
Bloomington, IN, USA
Email: scamicha@iu.edu

Abstract—In recent years a variety of Big Data challenges
have arisen in both research and industry. These new challenges
have been met by the development of software frameworks,
such as the MapReduce framework. Although there are many
implementations of the MapReduce framework, the most widely
used open source implementation is Apache Hadoop. Even though
there are many Big Data research challenges being tackled with
HPC resources that could benefit from a MapReduce approach,
Hadoop or other MapReduce frameworks are seldom deployed
in HPC centers, and never, to our knowledge, on a Cray X-
series supercomputer. In many cases, the only large compute
resources that researchers at universities and government labs
have access to are HPC machines. Moreover, there are many cases
where researchers would like to run existing Hadoop codes on
HPC machines without having to convert their codes to another
parallel framework. This creates the need for a Hadoop solution
on HPC machines.

In this paper we present a framework, called HPCHadoop, to
enable researchers to run Hadoop workloads on HPC machines.
We detail the design of the framework and present some pre-
liminary benchmark data. HPCHadoop is specifically targeted to
enable Hadoop workloads on the Cray X-series supercomputers
(XE, XK, and XC), but can be used on any supercomputing
platform. We present preliminary results from the Intel HiBench
Hadoop benchmark suite for varying levels of parallelism and
for two hardware configurations Big Red II, a Cray XE/XK
system, and Quarry, a traditional gigabit connected cluster. We
compare the performance of the framework for a variety of
storage backends, including node local memory (RAM) storage,
node local hard drive storage, and a shared Lustre filesystem
used as either a direct file store or with HDFS layered over it.

Index Terms—Data Analysis, Data Storage Systems, Data
Mining

I. INTRODUCTION

In the past several years, we have seen the rise of an
array of techniques and methodologies to extract valuable
information from a class of data sets identified as “Big Data”.
One extremely prevalent class of techniques is MapReduce [1].
Arguably the most widely used distribution of the MapReduce
paradigm is the Apache Hadoop MapReduce framework [2].
Although the Hadoop framework has seen wide adoption and
usage throughout industry and academia [3], it has yet to take
hold as a typical use case at an HPC center. For example, to
our knowledge, there are no Hadoop distributions that support
running the Hadoop framework on a Cray X-series machine,
and only a few tools to run the Hadoop framework on a more

general HPC platform [4], whose current usage and support
are questionable.

In general, there are two major obstacles for a user to
overcome when deploying and using the Hadoop framework
on an HPC resource. First, a traditional Hadoop cluster is
typically entirely devoted to Hadoop workloads, and the re-
source management and scheduling is handled by the Hadoop
framework. In contrast, a typical HPC system serves a very
broad user base, and executes a variety of workloads at any
given time. Resource scheduling and management is usually
handled by dedicated software such as PBS/Moab or Slurm.
This means that for each job a user runs, they may get different
nodes in the cluster, both in terms of network location and,
depending on the queues and available node types in the
cluster, individual node configurations. This is very different
from a standard Hadoop cluster configuration, which is static
or changes only very rarely both in terms of the cluster
networking and configuration of individual nodes. Deploying
the Hadoop framework within an environment managed by
such dedicated software is not straightforward or transparent
to end users. The Cray X-series adds the additional wrinkle
that the Hadoop framework requires services that are provided
by Cluster Compatibility Mode (CCM) mode, so the system
must support CCM mode and the Hadoop framework should
be properly launched via the ccmrun command.

Secondly, Hadoop employs a “shared nothing” architecture.
Specifically, the Hadoop Distributed File System (HDFES) [5]
assumes each node in the cluster has its own local data storage,
and there is no shared data storage system. The HDFS system
then provides data distribution and replication throughout the
node local storage in the cluster. This is in stark contrast
to many HPC centers, the majority of which have a high
performance distributed storage systems, such as Lustre or
GPFS [6], that is shared among all the nodes in a cluster, or
even among several clusters at a center. While some machines
at HPC centers may have node local storage in addition to a
global high performance filesystem, many HPC centers have
clusters that do not have dedicated node local data storage.
The Cray X-series, in particular, has no node local storage.

In this paper we present the design of the HPCHadoop
framework. HPCHadoop is a framework developed at the
Indiana University Pervasive Technology Institute, designed
to simultaneously address the aforementioned obstacles and



enable users to run Hadoop workloads on HPC systems. It is
specifically targeted to enable Hadoop workloads on the Cray
X-series supercomputers (XE, XK, and XC), but can be used
on any supercomputing platform. We also present the results
of the Intel HiBench Hadoop benchmark suite for a variety of
Hadoop workload sizes and levels of parallelism for several
hardware configurations including Big Red II, a Cray XE/XK
system, and Quarry, a traditional gigabit connected cluster.
We compare the performance of the framework for a variety
of storage backends, including node local memory (RAM)
storage, node local hard drive storage, and a shared Lustre
filesystem over both gigabit and Gemini interconnects. The
balance of the paper is presented as follows: section II explains
the key drivers in the design of the HPCHadoop framework
and the steps to implement it, section III outlines the methodol-
ogy used to set Hadoop tunables and perform benchmark runs.
In section IV we present the benchmark results and follow
this with some discussion of the results in section V. Finally,
we present the subject of future development and studies in
section VI and discuss a few final conclusions in VII.

II. HPCHADOOP: DESIGN AND IMPLEMENTATION

The design goals for HPCHadoop are simply to address
the issues raised in section I around running the Hadoop
framework in a batch scheduled HPC environment. The current
incarnation of HPCHadoop is available on Github' and is
principally intended as a proof of concept, though it does
address the two major hurdles outlined in the Introduction.
Beyond addressing the issues of integrating with a batch
scheduling system and using nodes without node local storage,
the system should require minimal configuration to get the
Hadoop framework up and running on a Cray system. Hadoop
has a nearly innumerable number of tunables and, for the most
part, HPCHadoop does not expose these tunables to the end
user. This is not to say that a user can not tune their Hadoop
installation, merely that there is no facility provided within
HPCHadoop to perform this configuration. In the end, the user
is required to provide a Hadoop installation and modify three
files (one of which is the job submission script) to configure
and run a Hadoop job with HPCHadoop.

Although there are other frameworks available which can
address some of the issues outlined, to our knowledge there
was not previously a solution that addressed all the issues
and allowed for deployment of the Hadoop framework on
a Cray X-series machine. We have integrated several of the
best features from several of these frameworks. For example,
the myHadoop framework [4] was designed to allow for
deployment of the Hadoop framework on HPC machines, and
HPCHadoop is strongly based on the myHadoop approach.
However, the fact that Hadoop needs to be launched in the
CCM environment on the Cray X-series presented challenges
for several of the implementation details of myHadoop. In
general, experience has shown that the most effective way of
launching CCM jobs is to ccmrun a script, which then may

Uhttps://github.com/scamicha/HPCHadoop

do setup, or launch other scripts. This design, along with the
basic approach of myHadoop was ultimately how HPCHadoop
was implemented.

In detail, HPCHadoop is implemented as a series of scripts
that are invoked by ccmrun and interact with the batch
scheduler to configure and launch the Hadoop cluster. Cur-
rently HPCHadoop supports the PBS scheduler, although
adding additional schedulers, such as Slurm, is a relatively
straightforward proposition. The end user has minimal con-
figuration requirements, needing only to edit three files. The
first of which defines several environment variables in the
HPCHadoop installation including the location of the Hadoop
installation, the data location, the type of filesystem used, and
so forth; the second provides the Hadoop commands to be
run; and the third being a PBS job submission script file.The
system supports creating an HDFS instance on either node
local storage (the /tmp filesystem in local memory in the
case of the Cray X-series) or on a globally shared filesystem
such as Lustre. Prototype functionality to directly use a global
filesystem, without the HDFS layer is also included, but has
not been fully validated, and so benchmark results are not
presented in this paper.

Once the end user has set the appropriate variables and
included the necessary files, they can submit their job to the
batch scheduling system. Following the start of the job and
instantiation of the CCM environment on the job nodes, the
HPCHadoop framework retrieves the node list and populates
the slave and master lists in the Hadoop installation. The
Hadoop configuration files are also populated with the user de-
fined variables. The HDFS file system is then instantiated and
the Hadoop framework is initiated. Following the successful
startup of the Hadoop framework, the user’s Hadoop workload
is executed and progress is logged to the user specified log
directories. Upon completion of the Hadoop workload, the
HPCHadoop framework preserves the log data, cleans up the
Hadoop framework on the job nodes and terminates the job.

III. METHODOLOGY

In this section, we describe our approach to testing the
HPCHadoop framework and comparing the performance of
Hadoop and HPCHadoop on different hardware architectures.
After careful consideration, we chose the Intel Hadoop Bench-
mark Suite (HiBench) version 2.2 [7] to be the workload
for our tests. HiBench was paired with HPCHadoop running
Apache Hadoop version 1.2.1. HiBench contains 9 typi-
cal Hadoop workloads, including Bayes, DFSIOE, Kmeans,
Nutchindex, Pagerank, Terasort and Wordcount.

There are many different parameters that can be tweaked
in both the Hadoop framework and within the Hibench Suite
to compare performance and behavior, including data size,
number of maps and reduces, running in memory versus on
native Lustre and on Lustre without HDFS. In this work,
we decided that it was out of scope to go beyond minimal
tuning of the many Hadoop and benchmark specific tunables.
Our aim with the benchmark numbers is to provide some
comparison between a Cray X-series machine and a more



Bayes

throughput (KB/sec)

16/16 32/16 32/32 20/16 16/12
maps/reduces per node

Pagerank

2000
1500 A
1000 A
500 -

throughput (KB/sec)

0 T T T T
16/16 32/16 32/32 20/16 16/12

maps and reduces per node

Fig. 1: Both plots show the single node throughput in kilobytes
per second for two sample benchmarks, Bayes and Pagerank,
for a variety of mapper and reducer combinations. The bench-
marks were run on the XK7 nodes (16 cores/node) of Big Red
II.

traditional style Hadoop like cluster. However, we determined
that at minimum we needed to find a good ratio of maps
and reduces for the best performance on the given hardware
configurations. Following this determination, we determined
fixed input data sizes to use for each of the benchmarks,
which was largely based on the minimum input data size that
would reasonably demonstrate scaling. We then ran a series
of benchmarks to study the scalability of the HPCHadoop
and Hadoop frameworks on both the Cray machine and our
standard cluster. These benchmarks were run on both local
storage (in memory in the case of the Cray) and on a globally
shared Lustre filesystem with HDFS.

A. Hardware

The following is a description of the hardware used in all of
the benchmark tests presented throughout the balance of this
paper. Big Red II is a Cray XE6/XK7 hybrid supercomputer
at Indiana University, with a single AMD Interlagos 16 core
CPU, 32 GB of memory, and a single NVIDIA K20 GPU per
XK7 node and two AMD Abu Dhabi 16 core CPUs and 64
GB of memory per XE6 node. The nodes are interconnected
via the Cray Gemini network, which is connected to a shared
Lustre file system called the Data Capacitor II (DC2) via 22

LNET routers. Quarry is a standard Linux cluster, with two
Intel based 8 core CPUs and 16GB of memory per node. Each
Quarry node also contains a local disk with a usable capacity
of 100GB. Quarry nodes are connected via gigabit ethernet
and are connected to DC2 via four LNET routers.

B. Number of maps and reduces per node

To conduct a reasonable comparison of benchmark runs,
we performed a minimal amount of tuning of the Hadoop
framework, namely tuning the number of active mappers and
reducers for a given task and number of cores in a worker
node. We attempted runs of the HiBench framework with
a variety of ratios of mappers to reducers. We tested the
following ratios on the XK7 nodes of Big Red II: 16/16,
32/16, 32/32, 20/16 and 16/12. An HDFS instance instantiated
on the DC2 filesystem was used for all of these runs. For
most of the benchmarks, a 16/12 maps to reduces ratio gives
the best or close to best runtime. The closest competitor to
16/12 is 16/16. A sampling of the results from the runs to
find the best ratio of maps and reduces are shown in figure
1, here we only show the results for two of the benchmarks
involved, Bayes and Wordcount. However, the results from
the other benchmarks are similar. Based on this finding, for
all subsequent benchmark runs discussed in this paper, we set
the ratio of mappers to reducers to 4:3, with as many maps as
there are cores per node.

C. Input data size

Following the determination of the number of mappers and
reducers per node, the other benchmark parameter we tuned
was input data size, we determined an appropriate size that was
not too small for runs with larger node counts and at the same
time not too large for runs with smaller node counts. Again,
we settled on a value that worked for most of the benchmarks
involved. We experimented with a variety of data sizes, such
as 2X, 2.5X, 5X and 10X times the default HiBench input
data size. These input data sizes were not really an issue
for runs on Lustre, other than to inflate the benchmark run
times, but large data sizes were an issue when running in
node local memory on the Cray. We finally chose 2.5X the
original data size for each of the benchmarks as the standard
for our performance comparison runs. This means that the
smallest node count which we could run almost all of the
benchmarks in memory was 5 nodes. We were not able to run
node local memory benchmarks with 3 nodes. The input data
sizes ranged anywhere from 500 MB to 250GB, depending
on the benchmark. Also, for some of the benchmarks, the
input data size was defined on a per node basis. Most of the
benchmarks that are part of HiBench did not work out of
the box. Many of them needed minor adjustments, including
setting some missing environment variables and removing a
few unnecessary statements and unbound variables.

To understand the performance and scaling characteristics
of the various benchmarks, we designed a series of tests, on
Big Red II and Quarry. We did scaling tests for each of the
benchmarks on both the machines, going from 5 nodes to 33



nodes. These node counts were determined based on the fact
that HPCHadoop by default configures the Hadoop cluster to
have one node dedicated to the job tracker with the rest of
the nodes as task trackers. These node counts allowed us to
increase the number of task tracker nodes in powers of two.We
repeated these tests both in memory and on Lustre for the Cray
system and on the node local disk and on Lustre for the gigabit
connected cluster. We discuss the results in the next section.

IV. RESULTS

In this section, we give a sampling of results designed to
illustrate the extremes of the overall results. By bracketing
the behavior of the spectrum of benchmark results we hope
to give a comprehensive picture of what is possible with
Hadoop in general and HPCHadoop specifically. It is worth
bearing in mind that minimal amounts of Hadoop specific and
per benchmark specific optimizations have been performed to
obtain these results, so they are by no means the maximum
that could be expected from Hadoop and HPCHadoop. We
examine the scalability of the framework, looking at both
the benchmarks exhibiting the greatest and least measures of
scalability on both Big Red II and Quarry. This is followed
by a direct comparison of the runs on Big Red 2 and Quarry,
again focusing on the benchmarks that show both the largest
variation in performance and the least variation.

We have adopted this approach because we did not observe
any particularly strong trends that were consistent across all of
the benchmarks, the benchmarks vary widely in their under-
lying workloads, measured throughput, and scalability. With
further and more detailed investigation, and per benchmark
fine tuning it may be possible to measure some more general
trends, but many of the benchmarks in the HiBench suite are
actually designed to measure fundamentally different system
characteristics. By bracketing the overall behavior, we are
attempting to give the reader a broad sense of the spectrum
of possibilities for all the benchmarks that fall somewhere in
between the extremes. Although we did some initial tests on
the XK7 nodes of Big Red II, all the results described in this
section are from runs on the XE6 nodes of Big Red II.

A. Scaling on Cray X-Series

Figure 2 shows the scaling behavior of two benchmarks
on Big Red II, for both the local memory benchmarks and
on the DC2 filesystem. The top plot shows the scalability
of the Nutchindexing benchmark, presenting the aggregate
throughput of the benchmark as a function of the number
of nodes used. One can observe that in going from 5 to
33 nodes, the throughput stays roughly constant, with only
a slight increase in total throughput as the number of nodes
is increased. The behavior of the Nutchindexing benchmark is
an extreme example of a benchmark that did not scale well as
the number of nodes was increased.

The bottom graph of figure 2 shows the same sort of
information for the Wordcount benchmark. In stark contrast
to the Nutchindexing benchmark, the Wordcount benchmark
is much more scalable. The throughput goes up nearly five

Nutchindexing

g 3 Binmemory BDC2

vy

~

oM

2,

5

o

< 1

3

o

% 0

5 9 17 33

number of nodes
Wordcount

5) Bin memory EDC2

@ 1500

~

o

= 1000

2

< 500

)

o

4_‘;:: 0

5 9 17 33
number of nodes

Fig. 2: Big Red II: The top plot shows the throughput of the
Hadoop framework in megabytes per second for the Nutchin-
dexing benchmark, the benchmark exhibiting the poorest scal-
ability, on Big Red II for a variety of node counts on both
node local memory storage and Lustre storage. The bottom
plot shows the same values for the Wordcount benchmark,
which is the benchmark that exhibits the best scaling on Big
Red II.

times from 225 MB/sec to 956 MB/sec in the case of the in
memory run and goes up about three times from 211 to 602
MB/sec with DC2.

It is worth noting that the input data size is specified on
a per node basis for Wordcount, and therefore the aggregate
input data size increases along with the number of nodes,
such that the total input data size is 256 GB for the 33 node
benchmarking run. On the other hand the Nutchindexing input
data set is constant for increasing node count and is relatively
small, only 1.5 GB, but, even so, should be enough to exhibit
some measure of scaling at smaller node counts.

B. Scaling on Conventional Hadoop Cluster

We carried out a similar set of experiments on the Quarry
cluster, which is a machine with a hardware configuration
that is closely matched to a conventional Hadoop cluster. For
the sake of comparison, we selected the same benchmarks
for discussion of the scaling behavior on Quarry. The key
difference between the Big Red II runs and Quarry runs
that utilized local storage used node local memory on Big



Nutchindexing
Blocal disk BIDC2

g3

L

o

= 2

5

21

to

35

o

< 0

3 5 9 17 33
number of nodes
Wordcount

) Zlocal disk ©DC2
3 600

~

o

2 400

5

2200

bo

2

Ft 0

3 5 9 17 33
number of nodes

Fig. 3: Quarry:The top plot shows the throughput of the
Hadoop framework in megabytes per second for the Nutchin-
dexing benchmark, the benchmark exhibiting the poorest
scalability, on Quarry for a variety of node counts on both
local disk storage and Lustre storage. The bottom plot shows
the same values for the Wordcount benchmark, which is the
benchmark that exhibits the best scaling on Quarry.

Red II and local disks for the Quarry nodes. This was done
because each Quarry node has only 16GB of memory, which is
insufficient for a majority of the benchmarks. And, of course,
Big Red II nodes have no local disks. The runs on DC2 were
carried out in fashion similar to the DC2 runs performed on
Big Red II.

Figure 3 shows the scaling behavior of Nutchindexing and
Wordcount on Quarry when the number of nodes is increased
from 3 to 33. We were able to fit and run the benchmarks on 3
Quarry nodes because of the larger disk space that is available
on the local disks. As with Big Red II, Nutchindexing in the
top panel is an extreme example of a benchmark that does not
scale at all with an increase in the number of nodes. Wordcount
is an example from the other end of the spectrum, and shows
consistently good scaling from 3 to 33 nodes. It is worth noting
that the aggregate Wordcount throughput for Quarry is a factor
of two or more smaller than that of Big Red II. This is most
likely due to the fact that Quarry has only 8 cores per node,
compared to the 32 on Big Red II.

’vg Bayes
v EBBR2 BEQuarry
<03
2
302
=
¥
5 0.1 -
=
0 - |
5 9 17 33
number of nodes
B DFSIOE - Write
L BBR2 EQuarry
0 600
2
S 400 -
Q
-
> 200
e
=
E o 0 .

5 9 17 33
number of nodes

Fig. 4: Local Storage: The top chart shows the Bayes
benchmark, the benchmark with the smallest difference in
performance between Big Red II and Quarry for local storage.
Conversely, the bottom chart shows the DFSIOE benchmark,
the benchmark with the largest difference in performance. The
Big Red II runs used node local memory and the Quarry runs
utilized a local disk attached to the compute nodes.

C. Comparison Between Cray X-series and Conventional
Hadoop Cluster

By examining the individual benchmarks which show both
the greatest and least performance differences on Big Red II
as compared to Quarry one can get a sense of the range of
possibilities in performance when looking at a Cray X-series
machine versus a conventional Hadoop cluster. The runs on
Big Red II and Quarry use the same configuration and input
data, one major difference being Big Red II has 32 cores per
node and Quarry has 8 cores per node. Another detail to keep
in mind is that, for local storage, we are comparing in memory
runs on Big Red II with the runs that utilize the local disk on
Quarry. We also compare the runs that use HDFS on DC2.

1) Local Storage: Figure 4 shows how the performance
of Bayes and DFSIOE-Write on Big Red II compare with
Quarry. The throughput of the Bayes benchmark on Big Red
IT and Quarry differ by less than 20%. This is the smallest
performance differential measured for any of the benchmarks
when using local storage. On the other end of the spectrum,
one can observe in the bottom plot of figure 4 that the
DFSIOE-Write runs on Big Red II are consistently more



B DFSIOE - Write
g BBR2 EQuarry
E 600
S 400
o
)
§ 200
=
+ 0
5 9 17 33
number of nodes
= Terasort
3‘1’ EBR2 EqQuarry
= 300
=
= 200 -
=}
o
® 100
3
: 1 B
< 07

5 9 17 33
number of nodes

Fig. 5: DC2: The top chart shows the DFSIOE benchmark,
the benchmark with the smallest difference in performance
between Big Red II and Quarry for Lustre storage. Conversely,
the bottom chart shows the Terasort benchmark, the bench-
mark with the largest difference in performance. Both the Big
Red 1II runs and the Quarry runs used the DC2 filesystem.

than three times faster than the Quarry runs using node local
storage. All the other benchmark performance differentials for
local storage fall between DFSIOE-Write and Bayes in how
they compare between Big Red II and Quarry.

2) Global Lustre Filesystem: Figure 5 shows two bench-
marks, one that performs at roughly the same level on both
Big Red II and Quarry and the other that varies by a large
margin. These runs used HDFS instantiated on the DC2 Lustre
filesystem. The graph on the top shows the DFSIOE-Write
benchmark, whose performance does not differ very much
between BR 2 and Quarry. The graph on the bottom shows
the Terasort benchmark, in which Big Red II consistently
outperforms Quarry. These two benchmarks represent the
opposite ends of the spectrum and all the other benchmarks
fall between these two in the comparison between Big Red II
and Quarry.

V. DISCUSSION

In all, we performed 20 runs of the HiBench suite, for a total
of 160 individual benchmark results. The results presented in
section IV are intended to be instructive in that they bracket the
behavior of the benchmarks in scaling and when comparing

the Cray system to a traditional Hadoop cluster. Although the
results are fairly wide ranging, one can draw several general
conclusions from them regarding the typical performance one
could expect from a Cray X-series machine.

It should be noted that our initial main objective with
the HPCHadoop framework was to produce an easy to use,
straightforward, proof of concept implementation of a frame-
work that would allow users to make use of the Hadoop
framework on Cray machines. By this measure, HPCHadoop
has met our initial goals, in that it was able to successfully run
many iterations of a standard benchmark suite on both the Cray
platform and a standard Linux cluster. Of course, one may first
ask the question whether it even makes sense to attempt to
deploy Hadoop on an HPC cluster. In general, the architecture
and design of most HPC systems is fundamentally at odds
with the basic assumptions underlying the Hadoop framework.
However, there are several use cases one can imagine where
a researcher would want to use the Hadoop framework on an
HPC resource.

The first such instance is when a researcher has access to
already developed Hadoop code that they wish to apply to their
own data sets. In this case there is a great deal of benefit to the
researcher to not have to develop code from scratch to work
in a different distributed algorithm paradigm. Additionally,
if a researcher wishes to make use of other computational
resources besides HPC centers, such as Amazon or other cloud
offerings, it is of great benefit to have a code base that works
equally well on both architectures. A second potential use case
lies in the fact that the MapReduce paradigm is a very simple
way to introduce researchers to a parallel distributed comput-
ing paradigm, particularly when their workflow is data parallel.
A HPC enabled Hadoop framework offers the possibility of
offering an extremely simplified parallel processing service,
where the researcher is only required to provide a map function
and a reduce function. To be sure, this limits the scope of the
type of research problems that such a framework can address,
but it also dramatically lowers the barrier for entry.

For certain classes of problems Hadoop on a Cray offers
the potential of good scalability right out of the box, as
is evidenced by the best scaling benchmarks in figure 2.
Although some types of workloads may require some further
fine tuning, these are most likely issues that can be addressed
fairly easily. We also found that, in general, a Cray X-series
system outperforms a standard Hadoop cluster. In some cases,
as in figures 4 and 5, by factors of several. Clearly, with
a framework such as HPCHadoop a Cray X-series machine
offers an opportunity to address Big Data problems with the
Hadoop framework.

VI. FUTURE WORK

The development of HPCHadoop has proceed fairly rapidly
and the overall intention of this paper was to act as a proof
of concept for the framework. Although the framework has
been shown to successfully run all of the benchmarks in
the HiBench suite, there remain many areas for potential
improvement or further development. For example, although



we have a working prototype which allows a user to run
Hadoop natively on Lustre (without starting HDFS), this
model is still unstable and has only been shown to work with a
few of the benchmarks and certain input data sizes. This work
is very similar to the work conducted by Intel in their Intel
Distribution of Hadoop (IDH). The IDH distribution contains
a native Lustre connector which purports to allow users to
directly use a shared global Lustre filesystem for Hadoop
workloads. We have begun conversations with Intel to evaluate
their product and approach and compare it to our own. We are
also in the process of evaluating other systems that allow users
to use globally shared filesystems such as Mariane [8].

In addition, to the evaluation of native filesystem protocols,
we will revisit the benchmark parameters of the HiBench
suite to attempt to better optimize the individual benchmarks
and gain deeper insight into the strengths of the Cray X-
Series for Hadoop workloads, following this track we will also
investigate some novel Hadoop frameworks, such as Twister
[9], to determine their relative strengths on the Cray hardware.

Finally, a relatively straightforward addition is to include
support for other schedulers beyond the PBS system that is
currently supported. We will begin by including HPCHadoop
support for the Slurm scheduler.

VII. CONCLUSION

We developed a straightforward implementation of an easy
to use and easy to adapt framework, which can be used to run
Hadoop jobs, specifically on Cray X-series supercomputers
and, more generally, on regular batch scheduled Linux super-
computers. We have presented the results of several scaling
runs of the HiBench benchmark suite for both local storage
and HDFS on a Lustre filesystem on a Cray and a regular
Linux cluster.

We gathered a large set of data from all the benchmarks,
and compared the Hadoop framework throughput for local
storage and Lustre on both Big Red II and Quarry. As can
be observed from the results, we saw a broad spectrum of
performance results, but in most cases local storage performed
slightly better than Lustre, which is certainly understandable
when memory is being use as node local storage. However,
even given the disparity in the raw performance numbers it
is surprising that the performance on both local storage and
Lustre are in the same ballpark.

The comparisons between Big Red II and Quarry are more
predictable, and Big Red II handily outperforms Quarry more
often than not, whether using local storage or Lustre. It is
difficult for us to say why each of the benchmarks behave the
way they did, further study of each of the individual bench-
marks and some deeper expertise in Hadoop benchmarking is
required. However, we have put the HPCHadoop framework
through its paces by running a wide variety of benchmarks
with it and confirming that it does indeed support a broad
variety of Hadoop workloads.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” in Proceedings of the 6th Conference on Symposium on

(2]
(3]
(4]

(5]
(6]

(71

(8]

(9]

Opearting Systems Design & Implementation - Volume 6, ser. OSDI’04.
Berkeley, CA, USA: USENIX Association, 2004, pp. 10-10. [Online].
Available: http://dl.acm.org/citation.cfm?id=1251254.1251264

Apache Foundation, “Apache Hadoop - Official Site. Accessed 04-28-
2014.” http://hadoop.apache.org.

, “Powered By Apache Hadoop. Accessed 04-28-2014.” http://http:
/Iwiki.apache.org/hadoop/PoweredBy.

S. Krishnan, M. Tatineni, and C. Baru, “myHadoop - Hadoop-on-Demand
on Traditional HPC Resources. Accessed 04-28-2014.” http://www.sdsc.
edu/~allans/MyHadoop.pdf.

Apache Foundation, “HDFS Architecture Guide,” http://hadoop.apache.
org/docs/r1.0.4/hdfs_design.html.

F. Schmuck and R. Haskin, “Gpfs: A shared-disk file system
for large computing clusters,” in Proceedings of the Ist USENIX
Conference on File and Storage Technologies, ser. FAST ’02.
Berkeley, CA, USA: USENIX Association, 2002. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1083323.1083349

S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The hibench
benchmark suite: Characterization of the mapreduce-based data analysis,”
in Data Engineering Workshops (ICDEW), 2010 IEEE 26th International
Conference on, 2010, pp. 41-51.

Z. Fadika, E. Dede, M. Govindaraju, and L. Ramakrishnan, “Mariane:
Using {MApReduce} in {HPC} environments,” Future Generation
Computer Systems, vol. 36, no. 0, pp. 379 — 388, 2014, special
Section: Intelligent Big Data Processing Special Section: Behavior Data
Security Issues in Network Information Propagation Special Section:
Energy-efficiency in Large Distributed Computing Architectures Special
Section: eScience Infrastructure and Applications. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X 13002719

J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and
G. Fox, “Twister: A runtime for iterative mapreduce,” in Proceedings of
the 19th ACM International Symposium on High Performance Distributed
Computing, ser. HPDC "10. New York, NY, USA: ACM, 2010, pp. 810-
818. [Online]. Available: http://doi.acm.org/10.1145/1851476.1851593




