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Abstract—The Cray XK7 includes NVIDIA GPUs for ac-
celeration of computing workloads, but the standard XK7
system software inhibits the GPUs from accelerating OpenGL
and related graphics-specific functions. We have changed the
operating mode of the XK7 GPU firmware, developed a custom
X11 stack, and worked with Cray to acquire an alternate driver
package from NVIDIA in order to allow users to render and
post-process their data directly on Blue Waters. Users are able
to use NVIDIA’s hardware OpenGL implementation which has
many features not available in software rasterizers. By elim-
inating the transfer of data to external visualization clusters,
time-to-solution for users has been improved tremendously. In
one case, XK7 OpenGL rendering has cut turnaround time
from a month down to to just one day. We describe our
approach for enabling graphics on the XK7, discuss how the
new capabilities are exposed to users, and highlight their use
by science teams.
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I. I NTRODUCTION

The Cray XK7 includes NVIDIA GPUs for accelerating
high performance computing applications, but the standard
Cray-supported system software currently limits their use to
compute-specific tasks, effectively locking out acceleration
of OpenGL and other graphics-specific tasks and functions.
We have changed the operating mode of the XK7 GPU
firmware, developed a custom X11 stack, and worked with
Cray to acquire an alternate driver package from NVIDIA in
order to allow Blue Waters users to render and post-process
their data directly on the system. Users of Blue Waters
are able to take advantage of NVIDIA’s full hardware-
accelerated OpenGL implementation directly on the XK7
compute nodes. NVIDIA’s OpenGL provides many features
not available in software rasterizers such as Mesa, including
interoperability APIs for efficient in-place access to GPU-
resident data by CUDA, OpenCL, the OptiX ray tracing
framework, and the XK7 GPU’s on-board NVENC video
encoding and decoding accelerator hardware. By enabling
local XK7 rendering and eliminating the bulk transfer of
data to external visualization clusters, the workflow for vi-
sualizing the results of petascale simulations becomes much
simpler and the time-to-solution for users has been greatly
reduced. These advancements have proven critical for the
creation of advanced visualizations of the HIV-1 virus capsid
and other large biomolecular complexes with VMD1 [1],

1http://www.ks.uiuc.edu/Research/vmd/

[2], [3], [4], and for high fidelity movie renderings with the
HVR volume rendering software.2 In one example, the total
turnaround time for an HVR movie rendering of a trillion-
cell inertial confinement fusion simulation [5] was reduced
from an estimate of over a month for data transfer to and
rendering on a conventional visualization cluster down to
just one day when rendered locally using 128 XK7 nodes
on Blue Waters. The fully-graphics-enabled GPU state is
currently considered an unsupported mode of operation by
Cray, and to our knowledge Blue Waters is presently the
only Cray system currently running in this mode.

Historically the analysis and rendering of large data sets
has often required visualization clusters separate from the
systems used to generate the data. Blue Waters does not
currently provide a separate GPU-accelerated visualization
cluster for users as part of the same facility, so in cases
where GPU-accelerated visualization was needed, users were
required to transfer their data to visualization systems exter-
nal to Blue Waters and NCSA. With the extremely large
size of data generated by the Blue Waters system, such off-
site transfers and post-processing can take weeks or longer.
After aforementioned modifications were made to the Blue
Waters system software and to the XK compute nodes to
unlock their full potential, users of the Blue Waters system
are now encouraged to use the 4,224 Tesla K20x GPUs not
only for computation and generation of their science data,
but also to perform large scale analysis and visualization on
it. By keeping these visualization tasks in-house, network
traffic is greatly reduced and results are delivered to users
much more rapidly. In many cases, users can combine their
analysis and visualization into a single-pass, more efficiently
operating on massive datasets, which has the added benefit of
avoiding redundant I/O, providing a benefit even if a facility
also has separate co-located visualization clusters available.

By fully enabling the XK7 accelerators for both graph-
ics and compute usage, new opportunities are created for
performing high-performance hardware video encoding and
decoding for remote visualization. This also allows for
efficient encoding of high-resolution “4K” resolution movies
and various types of image processing and computer vision
algorithms that exploit OpenGL rasterization hardware and
software. These capabilities are not available when the GPUs
are run in the compute-only mode as shipped by Cray.

2http://www.lcse.umn.edu/MOVIES



Figure 1. VMD GPU-accelerated OpenGL rendering of the 64-million-
atom HIV-1 capsid simulation [2] performed on the NVIDIA Tesla K20X
GPUs of the Cray XK7 compute nodes. This view shows the extent
of the molecular dynamics simulation unit cell with solvent, ions, and
multiple surface representations highlighting components of the HIV-1
capsid. The OpenGL rendering used GLSL programmable shading for
pixel-rate lighting and direct ray casting-based rasterization of spheres used
to represent atoms.

Below we describe all of the steps required to change the
operating mode of GPUS and the X11 modifications needed
to enable OpenGL acceleration on the Cray XK compute
nodes. While these changes help accelerate time-to-solution
and create additional research opportunities; one must also
be wary of any additional load, instability, or overhead these
changes might introduce to the system, particularly anything
that would affect traditional compute-only codes that do
not make use of OpenGL rasterization or other graphics-
specific GPU hardware or software features. We address
these concerns by reporting our experiences operating Blue
Waters XK7 nodes in the graphics-enabled state for over a
year, and note the lack of impact on performance, system
reliability, power consumption, and other dimensions of
potential concern.

II. B LUE WATERS SYSTEM SOFTWARE

A. System Overview

Blue Waters is a hybrid Cray XE/XK system consisting
of 22,640 XE6 and 4,224 XK7 compute nodes. Each of the
4,224 XK7 compute nodes contains an NVIDIA Tesla K20X
GPU for acceleration of computational codes. The stock
Cray system configuration enables the Tesla K20X GPU
accelerators used for computational purposes, but does not
enable the GPUs to be used for OpenGL rasterization despite
the fact that GPU hardware is designed principally for this
purpose. The desire to enable applications to use native
hardware-accelerated OpenGL on the XK7 GPUs led to a
number of system software changes that we describe below.

B. System Changes

Three issues block applications that use OpenGL from
running by default on the Cray XK GPU nodes. The
following steps will enable OpenGL to run on the XK GPU
nodes with full GPU hardware acceleration.

1) OpenGL requires an X Server:The NVIDIA OpenGL
implementation currently requires an X server to be running,
even when rendering to an off-screen OpenGL pbuffer. This
stems from a reliance on the use of X server infrastructure
for bootstrapping the graphics side of the GPU driver
software, and because there is currently not an NVIDIA
driver stack that allows an OpenGL context to be obtained
except by the use of the GLX API, which was designed
to be tied to an X11 windowing system. Sun Microsystems
developed a cluster-oriented OpenGL rendering extension
called “GLP” which provided a means of creating GPU-
accelerated OpenGL contexts without running an X server,
but to our knowledge this extension was unique to Sun
Microsystems hardware and software, and it has not been
implemented by other vendors. It is possible that the use
of the so-called “EGL” embedded OpenGL API may be
a good starting point for off-screen rendering without a
windowing system dependency, as NVIDIA has recently
begun to support EGL on Linux platforms, but this currently
remains an area of future work.

The requirement for an X server creates a problem on the
Cray system as the compute nodes run incredibly minimalis-
tic and stripped-down system software. All unneeded kernel
drivers, kernel modules, and other software components
are removed from the kernel and Linux environment to
make the compute node system software lean, reliable, and
performant. The major obstacle to starting X on an XK7
compute node is the lack of Virtual Terminal (CONFIGVT)
support in the compute node kernel which is required in the
Linux initialization routines. There appeared to be two ways
to get around this: recompiling a kernel with the VT support
enabled, or modifying X to work without Virtual Terminal
support.

Building a custom kernel, while technically possible,
creates too many uncertainties with package updates, and



may cause performance effects beyond just enabling the
X server. This idea was evaluated and scrapped, and the
Xorg 1.12.4 release was downloaded and the source code
was examined. It turns out that bypassing the VT calls
in the X Server’s initialization routines is incredibly easy,
because there are only a handful of VT-related calls in the
X server initialization code. The VT-related calls are not
needed when running in a headless configuration, so for the
needs of the Cray user community these VT-related calls can
safely be removed. The functionsxf86OpenConsole() ,
andxf86CloseConsole() simply need to return early3

and everything will start correctly. An entire Xorg 1.12.4
release was recompiled from source4 and put into
/usr/local/X11R7.7 which allowed us to avoid con-
flicts with existing libraries on the system. A headless
xorg.conf 5 was created to load the NVIDIA driver.

2) OpenGL requires additional driver components:The
next missing piece in the puzzle arose from a missing
hardware-accelerated NVIDIA driver. In a normal distribu-
tion, thenvidia-drv.so X driver and associated libraries
are included with the kernel module.6

These files were missing from the Cray distribution as
they are unneeded except for X. The NVIDIA kernel driver
version on a Cray is custom to the Cray and in the case of
a driver/kernel module version mismatch, the driver will not
load. A request was filed with Cray to provide the missing
files, and they were quickly provided. All future NVIDIA
updates on our system have included the previously missing
driver components, allowing us to keep the driver in sync
with the kernel module through a simple script to update
links to version dependent files.7

3) Cray accelerators run in a non-standard GPU Opera-
tion Mode: Finally, even with the above pieces in place, the
Xorg server still refused to start. The error message received
was “The GPU Operation Mode for this GPU disallows
graphics”. This error indicated that the nodes are shipped
by Cray in a state where the graphics capabilities of the
GPUs are disabled.8 The NVIDIA suppliednvidia-smi
tool can be used to adjust the GPU Operation Mode to set the
GPU back to the default to “ALLON”. This change requires
a system reboot to take effect. With the GPU Operation
Mode bit flipped, and the system rebooted, our modified
Xorg 1.12.4 server started on a compute node. It took a few
attempts to get all of the accelerated libraries moved into
the proper paths and to set environment variables, but a test
application9 then ran successfully.

3http://raw.github.com/mdklein/XonXK/XonXK.patch
4http://www.x.org/wiki/Building the X Window System/
5http://raw.github.com/mdklein/XonXK/xorg.conf
6Refer to the “installed components” section of the NVIDIA GPU driver

documentation.
7http://raw.github.com/mdklein/XonXK/fixnvdriver.sh
8Refer to NVIDIA documentation for thenvidia-smi GPU Operation

Mode setting.
9http://raw.github.com/mdklein/XonXK/testglx.cxx

This is technically the only modification that was made
to the general operation of the system as it changes the
operating mode of a hardware component. The other two
changes were all just modifications to the software environ-
ments. NVIDIA and Cray were contacted to investigate this
change to make sure it was safe for our hardware. NVIDIA
reported a possible power draw increase of around 2 Watts
per GPU while running in the OpenGL mode, which was
an acceptable number. Cray agreed that the change to the
GPU Operation Mode would not harm the hardware, but
this pushed the system into the “unsupported” designation.
If problems with GPUs turned up after switching the GPU
Operation Mode, we accepted that we might need to switch
the GPU Operation Mode back to “COMPUTEONLY” to
debug the system. Since enabling this mode on March 13,
2013, we have had zero issues relating to the change, and
we have never needed to change it back.

C. Scheduler Modifications

All of the above work was done running manually as root
on a compute node. For users to benefit from the work,
a method needed to be developed that worked with our
job scheduling system. OpenGL applications require an X
server to be running, but having Xorg running all the time
would negatively affect users that had no use for it. Various
methods for starting X were investigated with the aim of
finding solutions that would be easy to use, but that would
only affect users that wanted the X server.

Blue Waters uses Torque and Moab for its resource
manager and workload scheduler, respectively.10 The way
CCM sets up the environment was examined, as it did things
similar to those that we needed for X server initialization,
such as starting up SSH servers on the compute nodes.
This was done by the Torque prologue. We chose to create
a generic resourcein Moab we called “viz”. We then
added some logic to the prologue of Torque specifying
that if a viz resource was requested,pcmd from the Cray
nodehealth package would start up Xorg on the XK
nodes. A 10 second sleep was added when starting viz jobs
to ensure the Xorg server was completely started before an
aprun was attempted. The prologue runs as root before
the job starts completely outside of thealps scheduler,
and pcmd allows for backgrounding jobs making the X
server initialization completely transparent to the user. The
epilogue was also modified to kill the X server so nodes are
cleaned up properly after jobs were finished. This generic
resource method allows for accelerated OpenGL applications
in both ESM and CCM modes, allowing flexibility to meet
needs of the science teams.

The goal of this project was to make hardware-accelerated
OpenGL support completely optional, but also easy to use by
those that want it. A loadablemodule11 was created to easily

10https://bluewaters.ncsa.illinois.edu/running-your-jobs
11http://modules.sourceforge.net/



Figure 2. In this image from the PRAC team led by Paul Woodward
at the University of Minnesota, team member Mike Knox has visualized
the process of entrainment of hydrogen-rich gas into the helium shell flash
convection zone of the very late thermal pulse star called Sakurai’s object.
The front half of the star has been cut away, and the central degenerate
carbon-oxygen core which will ultimately become a white dwarf star, has
been made transparent. Just above this carbon-oxygen core, helium burns
in a shell at a radius of about 9000 km, generating about 40 million solar
luminosities. This drives vigorous convection of the helium and carbon
mixture above the helium burning shell extending up to the top of this
convection zone at about 18000 km. The helium-carbon mixture of the
convection zone has also been made transparent. Only mixtures of this
gas with entrained hydrogen-helium gas from above the convection zone is
made visible in this volume rendering. Concentrations of entrained gas from
large to small range in color from red to yellow, white, aqua, and finally
dark blue. Superposed on this image of the entrained gas concentration
is an image of the rate of energy release from burning of the entrained
hydrogen. This burning proceeds only at depths in the convection zone
where the temperature is high enough, between radii of about 15000 to
12500 km. The burning gas is shown with very dark blue representing
slowest combustion, then red, yellow, and finally white for most rapid
combustion at the greatest depths. The localized nature of this energy
release is apparent from this image. It ultimately leads, as the combustion
causes the entrainment rate to increase, to global oscillations of the shell
hydrogen ingestion and burning, to which this team gives the acronym
GOSH. A movie showing this hydrogen ingestion phenomenon can be
found on the Web: http://www.lcse.umn.edu/MOVIES

set up the paths to the libraries, and all needed environment
variables. To compile with the OpenGL accelerated libraries,
one simply loads theopengl module.12 If the user wants to
use the included Mesa software rasterization library provided
by Cray, they can simply skip loading the newopengl
module.

Figure 3. Spherical chromatophore from purple photosynthetic bac-
teriumRhodobacter sphaeroidesshowing the placement of light harvesting
complexes as determined by microscopy and computational modeling [6].
This VMD rendering of the chromatophore structure used GPU-accelerated
OpenGL rendering on Blue Waters and incorporated custom GLSL shaders
for pixel-rate lighting, angle-dependent transparency, and depth cueing. The
use of sophisticated GLSL shaders is a particular area where the NVIDIA
GPU-accelerated OpenGL implementation significantly outperforms soft-
ware rasterizers such as Mesa, both in terms of speed and often also in terms
of compatibility with a wide range of OpenGL shading language versions
and features. By performing rendering on Blue Waters itself, researchers
can completely eliminate transfers of large datasets to other sites. The
performance gain achieved just as a result of eliminating large data transfers
can often dwarf all other considerations.

III. A PPLICATIONS

Two NSF PRAC science teams have begun to use their
applications with the hardware-accelerated OpenGL capa-
bility made available on Blue Waters by the techniques
described above. The first two applications to use the new
capability were HVR13, a sophisticated volume renderer
used for visualizing a wide variety of computational fluid
dynamics simulations such as the visualization of stellar
combustion [7], [8] shown in Fig. 2, and VMD14 [1], a
tool for preparing, visualizing, and analyzing molecular
dynamics simulations such as the HIV-1 capsid [2] shown
in Fig. 1, and the chromatophore structure shown in Fig. 3.

VMD has been adapted to support off-screen OpenGL
rendering for high-throughput visualization of petascale
molecular dynamics simulations [3], such as the HIV-1 cap-
sid [2] shown in Fig. 1, and a chromatophore [6] shown in

12http://raw.github.com/mdklein/XonXK/opengl.module
13http://www.lcse.umn.edu/hvr/hvr.html
14http://www.ks.uiuc.edu/Research/vmd/



Fig. 3. The process of modifying an existing OpenGL appli-
cation for off-screen rendering is relatively straightforward,
and involves the use of a special set of GLX APIs to create
and manage off-screen pbuffers. VMD is written in C++
using a set ofDisplayDevice and OpenGLRenderer
subclasses that adapt specialize the rendering subsystem for
a variety of OpenGL rendering hardware and windowing
systems [9]. With the existing VMDDisplayDevice
class hierarchy in place, the development of a new subclass
for off-screen OpenGL pbuffer rendering required only about
three hours of work to write and test. With the new off-
screen rendering mechanism added to VMD, we immedi-
ately began to evaluate its performance, and added support
for it within the parallel movie rendering tools included in
VMD [3].

From the beginning it was clear that the availability of
GPU-accelerated OpenGL would be beneficial for speed-
ing up large scale VMD movie rendering tasks on Blue
Waters, both for daily visualization tasks and as a rapid
method for previewing renderings and movies to be cre-
ated more computationally costly ray tracing and ambient
occlusion lighting techniques. An unexpected benefit of
GPU-accelerated OpenGL is that the rendering speed is
so fast relative to higher quality methods that a user can
render images and movie frames using both OpenGL and
ray tracing with a negligible increase in rendering time as
compared with ray tracing alone. A secondary benefit of
using GPU-accelerated OpenGL, as compared with software
rasterizers such as Mesa, is that interoperability APIs can
be used to improve efficiency of data exchange between
compute kernels written in CUDA and OpenCL, OpenGL-
based visualization algorithms, high quality ray tracing with
OptiX, and hardware-accelerated video encoding and de-
coding with NVENC hardware present on the XK7 GPUs.
By using interoperability APIs, data can remain resident in
GPU global memory between computation and visualization,
thereby eliminating costly copy operations.

Another important benefit of support for the NVIDIA
GPU-accelerated OpenGL implementation and the asso-
ciated X server usage is that they allow a wide range
visualization tools to be developed using roughly the same
approach that would be used for a conventional desktop
workstation, thereby eliminating a potential barrier to the
use of many tools on petascale Cray systems such as
Blue Waters. The availability of full OpenGL greatly eased
the development of the OptiX-based GPU-accelerated ray
tracing features in VMD on Blue Waters [4]. The OptiX
libraries contains internal references to OpenGL GLX APIs
such asxcb_glx_set_client_info_arb() , which
are unresolved symbols on the standard Cray XK7 system
software. While it has subsequently been possible to work
around the missing OpenGL GLX symbols by creating no-
op stub functions within VMD, this is clearly an undesirable
situation. The stub function approach had to be used to

support OptiX-based GPU-accelerated ray tracing on the
Titan machine at Oak Ridge National Laboratory, and on
the Big Red II machine at Indiana University. The use of
stub functions is fragile since OptiX or any similar library
might incorporate additional internal OpenGL dependencies
in future versions, and there could be dependencies on
OpenGL or GLX APIs that would be too difficult to emulate
effectively. By providing a complete OpenGL and X11
software stack for the XK7 nodes, it is much easier to
compile existing visualization tools and to exploit the full
performance potential offered by the XK7 GPUs.

IV. CONCLUSIONS

We have presented an overview of the system software
changes that were required in order to enable full GPU-
acceleration of OpenGL rasterization on the Cray XK com-
pute nodes containing NVIDIA Tesla K20X GPUs. Our
experience has shown that the required change to the GPU
Operation Mode to enable graphics has had no observable
impact on the reliability of the Blue Waters system, and
that GPU power consumption and performance for non-
graphical applications remains the same as it was before the
change. Several science teams have begun to use the XK7
nodes on Blue Waters for the purposes of high-performance
in-place visualization of large datasets on Blue Waters, as
opposed to transfer to off-site visualization clusters. The
implementation of a newopengl software module and
the close integration of these features with the Blue Waters
scheduler implementation makes it very easy for users to
exploit the GPU-accelerated rendering capability without
having to compile their own X server software, nor to add
complexity to their existing batch scripts. While the changes
we have described are currently not a Cray-supported mode
of system operation, they have proven very beneficial to Blue
Waters science teams, and we expect that more Cray sites
will wish to replicate the features we have described here
on their own systems.
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