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Abstract — A tri-hybrid port of General Electric’s in-house, 3D, Computational Fluid Dynamics (CFD) code

TACOMA is created utilizing MPI, OpenMP, and OpenACC technologies. This new port targets improved perfor-

mance on NVidia Kepler accelerator GPUs, such as those installed in the world’s second largest supercomputer,

Titan, the Department of Energy’s 27 petaFLOP Cray XK7 located at Oak Ridge National Laboratory. We demon-

strate a 1.4x speed improvement on Titan when the GPU accelerators are enabled. We highlight key optimizations

and techniques used to achieve these results. These optimizations enable larger and more accurate simulations

than were previously possible with TACOMA, which not only improves GE’s ability to create higher performing

turbomachinery blade rows, but also provides “lessons learned” which can be applied to the process of optimizing

other codes to take advantage of tri-hybrid technology with MPI, OpenMP, and OpenACC.

1 Introduction

The General Electric Company relies on numerical sim-

ulations using Computational Fluid Dynamics (CFD) to

design high performing — low fuel burn, low noise, and

highly durable — turbomachinery blades for jet engines,

gas turbines, and process compressors. These simula-

tions span the range of inexpensive, e.g. a few CPU

cores running for minutes, to very expensive, e.g. thou-

sands of CPU cores running for days at a time. By

ensuring that these calculations run efficiently on mod-

ern supercomputers, GE achieves engineering produc-

tivity and ensures that high fidelity simulations can be

completed in time scales that impact the design pro-

cess. GE relies on in-house computational resources

for day-to-day design support and utilizes the supercom-

puters at the US National Laboratories, e.g. Oak Ridge

and Argonne, to demonstrate the value of expensive low

Technical Readiness Level (TRL) [7] computational ap-

proaches.

GE’s in-house CFD solver is named TACOMA.

TACOMA is a 2nd order accurate (in time and

space), finite-volume, block-structured, compressible

flow solver, implemented in Fortran 90. Stability is

achieved via the JST scheme [1] and convergence is

accelerated using pseudo-time marching and multi-grid

techniques. The Reynolds Averaged Navier-Stokes

(RANS) equations are closed via the k-ω model of

Wilcox [8]. TACOMA achieves a high degree of paral-

lel scalability with MPI. For example, GE demonstrated

a large scale calculation at Oak Ridge National Labo-

ratory on the Jaguar Cray XT5 supercomputer utilizing

87K MPI ranks in 2011.

In 2013, US Department of Energy’s Oak Ridge

National Laboratory operationalized a new supercom-

puter named Titan, which is a 27 petaFLOP Cray XK7

whose compute nodes combine AMD Bulldozer CPUs

and NVidia Kepler GPUs [3]. Understandably, Oak

Ridge National Laboratory desires that codes running

on Titan efficiently utilize the CPUs and GPUs on the

compute nodes.

A number of programming paradigms exist for port-

ing codes to the GPU, the most important of which

are CUDA [2], OpenCL [6], and OpenACC [4]. For

TACOMA, it was decided that the most straightforward

porting path was to use OpenACC since it could build
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do k=1,n3

do j=1,n2

do i=1,n1

df(1:3) = comp_dflux(i,j,k)

R(i, j, k ) += df(1) + df(2) + df(3)

R(i-1,j, k ) -= df(1)

R(i, j-1,k ) -= df(2)

R(i, j, k-1) -= df(3)

end do

end do

end do

Figure 1: Pseudocode showing a 3D recurrence. — As originally implemented, TACOMA utilized a loop structure which

contained a recurrence in each of the three dimensions of the result array. GE’s OpenMP port utilizes a coloring scheme to

avoid this, while Cray’s OpenACC port uses a two-loop solution with index translation, as seen in Figure 2.

on previous work porting TACOMA to OpenMP [5].

Towards this end, General Electric and Cray have

collaborated to create a tri-hybrid parallel version of

TACOMA that combines three parallelization technolo-

gies, namely MPI, OpenMP, and OpenACC. Combining

all three of these technologies is critical to extracting

maximum performance. We highlight the following key

“lessons learned” during the OpenMP and OpenACC

porting and optimization process.

1. OpenMP directives should be added before Ope-

nACC because OpenMP scoping work can be

largely reused when porting to OpenACC. Addi-

tionally, OpenMP is easier due a lack of data mo-

tion concerns.

2. OpenACC data motion should be mostly ignored

in the beginning, with focus instead on bare kernel

performance. Optimization of data motion will

likely require examination of the interactions of

multiple kernels. This inter-kernel examination is

best performed after the kernels involved are com-

pleted and have known data requirements.

3. Real world codes often do not express enough

of the underlying algorithms’ parallelism. Ex-

pressing this parallelism is key to achieving good

performance. Additionally, some techniques that

work well for OpenMP (cell coloring algorithm)

are not adequate in the case of OpenACC (a loop

fissure and index translation was required).

2 Optimization Work

2.1 Porting to OpenMP

2.1.1 Loop Parallelization for Host CPUs

In 2013, GE extended TACOMA’s parallelization to

include OpenMP. This was accomplished by carefully

porting significant loops that are executed during a

multi-grid iteration. Approximately 250 loops were

ported by adding appropriate OpenMP parallel direc-

tives and data clauses. The motivations for this port

were three fold. First, GE wanted the ability to exploit

the shared memory on a given compute node. Second,

GE wanted to reduce the amount of additional block

splitting that was required to ensure adequately parallel

decomposition, since the additional blocks consume ex-

tra memory and incur computational overhead. Third,

GE understood OpenMP to be a gateway for a future

OpenACC port.

The programmatic approach to the porting effort, in-

volving multiple engineers at separate global sites, ex-

ploited the fact that OpenMP operates on a loop by loop

basis. This allows a single loop to be ported at a time

and verified for correctness, as each loop’s performance

is independent of the other loops. To help enable this

— and to provide hooks for anticipated future debug-

ging — the if clause was used in all OpenMP direc-

tives, e.g. c$OMP parallel do if(use_use),

to allow for incremental debugging of correctness and

performance issues.

Given the block-structured nature of the solver, typ-

ical loops consist of a triple loop over i, j, and k.

Three general types of these triple loops were encoun-

tered which are distinguished by the locality of the op-
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do k=1,n3

do j=1,n2

do i=1,n1

df(i,j,k,1:3) = comp_dflux(i,j,k)

end do

end do

end do

do k=1,n3

do j=1,n2

do i=1,n1

R(i,j,k) += df(i, j,k,1) + df(i,j, k,2) + df(i,j,k, 3)

R(i,j,k) -= df(i+1,j,k,1) + df(i,j+1,k,2) + df(i,j,k+1,3)

end do

end do

end do

Figure 2: Pseudocode showing the recurrence resolved. — Cray’s OpenACC port uses a two-loop, two-kernel solution with

index translation. The first computes all the fluxes, and the second applies them. As no two iterations assign to the same loca-

tion, there is no recurrence in either of these loops. The edge cases don’t matter here, as the surface elements of the result array

are never actually read later on in the code. While this approach does require the use of more memory to store the intermediary

fluxes as well as the overhead of two kernel launches, it can run efficiently on the GPU due to the large amount of parallelism

available in the loop nests.

erations done inside the loop:

1. Loops with strong locality, e.g.

q(i,j,k) = q0(i,j,k) +

dt(i,j,k) * R(i,j,k)

2. Loops that involve storing to neighbors, e.g.

dflux = q(i+1,j,k) - q(i,j,k)

R(i+1,j,k) = R(i+1,j,k) + dflux

R(i, j,k) = R(i+1,j,k) - dflux

3. Loops that involved reductions, e.g.

l2norm = l2norm + R(i,j,k)**2

Loops of type (1) can be ported to OpenMP in a

straightforward manner. Loops of type (3) are also eas-

ily managed with reduction clauses; however this is not

always possible due to the use of Fortran 90 complex

data structures, thus custom reduction loops were hand

crafted as required.

Loops of type (2) require special attention, since

the form shown above contains a recurrence, which

becomes a race condition when naively parallelized.

Loops of this type account for approximately 50% of

the CPU time in TACOMA. What these loops are do-

ing is computing the flux (mass, momentum, and en-

ergy) dflux on the cell face between two cell volumes

(i,j,k and i+1,j,k in the example above), and then ac-

cumulating this flux into the net residual R stored at the

cell centers.

There are two ways to address the race condition.

The approach used by GE was to color the cell volumes

and then assign a thread to each color. Each thread

is then responsible for computing dflux on all faces

associated with the cell centers of the assigned color,

and accumulating the residual. The downside of this

approach is a small amount of redundant calculations

of dflux for faces between nodes with different col-

ors. The second method, which is used in the OpenACC

port and discussed in more detail later, is to split each of

these loops into two. The first loop computes and stores

dflux and the second loop accumulates it.

With these three primary loop types successfully

parallelized, GE demonstrated the use of hybrid MPI

and OpenMP at scale on computations using in excess

of 100K total threads (total threads = MPI ranks ×

OpenMP threads per rank).

2.1.2 Lessons Learned from OpenMP Porting

The hybrid MPI–OpenMP port of TACOMA serves as

a good starting point for the addition of OpenACC di-

rectives, enabling TACOMA to run efficiently on ac-

celerator devices such as GPUs. A key lesson learned

in this process is that OpenMP should be added before

OpenACC. Not only is OpenMP easier as it doesn’t re-

quire as much analysis of data location, but the scoping

performed when adding OpenMP can be largely reused

when adding OpenACC as well.
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2.2 Porting to OpenACC

2.2.1 OpenACC Kernel Creation from OpenMP

Loops

With OpenMP additions completed by GE, work on a

GPU accelerated port began in earnest. First, the most

time-consuming routines are identified using the Cray

Performance Analysis Tool (CrayPAT). In addition to

finding the top routines, CrayPAT collects and reports

loop-level statistics including min, max, and average it-

eration counts. The number of loop iterations is criti-

cal information to have when attempting to optimize for

OpenACC, as each iteration typically forms one thread

on the GPU. If there are not enough iterations in a loop,

there will be a paucity of threads, resulting in poor per-

formance. In cases where a number of nested loops are

to be parallelized, being limited by the number of iter-

ations in an individual loop can be avoided by collaps-

ing the loop nest with the OpenACC collapse direc-

tive. This directive was used frequently while porting

TACOMA.

Once candidate loops have been identified with help

from the CrayPAT tool, OpenACC directives can be

added to the source code to express the existing loop-

level parallelism. During this process, the scoping infor-

mation from the previous OpenMP work can be largely

reused. In particular, variables with private scope in

OpenMP almost always remain so scoped in OpenACC.

The OpenMP reductions will usually be the same as

well. However, the variables with shared scope in

OpenMP are typically those which will require data mo-

tion between host and device in OpenACC. These vari-

ables can be given a specific OpenACC data motion di-

rective or be left unscoped, leaving the data motion re-

sponsibility to the compiler toolchain. Cray’s compiler

makes very good decisions here, but additional hand op-

timization of data motion is required to get optimal per-

formance from the vast majority of real-world codes.

While on the topic of real-world codes, it should be

mentioned that it is often the case — and certainly was

for TACOMA — that expressing the existing loop-level

parallelism with OpenMP and OpenACC is not enough

to achieve good performance. Often, the underlying al-

gorithm contains more parallelism than is available in a

given implementation of that algorithm. Thus, in addi-

tion to expressing the parallelism in the original code,

one often needs to change the implementation so more

of the algorithm’s inherent parallelism is able to be ex-

pressed. An example of this can be seen in the pseu-

docode in Figure 1, where the original code contains a

recurrence preventing parallelization. The first solution

to this limitation was created by GE during porting to

OpenMP. GE introduced a coloring scheme, whereby

each OpenMP thread would be responsible for a region

in the result array having a particular color. While the

coloring method worked well for the case of OpenMP,

it prevented proper vectorization on the GPU with Ope-

nACC. Thus, Cray devised a solution compatible with

OpenACC, as depicted in Figure 2. First, the loop is

split into two parts: the computation of dflux and its

accumulation into the net residual array. With this split,

the computation of dflux no longer contains a recur-

rence and can be parallelized. The remaining recurrence

in the accumulation is removed by an index translation:

that is,
(

a[i]-=b[i]; a[i-1]+=b[i]
)

=⇒ a[i]+=b[i+1]-b[i].
Thus, the loop no longer has multiple iterations assign to

the same index in the result array a, and the recurrence

is removed. Normally such an index translation would

introduce some edge cases, but in the case of TACOMA,

the surface cells of the output array are never read and

don’t need to be fully computed.

When adding OpenACC directives to the source

code, care must be taken to ensure the compiler is par-

allelizing the loops properly. Depending on the target

compiler and accelerator device, there are a number of

levels of parallelism available. In particular, the Cray

compiler will by default partition a loop across thread

blocks, across the threads within a block, or both. In

code with non-trivial loop structures, there can be many

ways to perform the partitioning, so care must be taken

to ensure the compiler is partitioning in a reasonable

way. Cray’s compiler provides detailed output in the

form of “compiler listing” files, which consist of anno-

tated versions of the source code with ASCII art as well

as textual messages. These listing files can be examined

to ensure proper loop partitioning.

Finally, the resulting code with OpenACC directives

can be executed and profiled. At this early stage, data

motion should be mostly ignored when profiling and op-

timizing OpenACC kernels. Optimization of data mo-

tion will require examination of the interactions among

multiple kernels. This inter-kernel examination is best

performed later, when the kernels involved are com-

pleted and have known data requirements. The opti-

mization that can most frequently and most easily pro-

duce a large improvement in performance is the tuning

of the number of threads per thread block for a given

loop with the OpenACC vector clause. Compilers
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Data Region F

Data Region D Data Region V Data Region E Data Region T
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Figure 3: Calltree highlighting OpenACC data regions. — A large data region (big blue box) can be seen at the level just

below the primary timestep loop, where all the kernels in the routines further down the call tree are encompassed. In this region

of the code, data that is only needed by the GPU and data that is constant for at least a timestep can be loaded into GPU

memory once and be reused for the duration of the timestep. This transfer of data to GPU memory upon entry to data regions

and of results to the host upon exit from data regions is represented by the orange arrows in the figure.

differ in the default vector size, with the Cray com-

piler utilizing 128 threads per thread block. In the case

of TACOMA, a number of loops show nearly double

the performance when using a vector size of 256, while

some loops perform worse.

2.2.2 OpenACC Data Motion Optimization

Once good kernel performance is achieved, data motion

can be examined. To reduce the amount of data that is

transferred between host and device, OpenACC data re-

gions are created around adjacent kernels to keep data

used by more than one kernel on the device. This first

step is depicted by the small light blue data regions in

Figure 3. Ideally, the data regions can be merged and

moved up the call tree to the primary timestep loop.

There, a data region with relatively few lines can wrap

all the kernels further down the call tree. This place-

ment in the calltree can be seen by the location of the

large blue data region in Figure 3. However, the ideal

of merging all or most of the data regions into a larger

one isn’t always realistic due to I/O, communication, or

serial code. In the more pragmatic case, the data regions

can be nested hierarchically. In the case of TACOMA,

a large data region is created as depicted by data region

F in Figure 3. Here, data with a lifetime of at least a

timestep can be loaded into GPU memory upon entry

and stay on the device for the lifetime of many kernel

executions.

With loop-level parallelism expressed and host/de-

vice data motion optimized, parallelism among data

transfers and kernels is expressed with the OpenACC

async clause. This allows data to be prefetched be-

fore a dependent kernel is launched, and allows multiple

kernels from a rank to run on a node’s GPU in different

streams concurrently. Finally, Cray’s CUDA-proxy fea-

ture is used, allowing sharing of each GPU among mul-

tiple MPI ranks. This allows different MPI to OpenMP

ratios and improves OpenACC performance by hiding

data transfer latency; a kernel from one rank can exe-

cute while data motion for another rank takes place.

2.2.3 Lessons Learned from OpenACC Porting

A key lesson is to ignore data motion and to focus on

bare kernel performance during this stage. Optimiza-

tion of data motion will likely require examination of the

interactions among multiple kernels. This inter-kernel

examination is best performed a single time, after the

kernels involved are completed and have known data re-

quirements. Another key lesson learned is that express-

ing the parallelism of the underlying algorithm is critical

to achieving good performance. At times the code does

need to be restructured to allow this. Additionally, some
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Figure 4: Performance of TACOMA operations. — The relative total performance and relative average performance of accel-

erated operations in TACOMA are presented in the figure, with the performance of the MPI–OpenMP version as the baseline.

Here, the label “Hybrid” refers to the combination of all three technologies: MPI, OpenMP, and OpenACC. The last column,

representing the total runtime of the job, shows a performance improvement of 1.4x.

techniques that work well with today’s OpenMP (cell

coloring algorithm) may not work well with OpenACC

and GPUs.

During the porting effort, a number of limitations

with the OpenACC 2.0 standard were encountered. The

most important of which is the lack of support for For-

tran derived data types in the regions of code turned into

kernels for the accelerator. Working around this issue

results in a moderate amount of extra coding, as sec-

tions using derived types must be “sanitized”. This is

typically achieved by acquiring a pointer to the desired

data member within the derived type, and passing this

pointer to the OpenACC directives instead of the origi-

nal data member.

In addition to the issues with derived data types,

OpenACC has restrictions with subroutine and function

calls. OpenACC relies heavily on the compiler’s ability

to inline function calls within GPU accelerated regions.

While the OpenACC 2.0 standard does provide some

support for the calling of routines, there are many lim-

itations. In particular, each routine to be called needs

to have directives added describing what combination

of the three levels of available OpenACC parallelism to

use: gang, worker, and vector. To avoid this additional

coding work, we make use of as much automatic inlin-

ing as possible. Fortunately, the Cray compiler does a

very good job of inlining huge routines without issue.

For the few cases where a routine was unable to be in-

lined due to I/O or similar issues, a sanitized version

able to be inlined could be constructed.

3 Experimental Results

3.1 Test Platform

At the current stage of the TACOMA OpenACC porting

effort, no changes have yet been made to the commu-

nication performed by MPI. Thus, the MPI overhead of

the hybrid version will remain unchanged in absolute

terms compared to the OpenMP version as TACOMA is

scaled in node count. For this reason, experiments are

designed to highlight the performance improvement the

addition of OpenACC provides over OpenMP at a num-

ber of realistic node counts, without an explicit focus on

scalability. Thus, the tests performed on Titan do not

require many nodes, but do represent a realistic amount

of work per node.

Tests are performed on Titan [3], the DOE’s Cray

XK7. Each of Titan’s 18,688 compute nodes contains

a 16-core AMD Opteron 6274 CPU and an NVIDIA

Tesla K20 GPU Accelerator, resulting in a peak perfor-

mance of 27 petaFLOPs. The K20 GPU supports up

to two concurrent streams, so tests used two MPI ranks

per node. This allows some overlap of computation and

communication, as data transfer for one rank can take

place while a GPU kernel from another rank is running.

Thus, each MPI rank runs as a hybrid with eight CPU

threads and a GPU that is shared with the one other rank
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on its node.

3.2 Performance Results

The speedup of selected operations accelerated in

TACOMA, as well as the total speedup, is presented in

Figure 4. In the results presented, these operations rep-

resent just over 45% of the total runtime of the OpenMP

version of TACOMA. These operations are reduced to

26% of the total runtime of the hybrid version. We

demonstrate an average speedup of 2.6x in euler and

2.0x in viscous, with an overall improvement of 1.4x.

4 Future Work

While the GE-Cray collaboration has resulted in

promising performance improvements, there are addi-

tional opportunities for improvement and optimization.

First, the current measured speed increase of 1.4x re-

flects the portion of the code that is currently considered

adequately tested and debugged. Additional code that

is in the process of being debugged should improve the

speed up to at least 1.6x.

Beyond that, the data transfer between the host and

device is still sub-optimal. Additionally, the code could

be modified to make the MPI communication take place

from within OpenACC regions. This would reduce the

visibility of data motion, as Crays MPI layer can per-

form the data transfer directly from GPU memory. The

current implementation requires the data to make a stop

in the host memory area first. Finally, there are a num-

ber of remaining computations in TACOMA that could

see improvement when moved to the GPU device, e.g.

we can expand the amount of computation performed

while the data is still resident on the GPU.

5 Conclusion

The addition of OpenACC optimizations provides im-

proved performance, enabling larger and more accu-

rate simulations than were previously possible with

TACOMA. This not only improves GE’s ability to cre-

ate higher-performing turbomachinery blade rows, but

provides three key lessons which can be applied to op-

timizing other software applications as well. First, port

to OpenMP before OpenACC. Second, optimize Ope-

nACC data motion last. Finally, be sure enough of the

underlying algorithms’ parallelism is being expressed.
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