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Abstract—Understanding application performance properties
is facilitated with various performance profiling tools. The scope
of profiling tools varies in complexity, ease of deployment,
profiling performance, and the detail of profiled information.
Specifically, using profiling tools for performance analysis is
a common task when optimizing and understanding scientific
applications on complex and large scale systems such as Cray’s
XK?7. Gleipnir is a memory tracing tool built as a plug-in tool for
the Valgrind instrumentation framework. The goal of Gleipnir is
to provide fine-grained trace information. The generated traces
are a stream of executed memory transactions mapped to internal
structures per process, thread, function, and finally the data
structure or variable. This paper describes the performance
characteristics of Gleipnir, a memory tracing tool, on the Titan
Cray XK7 system when instrumenting large applications such as
the Community Earth System Model.

I. INTRODUCTION

For many applications processor and memory speed is still
a major performance bottleneck. In order to reduce the speed-
gap application developers must carefully consider program
data-structure layout, data placement, and application data-
flow. Therefore, in order to make intelligent design and
development choices the programmers use performance pro-
filing tools and analysis software to gain insights into their
application’s behavior. The realm of application profilers is
vast and the tools vary with respect to their complexity, easy of
deployment, profiling performance, and the detail of profiled
information. Moreover, tools focus on specific performance
metrics, as a consequence developers can combine several
tools to gain a complete and accurate application’s behavior
representation.

Broadly speaking, application profiling tools can be catego-
rized based on their data gathering methodologies into event-
driven, statistical, and instrumenting. Instrumenting tools can
be further sub-categorized into compiler assisted, binary trans-
lation, binary instrumentation, and hybrids or runtime code
manipulation tools. From a users’ perspective, instrumentation
tools are software that manipulate an application’s code by
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injecting foreign code at interesting locations of an appli-
cation’s source code or executable. When the injected code
executes it records or otherwise collects application’s data
limited by the frameworks’ scope. We must differentiate the
instrumentation tool and the instrumentation framework. In
this article we will refer to the framework as the underlying
mechanism which enables the development of plug-in tools to
instrument an application. For example Gleipnir[1] is a plug-in
tool for the Valgrind[2] instrumentation framework. Similarly
other instrumentation frameworks provide a set of plug-in tools
to profile application’s performance metrics.

Various frameworks enable the development of fine-grained
instruction and memory tracing. The general rule is that expos-
ing a greater detail implies a significant performance overhead,
and more importantly recording this detail incurs additional
space and time overhead. When fully enabled Gleipnir pro-
vides instruction level load, store, and modify data traces with
debug information to function call, data-type, data-scope, and
thread information. In addition, dynamic memory allocations
can be intercepted and their accesses tracked back to the
source code file and line-number, or a manually instrumented
name.! In order to compare and contrast other tools in this
area we must take note of what Gleipnir is and what it
is not. Gleipnir is a memory tracing tool, and the analysis
of the traces is external to the tool. While the plug-in tool
can provide some basic information about the application’s
runtime behavior the user must further analyze Gleipnir’s
traces to get a more meaningful picture. For example during
instrumentation the tool can gather various instruction and
process related information such as: the total number of
instructions executed, the total number of data reads, writes,
or modifies, the total number of function entries, average stack
size, total number of dynamically allocated blocks,average
memory usage, etc. To analyze the cache behavior we must
rely on CPU cache simulators. Gleipnir provides a modified,
albeit simplistic, cache simulator DineroIV[3] for this purpose
but the user is free to use other simulators provided that the
trace is compatible. The traces should provide the necessary

'A user may want to instrument their application manually which can be
a more descriptive name for dynamically allocated blocks.



trace detail on every data memory access and map the access to
source code variable or manually instrumented identifiers. This
information can be used to deduce a variety of conclusions
about an application’s data-structure behavior, such as the
structure’s avarage life-time, average number of accesses,
average offset, or data-structure hot spots. Will we discuss
the internal mechanism in subsequent sections.

The rest of the article is organized as follows: in Section
IT we will discuss related work and touch on a few similar
frameworks which may be used to develop similar plug-in
tools. In Section IIT we will explain how Gleipnir works and
provide a trace example. In Section IV we compare Gleipnir’s
performance with various tracing options and compare the
performance characteristics. In Section V we will summarize
our conclusions and talk about the current tool status.

II. RELATED WORK

We explained in Section I that application tuning and opti-
mization is supplemented through application profiling tools.
Although application profiling is mostly tool driven it is not
uncommon for programmers to manually profile an application
by inserting code fragments to provide additional information
about the program’s state. The simplest form, and sometimes
quite sufficient, is inserting printf() statements.

Valgrind’s framework comes with a set of widely used tools.
The tool that Valgrind is most known for is Memcheck, a
memory leak dectector, but it also provides other tools geared
towards profiling such as Cachegrind[4], Callgrind[5], and
Massif. Cachegrind is a cache-simulation tool that provides in-
formation about the application’s cache behavior. Cachegrind
can utilize Valgrind’s debug parser and relate collected cache
statistics with source-code line numbers. Callgrind, a call-
graph profiler, is based on Cachegrind and provides a profiled
call-graph annotated with cache performance information. The
tool is supplemented with an advanced graphical user inter-
face, KCachegrind, to help visualize Callgrind’s information.
Massif is a heap profiler tool that can analyze an application’s
heap usage which helps the user to analyze the application’s
memory regions and determine overall heap utilization.

A similar and performance efficient tool is Pin[6], a dynamic
binary instrumentation framework which closely follows the
model of the popular ATOM tool[7]. Pin allows the plug-in
tools to inject code dynamically at runtime. The key difference
between Pin and Valgrind is that Pin does not simulate
the application’s instructions, but using a different method
controls and instruments the application code. Pin comes with
various tracing and plug-in tools such as, pinatrace, Maid, and
other tools which provide basic information on data blocks,
instruction, and memory traces.

Within the same category we find Dynlnst[8] designed for
code patching and performance measurement. Similar to Pin
and Valgrind , Dyninst can apply instrumentation at runtime
and insert instrumented code at arbitrary points. Moreover,
the ability to insert arbitrary analyses routines makes Dyninst
a good framework for large scale scientific program where
the granularity of collected data needs to be adjusted. Several

other performance tools were built either utilizing the Dyninst
framework, or built around on the same model.

DynamoRIO [9] stands for dynamic introspection, instru-
mentation, and optimization. It is an instrumentation frame-
work which allows building of dynamic profiling tools and
allows the user to dynamically modify existing binaries to
improve application’s performance. Similar tools built using
the framework are TaintTrace[10], Adept[11], Dr. Memory,
etc.

Virtually all modern CPUs come with a number of hardware
performance counters. Performance counters are hardware
units which populate registers with performance data during
various hardware events. For example when a cache miss
occurs an L1-cache hardware counter will increment, or when
a memory-bus transaction happens a different counter will
increment. An application can interupt the system and flush a
number of desired hardware performance counters. Accessing
hardware performance counters too often will preturb the
application and the result may be skewed. Therefore tools or
users must take care to control the granularity of accessing per-
formance counters. For most performance profiling application
accessing performance counters is facilitated using libraries
such as PAPI[12]. Performance profiling through hardware
counters is arguably the most common way of collecting trace
information and other statistics. Hardware counters are partic-
ularly a very practical way of application profiling because of
the low performance overhead. Some tools which use the PAPI
library are TAU[13], HPCToolkit[14], OpenSpeedShop[15],
etc.

The various performance profiling tools, particularly instru-
mentation tools incur a heavy overhead; however, the overhead
is offset by the level of detail that instrumentation based
profilers and tracing tools can collect. It was reported in [6]
and [2] that the average slowdown for a basic block count
application built in Valgrind is 8x, about 2.5x for Pin, and
5.1x for DynamoRIO.

III. GLEIPNIR OVERVIEW
A. Valgrind’s IR

As mentioned in the introduction Gleipnir’s underlying
framework is Valgrind. Valgrind consists of a core-tool and
plug-in tools. The core-tool operates on sections of code
blocks known as SuperBlocks (SB). An SB is a single-
entry multiple-exits block, composed of multiple basic-blocks
(single-entry single-exit) consisting of roughly 50 instructions.
Note that Valgrind’s plug-in tools are statically compiled
with the core-tool. The Valgrind core-tool and plug-in tool
interaction is shown in Figure 1. An SB is transformed into
an Intermediate Representation (IR) which is passed to the
plug-in tool. During the transformation a single instruction is
disassembled into multiple intermediate instructions. The IR
is instrumented by the plug-in tool and passed back to the
core-tool for re-synthesis. The IR is recompiled into machine-
code and executed on a simulated CPU. This is an important
distinction of Valgrind and other tools. The native application’s
code never touches the host architecture. The interaction of the



core-tool and plug-in tool is mostly abstracted through a rich
set of API calls through which the plug-in tool can instrument
and make core-tool requests.
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Fig. 1: SuperBlock flow chart

B. Tracing Instructions

Gleipnir’s main functionality operates on instruction events
provided by Valgrind. From Gleipnir’s perspective an event
is either an instruction read (Ir), data read (Dr), data write
(Dw), or data modify (Dm).?> During program instrumentation
Gleipnir will parse the incoming SB and insert dirty helper
calls at every instruction iteration. The helper function can
record any number of events, but most are related to in-
struction’s address look-up, debug information annotation, and
basic instruction counting. A subset of other helper calls will
call other aspects of Gleipnir’s functionality. These include
techniques to determine changes in application’s stack, change
in application’s thread id, function entries, various events
related to changes in program instrumentation granularity, etc.
The basic helper calls are trace_instruction, trace_data_read,
trace_data_write, and trace_data_modify. This means that at
each instruction the helper call will incur a function call,
and depending on the tracing granularity proceed to parse
various debug symbols and recorded data blocks using the
instruction address. We must differentiate between two similar
but different mechanisms of handling instruction to source
code variable mapping.

1) Local data: If an application’s binary image retained
the debug information Gleipnir can use Valgrind’s debug
information to parse the internal debug table. Enabling this
feature implies that we must also enable Valgrind’s option
read-var-info which will track stack changes and load the
necessary debug symbols. Note that enabling this option under
Valgrind will incur a heavy overhead and render the tool
impractical for large running applications.

2) Dynamic and Global data: Gleipnir can wrap or replace
malloc() calls. Wrapping implies that a malloc call is inter-
cepted, executed, and recorded while replacing implies that
the malloc call is intercepted and redirected. Valgrind’s basic

2The events are architecture host/target specific thus different architectures
may involve different events.

mechanism involves malloc replacement to an internal Val-
grind malloc implementation. Thus from Gleipnir’s perspective
this provides a mechanisms to intercept and record every
dynamic allocation. The goal is to intercept and tag dynamic
memory with a descriptive id, and subsequently annotate any
instruction access which references these blocks. Note that
dynamically allocated blocks are not associated with any
debug symbols, after all they are chunks of randomly allocated
memory. Therefore, in order to trace instruction references to
dynamic blocks Gleipnir provides two mechanisms to record
and annotate these accesses.

The first is to parse the application’s stack, and find the
instruction pointer which executed the malloc routine. The tool
can use the instruction’s address and find the related debug
information. This usually implies that we can annotate the
allocated block with the originating file name and line number.
For simple malloc routines, which have only a single callee
this will suffice. However, we often find that malloc routines
can be burried deep in the call stack and thus it becomes
impossible to determine the originating function. This may
result in incorrect debug annotation and may distract from
correctly determining the data-structures that are referenced
or otherwise accessed in the instruction trace.

To improve the instruction to dynamic memory mapping,
Gleipnir provides a set of client interface calls that allow the
user to annotate blocks manually. In this terminology the client
is the application being instrumented, thus client interface
calls are macro routine which requires the user to provide a
descriptive string. The string is buffered and used as a tag for
the upcoming malloc call. Similarly, if a user wants to modify
the name of an already allocated block he can invoke similar
client interface calls to update or otherwise modify a blocks
name. The difference is that these calls require that the user
passes a descriptive string as well as the address referencing
the allocated block. Note that the reference address must not
necessarily be the base address because internally Gleipnir will
search recorded block address ranges.

Users can also use client interface calls to annotate global
data-structures. Similar to dynamically allocated blocks, an-
notating global data-structures requires that the user passes a
string name to tag the block as well as the base address and the
size of the structure. For most practical purposes annotating
dynamic and global data will suffice to capture and obtain
an accurate picture of an application’s overall data access
patterns. In the following subsections we will elaborate on
the tool’s various options and available user client interface
calls.

C. Trace examples

In Figure 2 and Figure 3 and 4 we show an example source
code and resulting trace examples, respectively. These figures
are for illustration purposes to demonstrate what the end-
user may expect to observe when tracing larger applications.
Note that even small applications may generate data files
several gigabytes large. Therefore, a user must be careful when
enabling and disabling instrumentation points.



Figure 2 shows a toy program already instrumented. Every
application must include the gleipnirh header file, which
contains all client interface macros. In this example we will
request that the malloc call be annotated with the mystruct
keyword, record the global data-structure with the myGlobal
tag, and we start and stop the instrumentation after a few
assignment statements and a function call. When we execute
the application with Gleipnir we will see the resulting trace
shown in Figure 3 or Figure 4 depending on the instrumented
level of detail.> This example traces shows the typically
encountered trace information. In Figure 3 we can observe
the trace only with user annotations, and in Figure 4 we can
see the full trace with debug symbols and user annotations.

#include <stdlib.h>
#include "../valgrind-trunk/gleipnir/gleipnir.h"

typedef struct _type{int Ab;
mytype myG;

int Ba;} mytype;

int foo(int f_loc)
{

f_loc+=myG.Ab;
return f_loc;

}

int main (void)
{
int A = 0;
int Arr[10];

GL_RECORD_GLOBAL ("myGlobal", &myG,
sizeof (mytype));

GL_RECORD_MSTRUCT ("mystruct") ;

int+x ptr = malloc(sizeof (int) * 50);

GL_START_INSTR;

A = 123;
Arr[5] = A;
myG.Ab = 7; myG.Ba = 2;
* (ptr+25) = foo(Arr[5]);
ptr[5] = 10;
GL_STOP_INSTR;
return 0O;

Fig. 2: An example source file.

There are two types of trace-lines: regular and keywords.
The first symbol identifies if the trace-line is a keyword or a
regular access. A regular access type can be a Load, Store,
Modify, or Instruction (L,S,M, or I). A keyword trace-line is
denoted as an X. Keyword instructions are a special type of
Gleipnir inserted trace-lines that describe various events that
happen during tracing. For example X START 0:15401 at O
indicates that this is the first trace file whose parent PID is 0
and its PID is 15401 starting at instruction 0, or X / MALLOC
005188030 200 mystruct O indicates that the program with
thread id 1 allocated a 200 byte memory block at address

3Usually the trace-file is very large, even for simple applications due to
library initialization, thus for illustration purposes we have suppressed much
of the trace information.

0x005188030 named mystruct and this is the first instance of
that structure. Users can also insert custom keywords. The
main goal of keywords is to have a descriptive tag which may
aid simulation or analysis tools.

In regular trace-lines the second field is the data’s vir-
tual address followed by its access size. The fourth field is
the data’s originating thread id followed by the originating
segment which can be stack, global, or heap (s,G, or H).
All instructions adhere to these five basic fields; however, if
the access references a dynamic, static, or otherwise mapped
memory region, then the trace-line will contain additional
debug information. The additional debug information is: the
data’s originating function, its access scope, and finally the
variable or structure name including its access offset. As an
example in Figure 3 we have 3 accesses to a global structure
(GS), myGlobal, at offset 0 and offset 4, and 2 accesses to a
heap block zero (H-0), mystruct, at offset 100 and offset 20.%

X START 0:15401 at O

X THREAD_CREATE 0:1

X 1 MALLOC 005188030 200 mystruct O
S ffeffd0c8 8 1 S main

S ffeffdllc 4 1 S main

L ffeffdllc 4 1 S main

S ffeffd0f4 4 1 S main

S 000601030 4 1 G main GS myGlobal.O
S 000601034 4 1 G main GS myGlobal.4
L ffeffdl1l0 8 1 S main

L ffeffd0f4d 4 1 S main

S ffeffcff8 8 1 S main

S ffeffcff0 8 1 S foo

S ffeffcfec 4 1 S foo

L 000601030 4 1 G foo GS myGlobal.O
M ffeffcfec 4 1 S foo

L ffeffcfec 4 1 S foo

L ffeffcff0 8 1 S foo

L ffeffcff8 8 1 S foo

S 005188094 4 1 H main H-0 mystruct.100
L ffeffdl1l0 8 1 S main

S 005188044 4 1 H main H-0 mystruct.20
S ffeffd090 8 1 S main

S ffeffd098 8 1 S main

S ffeffdbal0 8 1 S main

S ffeffdl0a8 8 1 S main

S ffeffd0b0 8 1 S main

S ffeffd0b8 8 1 S main

X INST 1136

X END 15401 at 1136

Fig. 3: An example trace file without debug info.

Because Gleipnir relies on Valgrind’s internal debug parser
to parse the debug information for local as well as global
data, any application that needs to be profiled for static data
must be compiled with the compiler’s -g flag, and executed
with enabling Valgrind’s read-var-info flag as well as enabling
Gleipnir’s read-debug flag. Enabling the read debug flag
allows to capture a very descriptive set of traces at the cost of
much higher performance overhead. Figure 4 is an example
trace when the application was executed with the debug flags

4Note that Heap block 0 simply means that this is the first instance of this
particular structure. For example multiple allocations from the same structure
will be tagged with the same name-tag but incremented instance counter.



on. We can observe more detailed debug information for
the executed application. Instructions, which referenced local
variables as well as global data have a more descriptive scope
and variable information. For example using the debug symbol
we can track variable and structure information up to nested
individual elements, indicated with the trace-line, S 000601034
4 1 G main GS myG.Ba, shows a store instruction to the global
segment from function main to the global structure myG and
element Ba.

X START 0:15548 at O

X THREAD_CREATE 0:1

X 1 MALLOC 005188030 200 mystruct O

S ffeffd0c8 8 1 S main

S ffeffdllc 4 1 S main LV A

L ffeffdllc 4 1 S main LV A

S ffeffd0f4 4 1 S main LS Arr([5]

S 000601030 4 1 G main GS myG.Ab

S 000601034 4 1 G main GS myG.Ba

L ffeffdl1l0 8 1 S main LV ptr

L ffeffd0f4d 4 1 S main LS Arr[5]

S ffeffcff8 8 1 S main

S ffeffcff0 8 1 S foo

S ffeffcfec 4 1 S foo LV f_loc

L 000601030 4 1 G foo GS myG.Ab

M ffeffcfec 4 1 S foo LV f_loc

L ffeffcfec 4 1 S foo LV f_loc

L ffeffcff0 8 1 S foo

L ffeffcff8 8 1 S foo

S 005188094 4 1 H main H-0 mystruct.100
L ffeffdl1l0 8 1 S main LV ptr

S 005188044 4 1 H main H-0 mystruct.20
S ffeffd090 8 1 S main LS _zzg_args[0]
S ffeffd098 8 1 S main LS _zzg_args[l]
S ffeffd0a0 8 1 S main LS _zzg args[2]
S ffeffd0a8 8 1 S main LS _zzg_args|[3]
S ffeffdOb0 8 1 S main LS _zzg_args[4]
S ffeffdOb8 8 1 S main LS _zzg_args[5]
X INST 1136

X END 15548 at 1136

Fig. 4: An example trace file with debug info.

D. Gleipnir’s flags and options

Users can use several options to control instrumentation
detail and instrumentation speed and use the mentioned client
interface macros to control instrumentation at run-time. The
list of currently supported options is shown in Figure 5. The
fast-forward option disables any instrumentation by passing
every SB back to the core-tool. Users can enable full program
instrumentation without any manual instrumentation using the
trace-state-on flag; however, because of the timing overhead
this option may be benefit only smaller test programs. Flags
such as, enable-parsing, prog-lang, trace-malloc-calls control
Gleipnir’s automation with respect to malloc calls. It can parse
the malloc call and automatically assign a unique structure
name, we can also print every malloc routine or omit them
because in large running application’s these can happen very
often. Several flags act like hints to control performance
overhead: for example multi-process, multi-threaded or is-
mpi will control the level of added instrumentation to check
for application flow changes. Gleipnir is also able to track

datum’s physical address with the map-phys, and track-pages
flags; however, this option is dependent on operating system
capabilities because the necessary O.S. kernel modules must
be present.

--fast-forward-on=nolyes
—-—trace-state-on=nolyes
—--read-debug=no|yes
—-—-enable-parsing=no|yes
—--prog—-lang='C’ |"F’
--multi-process=no|yes
--multi-threaded=nolyes
—--map-phys=no|yes
—--track-pages=no|yes
—--trace-instructions=no|yes
—-—trace-malloc-calls=no]|yes
—--trace-values=no|yes
——flush-at=(int)
—--out-file=<filename>
——is-mpi=no|yes

Fig. 5: Gleipnir options.

Gleipnir’s client calls allows the user to manually instrument
the application. A user can turn on or off various instrumenta-
tion detail, or insert keywords into the trace. Other macros will
allow the user to manipulate the recorded blocks or arbitrarily
mark regions of memory and intercept any access to that
address range.

o GL_FAST_FORWARD_ON

e GL_FAST_FORWARD_OFF

e GL_GLOBAL_START_INSTRUMENTATION

e GL_GLOBAL_STOP_INSTRUMENTATION

e GL_START INSTRUMENTATION

e GL_STOP_INSTRUMENTATION

o GL_MARK

e GL_MARK_STR

e GL_UPDATE_MSTRUCT

e GL_RECORD_MSTRUCT

e GL_UNRECORD_MSTRUCT

e GL_RECORD_GLOBAL

e GL_UMSG_STR

e GL_RENAME _TRACE

Because every client call is part of the instrumented ap-
plication, its instructions will end up in the final trace,
thus the necessary global start and stop calls are imple-
mented to allow users to pass multiple client interface calls
without perturbing the trace. Sometimes it is important to
understand various code sections, for that reason users can
pass GL_MARK, GL_MARK_STR client calls that will insert
miscellaneous keyword instructions into the trace for easier
trace analysis. These keywords are later interpreted by the
simulator for various internal tracking purposes. When debug
information is not available or when users are only interested
in dynamic and global structures: GL_RECORD_MSTRUCT,
GL_UNRECORD_MSTRUCT, GL_RECORD_GLOBAL client
calls serve to manually record memory blocks. An example
of the manual instrumentation is shown in our example trace
where the malloc call is recorded and traced as the mystruct



object which allows the tool to trace an access to the object’s
memory and annotate the instruction with the necessary debug
information.

IV. SCALABILITY ANALYSIS
A. Experimental setup

We conducted our scalability and performance analysis
using ORNL’s Cray XK-7 Titan system. Titan consists of
18,688 compute nodes, each compute node is a 16-core
AMD Opteron processor (Interlagos) with 32GB of physical
memory. The operating system is Cray Linux Environment and
the compute nodes use the Compute Node Linux micro-kernel.
We chose the LAMMPS[16], Large-scale Atomic/Molecular
Massively Parallel Simulator, application as our benchmark
because of its ease of deployment and scalability. LAMMPS is
a classical molecular dynamics code that models an ensemble
of particles. The programming language of LAMMPS is C++.
Our experiments were conducted across several nodes using a
combination of Gleipnir options. Note that the tool was never
tested on larger applications using hundreds of processing
elements, thus the purpose of this work is to test the tracing
tool’s ability to handle real-world scientific applications.

B. Timing comparison

The basic timing runs were conducted using three different
setups. We compared the native run against the Valgrind’s
Nullgrind tool, and Gleipnir in fast-forward mode. The fast-
forward mode is similar to Valgrind’s basic tool, Nullgrind.
Nullgrind is a tool used to test Valgrind’s VEX library and
core-tool functionality. This means that no instrumentation
takes place and the SuperBlock (SB) is passed to the tool
and immediately returned to core-tool for execution. During
this process no instrumentation occurs and Gleipnir’s traces
contain only recorded events, such as number of executed
instructions, events related to tracking memory regions, or user
annotated events.

Timing Performance (basic)

R /
/

Time (seconds)

RN >

H__X\X—X/ TR ——X e

10 #Nullgrind
+Gleipnir (fastforward)

8 16 24 32 48 64 %6 128 192 256 384 512 768 1024
Number of Processing Elements (PES)

Fig. 6: Execution time comparison

Figure 6 shows the timing results when Gleipnir runs
without any instrumentation enabled. The X-axis shows the
number of processing elements and the Y-axis shows the
overall execution time in seconds. For scalability we used
varying problem sizes and up to 1k processing elements. We

can observe that as we increase the number of cores the
application’s execution time improves, thus we doubled the
problem size at 96 and quadrupled 512 processing elements. It
was reported in [2] that Valgrind’s overhead is about x4 which
is more conservative than what we observed. Our simulation
runs show that Valgrind’s Nullgrind timing overhead is about
x3 on average, and that Gleipnir’s fast-forward mode is
slightly slower. This implies that instrumented application’s
that use the fast-forward option to speed-up instrumentation
in omitted code sections will run at most x3 slower than the
native run.

C. Memory usage

Valgrind’s memory overhead is approximately one extra bit
per byte. Various plug-in tools will add additional overhead
depending on their functionality. Gleipnir’s primary memory
overhead is dictated by the application’s memory allocation
pattern. For example, for the same amount of memory a
coarse allocation pattern will allocate fewer blocks which
means that the tool’s internal tracking mechanism will have
fewer memory regions to track. On the other hand, a fine-
grained memory allocation pattern will have more allocations
thereby increasing the number of memory regions to track.
The general rule is that for every allocation Gleipnir will
allocate an additional 168 bytes. The data structure contains
the chunks base address, size, name, and the number of
accesses. The internal tracking is implemented similarly across
several Valgrind tools. The malloc replacement function is
triggered during an allocation and the control is redirected
to the tool. Usually the tool will record the allocation request,
request a malloc call on behalf of the application, and return
the base address. Note that the malloc tracking mechanisms is
the most significant memory overhead component. To compare
the memory overhead we measured the virtual and resident
memory usage with increased number of processing elements.
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Fig. 7: Virtual memory usage comparison.

Figure 7 shows the average allocated virtual memory as
the number of processing elements increases. The X-axis is
the number of processing elements and the Y-axis shows the
number of allocated memory in megabytes. It is somewhat
surprising that: 1) on a single node (up to 16 PEs) the allocated
virtual memory overhead is relatively low, and 2) the virtual
memory increases dramatically when using more than 16
PEs, that is to say more than 2 nodes. Overall the Nullgrind



and Gleipnir will use about 20—30% more virtual memory.
Gleipnir will incur a slightly larger overhead than Nullgrind,
this is in part due to tracking events regardless of the tool’s
tracing mode.
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Memory size (MB)
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Number of Processing Elements (PES)

Fig. 8: Resident memory usage comparison.

Though the virtual memory behavior is somewhat puzzling,
the resident memory as reported by our memory-daemon is
on par with what we expect. The resident memory overhead is
approximately 2—4x of the native run. Notice that the resident
memory diminishes as the number of processing elements
increases. This is expected because we are not growing the
problem size linearly, rather, as with the timing runs we
increased the problem size at 96 and 512 PEs.

D. Effects of tracing and I/O overhead

Enabling tracing reduces performance orders of magnitude,
thus one must be very careful when choosing instrumentation
points. Traditionally the tool’s output was an ASCII file.
This format was sufficient for smaller applications and for
observing smaller code regions. Moreover, it did not require
374 party tools to view the trace. However, large application
runs can easily output several gigabyte trace data. Therefore,
to improve performance and save disk space we implemented
a binary output mode.

typedef struct _binout_t{
Addr addr;
UInt instance;
UInt offset;
UShort func_id;
UShort wvar_id;
UChar atype;
UChar size;
UChar thread_id;
UChar segment;

} binout_t;

Fig. 9: Binary output structure.

The ASCII trace-line can consume up to 312 bytes although
in our experience it rarely consumes over 128 bytes, neverthe-
less the traces are large and often impractical to observe with
a standard text editor. The overhead is large due to writing
out function and variable names which can be considerable
even for small applications. The binary format is significantly

smaller and consumes just 20 bytes. Figure 9 shows the
compacted structure. The key difference is that the binary
format stores function and variable names and tags them with
an id for later look-up. Moreover, integer values are at most
8 bytes large. The binary output consumes slightly more run-
time memory, but has significant disk space savings.

We previously mentioned that enabling tracing negatively
impacts overall performance and therefore ultimately deter-
mines the tool’s upper limit. The general rule is that overall
performance is I/O bound. Clever data-compressing techniques
can improve performance; however, at this stage the tool only
employs a custom binary output. We compared the tool’s
performance as well as overall and average trace sizes when

running on several nodes/PE combinations.
768

Fig. 10: Timing with basic event counting.
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Figure 10 shows Gleipnir’s performance compared to the
native run when basic event counting is enabled. Note that this
does not show the entire application. Using perftools-lite we
determined application functions which contribute a significant
amount to execution time, and we enabled basic event counting
around this function call. From the figure we can observed
that the average overhead is approximately 5x compared to
native performance. This is about 2x slower than Nullgrind
or Gleipnir’s fast-forward mode.

for (outer) {
GL_GLOBAL_START_INSTR;

ilist[ii];

gtmp = q[i];

xtmp = x[1]1[0];

ytmp = x[1i][1];

ztmp = x[1][2];

i =

itype = typelil;
jlist = firstneighli];
jnum = numneigh[il];

GL_MARK_STR ("FAST_FORWARD_ON") ;
GL_FAST_FORWARD_ON;
for (inner) {...}

}

Fig. 11: An instrumented code snippet.

We will now describe the disk usage for ASCII and binary
output. We start with a small example, and compare both
outputs over varying number of processing elements. The
main computational component as identified by perftools-lite



is the compute() method in pair_lj_charmm_coul_long.cpp.
The method consists of a nested loop that contains the main
computational body.

1) ASCII output: Suppose that we are tracing a small code
section in the outer loop as shown in Figure 11. A single iter-
ation of 23 instructions produces trace data of approximately
70bytes per instruction. This means that a 1k loop iteration
will generate a trace-file of 70kbytes, and in our example a
single computational pass is about 4k iterations. Even this
simple example generated ~6.7MBs per file, and ~100MB
for a single node with 16 PEs running. While this may not
be big overhead in itself tracing the inner loop quickly adds
several orders of magnitude trace data. Thus tracing statements
in the inner loop produces ~1.65GB trace-files, and ~25GB
for a single node with 16PEs running.

2) Binary output: The Binary output is intended to reduce
overall disk-space overhead, and potentially save execution
time. The drawback is that enabling a binary output requires
additional program logic which adds to execution time.’ For
example consider tagging function and data-structures with an
id and storing the id in a structure for later look-up. This
implies that we must access te cached values at every trace-
line to ensure consistency.

Timing Performance (inner loop tracing)
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Fig. 12: Timing with inner loop tracing.

Figure 12 shows the overall performance difference between
the binary and ASCII output. Similarly to our previous runs we
increased the problem size at 96 processing elements. Binary
output shows a slight performance improvement compared to
the ASCII output.

In Figure 13 we can observe the average trace file size per
process. Notice that we increased the problem size after 64
processing elements. The total trace is 25GB for ASCII and
9.5GB for binary output. Per process file size decreases with
the increased number of processing elements.

V. CONCLUSIONS

Memory tracing is a valuable tool for performance analysis
and we anticipate that such tools will become of great assis-
tance to performance portability planning for future systems.
The goal of this paper was to study the scalability of our

5The binary mode was developed specifically to address trace sizes at scale,
thus most of its functionality is not finished.
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Fig. 13: Average trace-file sizes with inner loop tracing.

Valgrind-based memory tracing technology, Gleipnir, on our
Cray XK6 cluster, Titan. We wanted, in particular, to assess
the feasibility of realistically tracing parallel applications.
We started by providing an introduction to memory tracing
technologies and the design of Gleipnir and proceeded with
carrying out our investigation in the context of the LAMPPS
molecular dynamics simulation code.

There are two facets in the overhead induced by tracing: the
slowdown due to the tracing logic and the disk IO that such,
fine-grain, tracing may cause. In our experiment, we targeted
one of LAMMPS’ core force-calculating loops in 16-1024
MPI process settings. Valgrind introduces a 3-fold slowdown,
which is in turn amplified to a total of a 100-fold slowdown by
Gleipnir. This is perfectly in line with other fine-grain tracing
tools. Nonetheless, the application executes to completion with
all network IO passing through Valgrind substrate. Working an
30,000-atom problem size, traces averaged a total of 200GB
for a single computational step. The average per process trace
size difference is within the 6.6% range which is due to the
imbalance in the atom distribution. Our experimental switch
from the original ASCII format to a binary format yielded 2.6-
fold savings, bringing the traces set down to 76GBs. While this
reduces the storage footprint notably, the trace entry payload
has not affected the execution times — this may as well be due
to the number of IO operations remaining unchanged in count.
Smaller trace files, however improve the ability to trace larger
program regions.

Using Gleipnir for memory tracing parallel applications
is a promising technology, which has been shown to work
in our Cray setting. We are currently investigating further
trace compaction schemes and look forward to better Valgrind
support for our system’s instruction set.
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