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Abstract—The ever-growing scope of extreme-scale super-
computers requires an increasing volume of component-local
metrics to better understand their systemic behavior. The
collection and analysis of these metrics have become data-
intensive tasks in their own right, the products of which
inform system support activities critical to ongoing operations.
With recent emphasis being placed on topology-awareness as
a step towards better coping with extreme scale, the ability to
visualize complex topology data has become increasingly valu-
able, particularly for the visualization of multidimensional tori.
Several independent efforts to produce similar visualizations
exist, but they have typically been in-house developments tailor-
made for very specific purposes; and not trivially applicable
to visualization needs not featured among those purposes.
In contrast, a more general-purpose tool offers benefits that
ease understanding of many interrelated aspects of a system’s
behavior, such as application performance, job node placement,
and network traffic patterns. Perhaps more significantly, such
a tool can offer analysts insight into the complex topological
relationships shared among these considerations; relationships
that are often difficult to quantify by any other means.

We present TorusVis, a general-purpose visualization tool
applicable to a wide variety of topology-related data presenta-
tion scenarios. Its general-purpose software architecture lends
itself well to rapid prototyping of various data presentation
concepts as well as publishing fully featured visualizations.
We describe several key design elements and implementation
strategies, and how they strike a balance between usability,
generality, and simplicity. Furthermore, we present use case
studies where the capabilities available in TorusVis aided un-
derstanding of system behavior in ways not possible, otherwise.
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I. INTRODUCTION

System monitoring is an absolutely vital task for effec-
tively operating HPC resources. Whether they are support
staff helping users optimize their applications, maintenance
personnel detecting and resolving issues, or administrators
reconfiguring system behavior, detailed system metrics em-
power both operators and users to maximize the productive
value of their computing resources. As the capabilities of
modern systems are pushed further towards exascale, so too
are the complexities involved with the collection, analysis,
and representation of operational metrics data.

For example, the placement of applications on a sys-
tem’s compute network can give clues about application

performance. Information about which nodes are used by an
application, the placement of those nodes on the communi-
cation fabric, the relative location of other applications, and
the relative location of service nodes can be used to better
characterize application performance and provide insight on
the modifications best suited for maximizing it. Application
placement and performance data can be further augmented
with system data (e.g. from event logs) and better guide
diagnostic efforts.

All of this information is readily available on most HPC
systems, but in addition to the growing costs of collecting,
storing, and curating it; HPC support staff are faced with
the challenge of representing analysis results in a form
accessible by human comprehension. One natural choice is
an interactive 3D visualization where the system topology
is represented by a graph mesh whose visual characteristics,
such as node color, size, and shape, are modulated to convey
the operational data of interest to an analyst.

In this paper, we discuss the topology data visualization
work performed at NCSA in support of the Blue Waters
project. We present several realized usage scenarios and
discuss how our early software prototypes empowered oper-
ations staff to better understand system behavior and appli-
cation performance. We also discuss some hypothetical ca-
pabilities for other anticipated use cases, and their potential
value to the HPC community. This potential motivates our
recent efforts to channel the development experiences gained
into a new modular and general-purpose topology data
visualization software library we have named “TorusVis”.
We briefly outline the core software design of TorusVis, and
conclude with our future plans, which include releasing it
for the community under an open-source license.

II. CASE STUDIES

The display of the placement of user jobs and system
resources in relation to the communication topology has
a number of uses. For example, job performance may be
impacted by the location of the job nodes in relation to each
other and system resources. A variety of information can be
displayed in addition to just node placement. Network traffic,
for example, is an important metric that, if visualized over
time on the network can reveal patterns that may aid the



Figure 1. Visualization of an irregularly-shaped job node placement. The links among the various nodes are mapped to color and transparency values
based on a heuristic model that estimates the relative congestion for an all-to-all communication pattern. This rendering demonstrates a priori analysis
capabilities made possible by topology visualization tools.

Figure 2. Application performance (in GFLOPS) for several 256-node runs
of a GPU-enabled version of HPL performed over a period of about three
months. Performance varies by almost a factor of two in the best-to-worst
case comparison, despite there being no changes in job configuration.

analyst in improving application performance. An example
of this capability is illustrated in Figure 1.

Our early work on visualization application prototypes
was primarily motivated by a series of studies performed
with partners from Cray and Adaptive Computing on the
run time consistency of applications ran on the Blue Wa-
ters system. We observed that many applications required

highly variable amounts of compute time for seemingly
identical runs. We began to investigate system factors that
might contribute to this variability, and identified job node
placement as a factor that was likely to affect job run
time. We hypothesized that jobs with node placements that
were more compact would perform better than those with
placements more spread throughout the torus. We proposed
several metrics in an attempt to quantify the compactness of
these placements, such as maximum, average, or a profile
of hop counts among node pairs. However, we found that
the correlation between each of our tested metrics and job
run time were weak, and that they were poor performance
predictors. We considered other likely factors, such as inter-
fering traffic from other jobs, or external system events, and
realized that job run time was likely a non-trivial function
of all of these considerations. We turned to visualization as
a way to observe the data collected on each of these aspects
and identify trends intuitively.

We found that job node placement did, indeed, have a
major impact on run time, but often in ways that were not
simple to quantify. Figure 2 shows application performance
for several runs of HPL that were identical except for the
placement of their job’s nodes. The best performing job
achieved a performance of 197.5 TFLOPS and outperformed
the 111.2 TFLOPS performance of the worst performing
job by nearly a factor of two. Figure 3 shows the node
placements for both cases. The visualizations show that



Figure 3. Visualization of the node placements for the best, and worse performing HPL runs. The worse performing run used a node allocation of two
distinct, segregated regions (left), while the best performing run used one that was clearly more compact (right).

the worst performing job used a node allocation of two
distinct, segregated regions; most likely resulting in high
communication overhead. Although the best performing job
used an allocation that, in an apparent, albeit qualitative
sense, was more compact, it too had a few outlying nodes.
The latter allocation was clearly superior to the former,
though to an extent not well represented through purely
quantitative analysis.

Another use for topology visualization is for showing the
system resources on the torus. This is particularly useful
when warm swapping components in and out of the sys-
tem. Maintenance staff must exercise extreme caution when
servicing the system to ensure that the correct components
are pulled out. Accidentally removing operational hardware
may cause holes in the torus network that could result in
unroutable conditions. System components must be warm
swapped very carefully to avoid adversely impacting run-
ning applications. Our topology visualization applications
aid maintenance staff in verifying the location of target
components.

As another use case, the location of the largest running
jobs can be shown by visualization tools as an indication of
the system utilization. A portal plugin has been developed
for this purpose. Figure 4 shows a screen shot of the
Blue Waters portal system status page. The page shows,
among other things, the location and identification of the ten
largest jobs on the system at the time the page was loaded.
Refreshing the page reloads new information. The node
placements are color coded by job. User information is also
provided and colored to match their particular job’s nodes.
The arrangement of nodes is surrounded by a bounding box.
The color of the box edges indicates the direction of the

Figure 4. System utilization view showing the node placements for
the ten largest jobs running on the Blue Waters system. Users and other
stakeholders are given a live, birds-eye-view of the system, that depict
such features as overall utilization, relative job sizes, and placement
fragmentation.

torus. Red edges run in the X direction, green edges in the
Y direction, and blue edges in the Z direction. One can see
the bias in job distribution away from the Y direction. This
direction has less communication performance than the other
directions.

In order to understand the utility of the system, we
describe briefly the data collection and display mechanisms
used, here. In the context of this work, the data collection
is done by mining system logs and placing the data in a
database. In particular, the job scheduler system logs contain
information about when jobs start and end as well as what
nodes are used. This dynamic information is read and stored
at regular intervals. Other static information such as the
location of compute nodes on the communication fabric and
the location of service nodes in the fabric is also stored in the
database. Delivery of this representation to a geographically



distributed user base can be most easily accomplished via
a web based interface, so the viewer extracts near real-time
data and displays the information on a web browser.

III. ARCHITECTURE

Due to its broad applicability, many desirable features or
capabilities were suggested during our early design and pro-
totyping efforts. We began to notice a number of recurring
requirements that many of our use cases shared in common.
For TorusVis, we identified these requirements, and set out
to meet them as our primary design goals.

A. Requirements

Our highest priority goal was to design TorusVis to be
generic, and applicable to as many topology data presen-
tation scenarios as possible. During our initial study on
application run time consistency, we had many small codes
that would produce some form of visualization of the Blue
Waters torus topology. Each would do so in a different
way, and emphasize certain features or attributes that serve
slightly different purposes. They were created for a specific
use and often required significant, involved changes when
new needs were identified. We also learned that some of our
industry collaborators were working on their own similar set
of torus visualization tools, and noted that between us, there
were at least half a dozen different in-house tools producing
slightly different visualizations of what was essentially the
same subject. We set out to create a software library that
could replace most of the functionality of these disparate
applications with a single general-purpose code base.

To promote this broad applicability, we designed TorusVis
to be extensible and flexible. For every major step of the
topology visualization process, the default behavior can be
extended or completely replaced with application-specific
logic. Our design identifies three of these features and
formulates the process as a data flow between layers, one
for each step (section III-C). Each layer provides a set
of commonly used data structures and routines and serve
as extension points for applications. This flexibility allows
many users to adapt TorusVis to their specific needs while
also taking advantage of the core visualization functionality
needed for most applications.

Finally, despite being extensible and generic, we try to
keep TorusVis simple where practical. We target a user
audience that primarily consists of domain experts and
administrators; users that may not be willing or able to
devote time to learning the details of a complex software
design. Furthermore, we expect that some applications and
visualizations produced will target project stakeholders or a
more public audience, such as in the case where they are
used as a dissemination tool. TorusVis must be simple in
design to promote improvements throughout development,
expose a simple API that is readily extensible for appli-
cations, and facilitate applications with wide accessibility.
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Figure 5. Diagram depicting the overall design of TorusVis.

Wherever possible, the barrier to entry for development,
application, and presentation is kept to a minimum.

B. Features

TorusVis is a software library for web applications in
JavaScript and accessible over a web browser. We note
that JavaScript enjoys a simplified object model that lends
itself well to developing flexible asynchronous applications
and promotes fast turn-around time for the write-deploy-test
cycle typical of most agile development styles. TorusVis uses
the 3D graphics library, three.js[1], which enables rendering
with native graphics hardware for browsers that support it
(see: WebGL[2]). It is entirely front-end code, leaving the
task of accessing data from back-end stores to applications.

C. Design

The design of TorusVis is centered around a set of high-
level steps we’ve identified as common to most topology
data visualization applications. The API is logically split
into three major layers, each corresponding to step in the
visualization process (Figure 5). The steps can be described
as 1 – collecting data in generic structures, 2 – mapping
these data structures to concrete forms, and 3 – reducing
the data into a visualization. We’ve found that this workflow
matches well with a large range of applications, provides
ample opportunity for domain-specific extensions, and is
simple to understand.

The data layer is the first and is concerned with providing
graph data structures and high-level visualization primitives.
Here, the nodes and edges of the system topology are
defined. Additional arbitrary data can be associated with
nodes or edges as attributes. For visualization, one or more



sets of nodes or edges are also defined in the form of groups.
Groups are selections of a subset of a graph’s nodes or edges
that are to be rendered, and are also associated with a set
of options that control the visual characteristics at a high
level, such as color, size, and shape. Groups can be used
to represent the set of nodes in a job’s allocation, a set of
links along a path of interest, or any set of components that
match a criteria.

The mapping layer provides the tools to transform abstract
topology data collected in the data layer to a concrete form
more suitable for visualization. It is primarily concerned
with defining an embedding of the given topology that
associates each node with a point in 3D space, and each
edge with a set of such points along which a path may be
drawn. For example, a simple mapper might just query the
attributes of each node, or another might apply an automatic
graph layout algorithm. Other examples include mappers
that provide different “views” of the same data, or mappers
that apply spacial transformations, such as cycling the nodes
of a torus topology along a periodic dimension, or wrapping
a cartesian embedding into one in a polar space to reinforce
the periodicity (Figure 6).

The output layer provides the visualization capabilities.
An instance of the output layer encapsulates a specific
routine that produces a rendering from the information in
the first two layers. Recall that the layers can be extended,
and therefore can be made to exhibit application-specific
behavior that might not match with their intended use. This
possibility is especially relevant for the output layer, where
implementations are at liberty to produce any manner of
visualization, or even content that are not visualizations, at
all. While not the intended use, there are no restrictions
in our design of TorusVis that would prevent output layer
implementations from creating other charts, tables of sum-
mary statistics, or audio clips if client applications were so
inclined.

IV. DISCUSSION

Analysis and visualization of system data offer essential
guidance in maximizing the productive value of HPC re-
sources. The growing scale of modern systems have placed
greater emphasis on topological considerations that require
new methods and tools to better understand. We described
our early topology visualization applications, initially cre-
ated for our study of application run time consistency, and
demonstrate their value in a number of use case studies.
As more small and disparate visualization applications were
created for various purposes, the value in a general purpose
tool became apparent. We channeled the development ex-
periences gained while creating our early prototypes into a
software library we call “TorusVis”. We discuss the design of
TorusVis, and how it meets our requirements for generality,
flexibility, and simplicity.

The design of TorusVis allows applications to replace or
supplement most provided functionality with application-
or domain-specific behavior. This flexibility has great po-
tential to support a broad range of use cases as well as
provide a platform for future research and development.
For example, we found that characterizing the relationship
between job node placement and application performance
through rigorous, quantitative assessment is exceptionally
difficult and highly application-specific in nature. TorusVis
applications can help users prepare and run their jobs in
ways more topologically-aware, by offering them an intuitive
and qualitative sense of this relationship, leading to better
informed preferences for node sets, allocation shapes, and
other system features. Submitting computational workloads
in more topology-sensitive configurations might decrease
average job turnaround time, increase overall utilization, and
reduce the risk and impact of failures.

TorusVis is still very young in its development. Our future
plans are to complete a modest number of features still miss-
ing from our early prototypes and release the library under
an open-source license. The potential in having a tool that
supports such a large class of HPC systems operations tasks
developed over a collaborative, open access medium should
not be understated. We feel the HPC community have only
recently begun to seriously contend with topology issues,
and applying combined and focused efforts that benefit all
stakeholders should be preferred over individual disparate
developments. We hope to promote our own efforts, but
also engage the broader community – to initiate an open
dialogue on topology issues and collective efforts towards
unified solutions.

We hope to further explore possibilities in topology visu-
alization research by applying TorusVis to other networking
technologies and system topologies, such as the Gordon
system at the San Diego Supercomputer Center, an infini-
band torus network, future systems using Cray’s ”Dragonfly”
technology, and also smaller-scale fat tree topologies.

V. PRIOR WORK

Collections of system monitoring data often hold key
insights that inform efforts to operate HPC resources as
well as optimally exploit them for domain applications [3].
For example, fine-grained data at the component level can
help maintenance staff identify and correct failures; and
users to determine optimization strategies that are most
promising. As the scale of HPC systems increase and the
number of their components continue to grow, the respective
increase in system data have necessitated new methods and
tools to analyze [4], [5], [6]. Visualizing analysis results in
multiple contexts or domains has been shown to more clearly
highlight their important features [6], [7]. In particular,
understanding network traffic patterns is of great importance
for many applications, and visualizing these patterns on
multiple 2D and 3D views that resemble the topology of



Figure 6. Example application demonstrating an alternative mapping implementation. Here, the spacial embedding of a square torus is wrapped radially
along two dimensions (top and bottom), with each view showing the progression of the transformation (left to right).

the system interconnect provides insight valuable to both
application developers and performance engineers [8].

Our current development focuses on working with di-
rected graph structures, a representation we expect would
be general enough to be adapted to most topology data sets.
We also note that visualizations of similar data, but in less
generic forms (Gantt charts, timeline views, scatter plots,
etc.) are already extensively covered by existing methods
and tools [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23]. Prior software systems for
analyzing graph data have typically combined graph layout
algorithms and visualization features [24], [25], [26], [27],
[28], [29]. We chose not to focus on graph layout features
since in the most common use cases, users will already
have one of possibly several layouts predetermined, such as
that of the interconnect topology, one depicting the virtual
topology of an application, or a physical map of where the
system hardware components lie in a data center. Despite
this omission, we suspect that automatic graph layout ca-
pabilities will eventually prove to be a worthwhile addition
and another avenue for future research and development.
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