
I/O Router Placement and Fine-Grained Routing on Titan to Support Spider II

Matt Ezell, Sarp Oral, Feiyi Wang, Devesh Tiwari,
Don Maxwell, Dustin Leverman, and Jason Hill
Oak Ridge National Laboratory; Oak Ridge, TN

{ezellma,oralhs,fwang2,tiwari,maxwellde,leverman,hilljj}@ornl.gov

David Dillow*
dave@thedillows.org

I. ABSTRACT

The Oak Ridge Leadership Computing Facility (OLCF)
introduced the concept of Fine-Grained Routing in 2008 to
improve I/O performance between the Jaguar supercomputer
and Spider, OLCF’s center-wide Lustre file system. Fine-
grained routing organizes I/O paths to minimize conges-
tion. Jaguar has since been upgraded to Titan, providing
more than a ten-fold improvement in peak performance. To
support the center’s increased computational capacity and
I/O demand, the Spider file system has been replaced with
Spider II. Building on the lessons learned from Spider, an
improved method for placing LNET routers was developed
and implemented for Spider II. The fine-grained routing
scripts and configuration have been updated to provide
additional optimizations and better match the system setup.
This paper presents a brief history of fine-grained routing
at OLCF, an introduction to the architectures of Titan and
Spider II, methods for placing routers in Titan, and details
about the fine-grained routing configuration.
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II. BACKGROUND

The Spider file system was designed as a center-wide
shared resource to service all Oak Ridge Leadership Com-
puting Facility (OLCF) resources, in 2008. The design was
targeted to eliminate data islands, to reduce deployment
costs, and to increase data availability. The system was
connected to Jaguar and other OLCF resources through an
InfiniBand (IB) DDR network network, named Scalable I/O
network (SION). Each storage server was connected to a
leaf switch that was then connected to two 108 port IB core
switches. An aggregration switch then connected the core
switches. Network translation services from Cray SeaStar
to InfiniBand was provided by Lustre Networking (LNET)
routers. These routers were also directly connected to the
same two aggregation switches.

After deployment, it was discovered that network con-
gestion both at the Cray SeaStar and InfiniBand networks
were severely limiting aggregate I/O performance. To solve
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this problem, OLCF developed and implemented a con-
gestion avoidance method named Fine-Grained Routing
(FGR) [1] [2]. FGR had two components. First, it paired
clients to specific I/O servers that are topologically close
to each other, reducing the load on the common SeaStar
torus links and avoiding SeaStar link saturation. Second,
FGR introduced a new LNET routing configuration. This
new configuration assigned varying weights to LNET routes
based on client I/O server pairings. Tests showed that with
FGR, aggregate performance was boosted by 30%. Other
solutions have since adopted the FGR techniques, including
Cray’s Sonexion product [3].

Jaguar was upgraded to Titan, a Cray XK7 system, in
2012. Like Jaguar, Titan has 18,688 clients. However, each
Titan node is augmented with one NVIDIA Kepler GPGPU
which increased the aggregate installed computational power
by more than an order of magnitude. This also increased
the I/O requirement. To address this need, a new file system
called Spider II was deployed in 2013. Spider II provides a
4x boost in aggregate I/O performance and a 3x increase in
data storage capacity compared to Spider I.

Spider II was designed with a similar architecture to its
predecessor, Spider I. 20,160 2 TB Near-Line SAS disks are
organized in 8+2 RAID 6 sets controlled by 36 DataDirect
Network (DDN) SFA-12K couplets. These are physically
arranged into four rows in the data center. The storage
system is split into two distinct, non-overlapping sections,
and each is formatted as a separate name space (atlas1 and
atlas2). Each file system has 144 Lustre Object Storage
Servers (OSSs) and 1,008 Object Storage Targets (OSTs).
As of publication, a patched version of Lustre 2.4.3 is
running on the I/O servers. Each OSS is connected to one
InfiniBand FDR top-of-the-rack (TOR) switch and two DDN
controllers, for reliability. Each row has nine TOR switches
(36 total). On Titan, 440 XK7 service nodes are configured
as Lustre LNET routers. Of these, 432 are used for file I/O
and 8 are for metadata communication. The Titan LNET
routers are directly connected to the Spider II TOR switches.
Table I shows the quantity of each component. More details
on Spider II have been published previously [4].



Table I
SPIDER II COMPONENT COUNTS

Count per Total FS Row SSU OSS OST
Disks 20,160 10,080 5,040 560 70 10
OSTs 2016 1008 504 56 7
OSSs 288 144 72 8
I/O Routers 432 216 108 12
IB Switches 36 18 9 1*
Rows 4 2
File Systems 2

*Note: A given switch supports half of each of two SSUs

III. PLACEMENT

The placement of the I/O routers in a large 3D torus
can have an enormous impact on the traffic patterns and
congestion characteristics present in the system. This is
important for maximizing I/O performance as well as min-
imizing the interaction between application communication
and I/O. Building on the lessons learned from OLCF’s
Spider I implementation of fine-grained routing in 2008, an
improved method for placing LNET routers on Titan was
developed and implemented for Spider II.

A. Topological Concerns

The router placement layout used for Spider I was de-
signed to distribute the routers topologically through the
machine while also minimizing the number of cabinets that
contained routers (see Figure 1). This resulted in a very
regular I/O pattern that was prone to congestion if I/O traffic
was not properly kept localized.

Jaguar’s upgrade from Cray’s SeaStar interconnect to
Gemini significantly changed the network’s characteristics.
Details about Gemini’s architecture and design are available
in other literature [5]. Additional details and performance
characteristics are also available [6]. Each Gemini supports
two nodes, which effectively halved the Y-dimension length.
Additionally, Y-dimension connections are comprised of
only half the links of X- and Z-dimension connections. Thus,
I/O traffic should be limited in the Y-dimension due to its
reduced relative bandwidth. This suggests that routing zones
should be “flattened” into “rectangular prisms” instead of the
more traditional cubic zones as was implemented in Spider I.

Since Gemini uses dimension-ordered-routing, I/O tends
to converge to a single path as it nears the destination.
Thus, it is important to avoid putting routers in the same
plane. This can help avoid congestion, but many-to-one
communication patterns in a 3D torus will always suffer
from some amount of congestion.

Minimizing the hop count between clients and routers
is essential for providing high-bandwidth communications
with the storage servers. While Gemini routing arbitration
is locally fair, it is globally unfair. Packet age and hop-count
are not taken into account when the router selects the next
packet to forward. Figure 2 shows an example of this issue.
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Figure 2. Geometric Bandwidth Reductions

Node 0 can be considered an I/O router while the others
are acting as clients attempting to send data to the router.
When only node 1 is communicating, it is able to achieve
100% of the bandwidth across the link. Once node 2 starts
communicating, the router attached to node 1 accepts half
the bandwidth from node 1 and half from node 2. Effectively,
the bandwidth is shared between the nodes. When node 3
begins communicating, the router attached to node 2 fairly
arbitrates traffic between nodes 2 and 3. Since that router
only has half of the global bandwidth, nodes 2 and 3 each
only get one quarter of the total bandwidth to the router.
When node 4 begins communicating, the problem becomes
even more obvious. The router attached to node 3 fairly
arbitrates traffic between nodes 3 and 4, but it can only
grant one eighth of the total bandwidth to each.

As these chains get longer and longer, the bandwidth
available to the “last” node can become abysmal.

B. Physical Constraints

The following physical constraints and goals were kept in
mind while determining an optimal placement algorithm:

Topological Concerns
Routers must be placed to optimize for the topo-
logical concerns mentioned in Section III-A.

Partitionability
Occasionally, Titan’s 3D torus must be partitioned
to facilitate extended maintenance activities or
testing. During this situation, it is important to
ensure full routability to boot from both “ends” of
the machine. A boot node is located in physical
columns 0 and 24 (topological columns 0 and
13). Thus, routers should be located in a way
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Figure 1. Jaguar Router Layout

that minimizes the number of columns required to
access the entire file system.

Minimize Cabinet Count
Each cabinet that contains a router module requires
a hole to be drilled in the floor to accommodate the
cables.

Cable Length
Shorter cables are cheaper and easier to manage in
the data center.

C. Placement Choices

The challenge is to choose the optimal placement for the
432 I/O routers. In the Cray XK architecture, each service
module contains four service nodes. Since each service
module displaces a compute module, it is important to utilize
each node. Ideally, the LNET routers would exist on the
same module as less bandwidth-intensive nodes (such as a
login nodes) to dedicate more bandwidth to routing. This is
unfortunately impractical due to the sheer number of routers
required to achieve sufficient bandwidth.

Spider II has 36 InfiniBand switches that are named based
on row and position: atlas-ibsw{1-4}{a-i}. Titan’s 432 I/O
routers are divided equally among the switches, with each
switch providing 12 connections to Titan. Titan’s routers are
named based on the switch to which they connect and their
index: rtr{1-4}{a-i}-{1-12}.

Having 4 routers on a module corresponds nicely with the
4 rows of Spider II. The four nodes on a given module will
connect to the same “letter” switch in each of the 4 rows
of Spider II. Initially, this was designed such that nodes 0,
1, 2, and 3 connected to rows 1, 2, 3, and 4, respectively.
Before deployment, OLCF staff realized that this connection
might be suboptimal. Router 0 and 1 share a Gemini, so
in the typical use case of a job writing to a single file
system, contention may be present on the links leading to
that Gemini. The placement was modified so nodes 0 and
2 connect to rows 1 and 2 while nodes 1 and 3 connect to
rows 3 and 4. This “swizzle” is designed to spread the load

for a single file system to two different Gemini chips within
a module.

OLCF staff wrote several Perl scripts to generate and
analyze the placement for the I/O routers. First, the machine
was broken up into 4 sections of two rows each. The
intention here was to limit hops in the Y-direction due to
its limited bandwidth. The 12 modules for a given group
were assigned to the sections, three per section. The starting
position for the first router was manually determined to aid
in satisfying physical constraints. The subsequent routers in
the subgroup were placed approximately 1

3 around the X-
and Z-dimensions. When two modules for different groups
are placed in the same cabinet, they are offset by 12 in the
Z-dimension ( 12 of the way). Between sections, the starting
X- and Z-dimensions are offset. By modifying the starting
positions and parameters, several iterations were created and
evaluated before arriving at a final configuration. The final
placement map is shown in Figure 3.

IV. FINE-GRAINED ROUTING

The first step towards achieving higher performance is to
place LNET routers equidistant from each other as much as
possible, subject to physical constraints and other boundary
conditions. This ensures that LNET routers are distributed
across the machine and are not segregated in a particular
portion of the torus. The second key step is to pair clients
with their closest possible LNET routers. This section dis-
cusses the algorithm and implementation that pairs a client
with the optimal LNET routers to minimize end-to-end hop
counts and congestion.

A. Router Selection Algorithm

Recall from previous sections that there are a total of
440 LNET routers where only 432 routers are used for file
I/O; the remaining 8 are used for metadata operations. Four
LNET routers together form a router module, resulting in a
total of 108 router modules spread throughout the system.
These 108 router modules are divided into 9 groups of 12
modules each, corresponding to the 9 InfiniBand switches
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Figure 3. Titan Router Layout

present in each row of Spider II. Each group is further
divided into 4 sub-groups that service two rows of Titan.
Each sub-group consists of 3 router modules.

Algorithm 1 describes how a client chooses the optimal
router module for a given group. The client-to-group pairing
is decided using a fixed arrangement. Note that in the
presented algorithm RG

i (S) denotes ith router module in
the Gth group and Sth sub-group. Based on the number of
groups, sub-groups, and router modules in the system, G, S
and i will have the following respective ranges: (1, . . . , 9),
(1, . . . , 4), and (1, . . . , 3).

The algorithm takes two input parameters: coordinates of
the client (C) and the destination router group (RG). The
algorithm returns the coordinates of three routers assigned
to the input client (C): one primary and two backup routers.

The fine-grained routing algorithm consists of two steps.
The first step (lines 4–14) is to choose the sub-group whose
Y-coordinates fall within the close range of Y-coordinates
of the input client, C. This is because the bandwidth in
the Y-direction is limited compared to other directions, as
discussed earlier. Therefore, it is desirable to minimize the
traffic in that direction first.

Once the sub-group is selected, the second step (lines 16–
31) is to return assigned routers from this sub-group. As
mentioned earlier, each sub-group consists of 3 routers and
the algorithm returns a vector of 3 routers. So, all three of
them are returned, but the one with the lowest distance in
X-dimension is assigned as the primary router to minimize
the hops and avoid congestion in that direction. Note that
the X-direction crosses cabinet boundaries, therefore it more
desirable to minimize the hops in that direction compared to
the Z-direction that run within a cabinet in vertical direction.

B. LNET Routing

Lustre uses LNET for all communications between
clients, routers, and servers. Routing allows communication
to span multiple network types, as long as one or more nodes
exist that can “bridge” the disjoint networks. Each unique
network is given an identifying name that consists of the

Algorithm 1 Fine-grained routing algorithm
1: procedure ROUTE SELECTION ALGORITHM (RG, C)
2:
3: Divide RG into 4 sub-groups: RG(1) . . .RG(4).
4: for all sub-groups RG(i) do . i ranges 1 to 4
5: C[y] ← y coordinate of C
6: RG

1 (i)← first router module in the ith sub-group
7: RG

1 (i)[y] ← y coordinate of RG
i (S)

8: if (C[y] == RG
1 (i)[y]− 1)

9: or (C[y] == RG
1 (i)[y])

10: or (C[y] == RG
1 (i)[y] + 1)

11: or (C[y] == RG
1 (i)[y] + 2) then

12: break with sub-group i selected
13: end if
14: end for
15:
16: i ← index of selected sub-group
17: r1, r2, r3 ← first, second, and third router module
18: selected sub-group i
19: dmin ← ∞
20: Indexprimary ← ∞
21:
22: for j in 1, . . . , 3 do
23: dcurrent ← dist(C[x], rj [x]) . distance along

X dimension
24: if dcurrent < dmin then
25: Indexprimary ← j
26: end if
27: end for
28: primary router module ← RG

Indexprimary
(i)

29: backup router modules ←
30: two other modules in the ith sub-group

return <primary and backup router modules>
31:
32: end procedure
33:



network type and an arbitrary integer (for example, o2ib0 for
the 0th InfiniBand network or gni101 for the 101st Gemini
network).

Each node in an LNET network has a unique
Network Identifier (NID) that is in the form identi-
fier@network. The InfiniBand Lustre Networking Driver
(LND) uses the IP-over-IB address as its unique identifier
(ex. 10.10.10.101@o2ib0), while the Gemini LND uses its
Gemini network ID (ex. 4044@gni101). It is permissible
for a network interface to have multiple NIDs assigned to
it. For example, a node with a single InfiniBand interface
may have NIDs 10.10.10.101@o2ib0, 10.10.10.101@o2ib1,
and 10.10.10.101@o2ib2. The Lustre Manual [7] describes
how to specify network settings.

In mixed-network environments, system administrators
setup the LNET routing tables on each node. For every
remote network that the node should be able to communicate
with, a list of routers should be provided. Each router is
given a “hop count” that indicates the relative distance
between the nodes.

When a packet is ready to leave a node, the destination
network ID is compared to the list of local network IDs.
If a match is found, then the message is sent directly to
the destination. Otherwise, the routing table must be used to
determine the next hop. Under normal circumstances, LNET
will cycle through all the appropriate routers with the lowest
hop count. Routers with higher hop counts will only be used
if all routers of a lower hop count are unavailable. In all
cases, LNET uses its source NID that matches the network
of the next hop.

C. FGR in Practice

Thirty-six IB LNET network identifiers (o2ib201 to
o2ib236) exist that correspond to the 36 IB leaf switches.
Each LNET router has exactly one IB NI that corresponds
to the switch to which it connects. The service and compute
nodes are broken up into twelve Gemini regions (gni101
to gni112) based on their topological location. Each router
configures 3 gni interfaces corresponding to the three indices
in the topological section.

Upon boot, each client applies Algorithm 1 for all groups
A to I. The node will create a gni interface corresponding
to each primary router. The primary router is added to the
routing table with hop count 1 while the secondaries are
added with hop count 10. In the end, each client will have
36 primary routes (one for each IB switch) and 72 secondary
routes.

Additionally, gni100 is configured on all clients for meta-
data and Cray DVS traffic. Lustre metadata traffic uses all
8 metadata routers; it does not use fine-grained routing.

The Lustre servers each configure one o2ib network
identifier that corresponds to its IB leaf switch. Routes for
all 12 gni networks are configured through the 12 routers
also connected to the same switch.

V. ISSUES AND FUTURE WORK

The I/O router placement attempts to address the issue
of traffic routing and imbalance at the system level. The
route selection algorithm aims to minimize hops and mitigate
contention between the compute clients and I/O routers.
However, several issues remain.

Titan’s scheduler is completely oblivious to the placement
of I/O routers; jobs are placed based on node availability. No
mechanism exists for nodes to request locality to or distance
from I/O routers. A job placed entirely within one section
(two rows) of the machine, for example, will never be able
to achieve greater than 1

4 of the total file system bandwidth.
Identical jobs placed in different sections of the machine
may have widely varying locality to routers. To users, this
manifests as I/O variability.

Benchmark tests against Spider II have been run using
both optimally placed and randomly placed clients. On
a quiet system the difference between the two modes is
minimal. However, on a busy system the difference can
be more substantial. Arbitrary users jobs have no insight
into which ranks are closest to I/O routers. To overcome
this limitation, OLCF is designing an end-to-end balanced
data placement strategy to complement the backend fine
grained routing algorithm. The primary goal is to extend
the balancing from the clients, through the I/O routers, and
into the final destination. This work is ongoing.

While the concepts and algorithms behind fine-grained
routing are straightforward, the actual implementation is
quite complex. When issues arise, it can be difficult narrow
down to find the root cause. Over time, various scripts have
been developed to ensure all nodes are cabled correctly
and that they can communicate properly. Additional work
improving these scripts will aid in timely debugging.

VI. CONCLUSION

The evolution of compute platforms at Oak Ridge Na-
tional Laboratory has necessitated unique designs for the
storage systems that support them. Lessons learned from
the deployment and operation of the Spider I file system
led to the development of fine-grained routing to improve
throughput and minimize congestion. The Spider II system
was designed and built with fine-grained routing as a core
component. To support this new file system, the quantity of
I/O routers in Titan was increased and they were carefully
placed to minimize congestion. A new fine-grained routing
mechanism was created that was tailored specifically to the
two systems.
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