
Tuning and Analyzing Sonexion Performance

Mark Swan

Performance Group

Cray Inc.

Saint Paul, Minnesota, USA

mswan@cray.com

Abstract—This paper will present performance analysis

techniques that Cray uses with Sonexion-based file systems.

Topics will include Lustre client-side tuning parameters,

Lustre server-side tuning parameters, the Lustre Monitoring

Toolkit (LMT), Cray modifications to IOR, file fragmentation

analysis, OST fragmentation analysis, and Sonexion-specific

information.

Keywords – Sonexion; tuning

I. INTRODUCTION

Lustre file systems, and the clients that interact with
them, can be quite intimidating and hard to understand.
Once a file system is working, though, we begin to want to
understand how to get the most performance out of them.
Lustre provides many modifiable parameters to allow us to
tune client and server performance.

In this paper, we will look at the tools we use to exercise
the file system, the tools we use when probing and
modifying tunable parameters, the tools we use when
looking at file system performance, how data gets from file
system clients to the file system servers, where data exists on
the file system, how data exists on the file system, and how
to take advantage of the nuances of file system
characteristics.

II. CRAY SONEXION OVERVIEW

The Cray Sonexion 1600 is composed of a single
Metadata Management Unit (MMU) and one or more
Scalable Storage Units (SSU).

The MMU consists of four servers and either a 2U24 or
5U84 drive enclosure. The four servers are two cluster
management servers and two file system metadata servers
(i.e. the MGS and MDS). The SSU consists of two Object
Storage Servers (OSS), each with 32 GiB of memory, and a
5U84 drive enclosure.

In the MDRAID configuration, of the 84 drives in the
5U84 enclosure, there are two SSDs, 80 spinning disks
arranged into eight Object Storage Targets (OSTs) which are
RAID 6 8+2 arrays, and two spinning disks as global hot
spares. Each OSS has primary responsibility for four OSTs.

As a general guideline, the performance of a single SSU
is said to be 5 GB/s sustained and 6 GB/s peak. The SSU is
the building block of the file system.

III. THE TOOLS WE USE

Before immersing ourselves in the details presented in
this paper, let’s first understand the tools we will be using.
Information about these tools is readily available online.

A. LNET Selftest (lst)

LST is supplied with the Lustre distribution [1] and can
be used to verify the Lustre NETwork (LNET) bandwidth of
our system. It can test all segments of the various networks
between the file system clients (i.e. compute nodes) and the
file system servers. In general, we want to verify that there
is more LNET bandwidth than the file system servers can
consume or produce so that the network is not a bottleneck.

B. obdfilter-survey

The obdfilter-survey tool is supplied with the Lustre
distribution [1] and can be used to verify the I/O capabilities
of the OSTs without having to worry about any higher level
protocols. The tool executes directly on the OSS and
communicates with the OSTs using the proper Lustre
protocols.

C. Lustre Control (lctl)

The Lustre Control (lctl) command is supplied with the
Lustre distribution [1] and can be used to show or modify
various tuning parameters of Lustre clients and servers.

D. pdsh

The parallel shell utility is supplied with many Linux
distributions and is used to execute commands on one or
more hosts in a cluster.

E. IOR

The IOR benchmark [2][3] is available in the public
domain and is used to execute I/O operations on many file
system clients simultaneously and in a coordinated fashion.
Cray has made modifications to this benchmark tool to
gather more information [4].

F. Filefrag

The filefrag utility is part of the Cray Linux Environment
(CLE) distribution and is used to show information about
how a file is organized on disk.

G. Lustre Monitoring Toolkit (LMT)

LMT is supplied on the file system servers of Cray
Sonexion as well as the Lustre File System by Cray (CLFS).
This toolkit gathers a variety of server-side performance
information and can store that information into a MySQL
database.

IV. HOW DATA MOVES

1) “max_rpcs_in_flight” and “max_dirty_mb”
While there is a max_rpcs_in_flight associated with the

metadata client (MDC) and the object storage client (OSC),
this section is referring to the OSC tunable value. These two
client side tunable parameters are described in the Lustre
documentation. As a guideline, the documentation says that
max_dirty_mb should be four times the value of
max_rpcs_in_flight. Even though these tunable parameters
are associated with each OST in the file system, we typically
set all the tunable parameters the same for all OSTs.

By default in the Lustre distribution, max_rpcs_in_flight
is 8 and max_dirty_mb is 32. What this means is that, on a
per OST basis, if a client has 8 outstanding requests for a
particular OST, no more requests will be allowed to be
started until one or more of the outstanding requests
completes. As a practical example, if a client makes a write
requests for 8 MiB to a particular OST, and we know that
Lustre is going to chop that request into 1 MiB LNET RPCs,
the client can have all 8 of those RPCs in flight. However, if
that client makes a write request for 16 MiB to a particular
OST, the client will be limited to only having 8 of the
possible 16 RPCs in flight.

In order to increase client performance, Cray suggests
increasing max_rpcs_in_flight to 64 and max_dirty_mb to
256. Fig. 1 and Fig. 2 show the effects of these tunable
parameters on direct I/O. Similar effects can be seen with
buffered I/O as well.

Fig. 1, Effects of client-side tuning on direct reads

Fig. 2, Effects of client-side tuning on direct writes

2) Lustre 4 MiB Transfers
In releases prior to 2.4.0, Lustre used 1 MiB RPCs.

Beginning with release 2.4.0, Lustre can be configured to use
4 MiB RPCs. Not only does this increase the efficiency of
RPC transfers but also creates more contiguous data areas on
the OSTs. This paper will discuss contiguous data in more
detail in the section entitled “How Data Exists In The File
System”.

V. WHERE DATA EXISTS IN THE FILE SYSTEM

Disk drive manufacturers have documented
specifications for the rate of data movement to and from the
disk as the different zones of the disk from the “fast edge” to
the “slow edge”. OSTs are subdivided into what are called
“multi-block allocation groups” and each group represents
32,768 blocks of space (where each block is 4,096 bytes).
Multi-block allocation group zero (0) is at the beginning of
the OST. When the OSS is started (or restarted), it begins
looking for free space (in which to write data) at multi-block
allocation group zero. As more data is written, the allocator
simply continues to advance to higher numbered multi-block
allocation groups until the end of the OST is reached at
which point the allocator “wraps” and begins at the
beginning of the OST again.

A. mb_last_group

Beginning with NEO release 1.2.3, we are able to view
and change the position at which the allocator will begin
looking for free space. This value is stored on each OSS in
“/proc/fs/ldiskfs/md*/mb_last_group”. We can simply “cat”
that file to see the value or “echo” a new value into it. Fig. 3
shows the performance of the obdfilter-survey tool as the
allocation position is moved from the fast edge to the slow
edge of an OST.

Fig. 3, OST speed zone differences

While the allocator begins looking for free space at the

beginning of each OST when it is started (or restarted), OSTs
quickly get “out of sync”. Different amounts of data are
written to different OSTs and, very soon, the values of
mb_last_group can appear to be random on a file system.
Fig. 4 shows a snapshot of the different allocation positions
on each OST of a file system.

B. mb_groups

Information about each of the multi-block allocation
groups also exists on the Sonexion OSS. Alongside the
“proc/fs/ldiskfs/md*/mb_last_group” special file is one
named “mb_groups”. This file contains one line for each
multi-block allocation group on that OST and each line
consists of several pieces of information. One of the
interesting pieces of information is a column indicating how
many blocks are free in that multi-block allocation group.
Fig. 5 shows a plot of this information for a single OST.
Visualizing this information, as well as noticing where the
mb_last_group value is, can indicate where (in the OST)
data already exists and how dense that data is. Just as the
mb_last_group value differs from OST to OST, so does the
placement and density of information of each OST.

Even though the OST shown in this plot is more than
86% free, there are areas where the data is quite dense. The
vertical blue line at 13,164 is the value of mb_last_group and
represents where the allocator will begin looking for free
space when writing data.

For a file system containing hundreds or thousands of
OSTs, it becomes somewhat impractical to view and analyze
one plot for each OST. My colleague Doug Petesch and I
are continually attempting to find ways to visualize the space
usage of an entire file system. Fig. 6 and Fig. 7 are examples
of viewing the free space of an entire file system as a “heat
map”. Lighter colors represent free space while darker
colors represent used space.

Fig. 4, Random OST allocation positions

Fig. 5, Multi-block allocation groups

Fig. 6, First example of file system heat map

Fig. 7, Second example of file system heat map

C. read_cache_enable and writethrough_cache_enable

These tunable parameters are discussed in the Lustre
documentation [1]. By default, the OSS cache is enabled. In
summary, these parameters enable or disable the use OSS
cache for OSTs. From a benchmarking perspective,
disabling the OSS cache removes caching effects from the
measurement of OST performance. In production, it is
generally a good idea to have the OSS cache enabled.

D. readcache_max_filesize

This tunable parameter is also discussed in the Lustre
documentation [1]. By default, the maximum amount of
OSS cache is used for caching OST data. For most
workloads that benefit from cached access to files, leaving
this parameter set to the maximum (default) setting may not
be the right choice if large files are also streamed through the
same OSTs.

With the default setting, the OSS will attempt to cache all
files of all sizes. When a workflow writes large amounts of
large files to OSTs (i.e. more data than will fit in the OSS
cache), any previously cached data will be evicted. When
this eviction occurs, future reads of data will need to bring
the data into the OSS from OST media.

By changing this parameter’s value to 64 MiB, for
example, the OSS will attempt to cache any files that are 64
MiB or smaller. The OSS will not attempt to cache data for
files larger than 64 MiB. Understanding the usage patterns
of a workflow, and adjusting this tunable parameter
appriopriately, can provide great benefit.

VI. HOW DATA EXISTS IN THE FILE SYSTEM

Understanding how data exists in the file system can be

just as important (and more complicated) than understanding
where the data exists. The data in the mb_groups file
indicates the density of user data in the OST but it does not
indicate the density of data for any particular file. For that,
we look at information from filefrag. Fig. 8 is a
representation of how a set of four files are stored on an
OST. These files were created with a simple IOR job using
direct I/O to a single OST, 4 files per OST, and 1 GiB per
file. Each color represents one of the 4 files. To see more

details of the files, we zoomed into the first 50 MiB in Fig. 9.
Notice the white column representing a pre-existing 1 MiB
of data. Fig. 10 shows the distribution of contiguous data
sizes for the files. There are two interesting observations.

1. If tightly packed, the data for all files should
consume exactly 4 GiB of space on disk.
Details of the filefrag output for the job revealed
that it took only an extra 6 MiB to represent the
64 GiB on disk (i.e. there was only 6 MiB of
pre-existing data on disk where we were writing
data).

2. The histogram of contiguous data sizes tells us
that the vast majority of data on disk are single 1
MiB chunks for any particular file. In other
words, there are very few portions of files with
2 or more MiB of contiguous data.

Referring back to Fig. 5, if the jobs had been attempting
to write to areas of the OST where a lot of data already
existed, our first observation could have been quite different.
There could have been dozens or even several hundred GiB
of “distance” between the start of our first file and the end of
the last.

Our second observation leads us to look at how blocks of
data for individual files are stored.

Fig. 8, File fragmentation

Fig. 9, File fragmentation subset

Fig. 10, File fragmentation distribution

A. OST Pre-Allocation Size

When the OSS receives a 1 MiB chunk of data from a
client to be written to an OST for a particular file, it
allocates, by default, a 1 MiB area in which to write. Since
the allocated area matches the size of the data from the
client, the OSS can simply write that data, one after the
other, to the OST. No seeking is involved and writing is
very efficient. However, the result is often what we saw in
Fig. 8, Fig. 9, and Fig. 10, in which there are very few
portions of files that have two or more MiB of contiguous
data. In most cases, those 1 MiB chunks of data from
multiple files are interleaved.

With data in our files interleaved in this way, reading
files becomes inefficient. When receiving a request from a
client to read a large chunk of data from a file (e.g. 32 MiB),
it may take as many as 32 seeks to fulfill that request.
Especially when multiple files are actively being read from
an OST, the read requests are nearly always received in a
different order than the write requests were.

On way to alleviate this high rate of read seeking is to
create more contiguous areas of data for each file. That’s
what OST pre-allocation can do. An OSS can be configured
such that it will pre-allocate N MiB of space for files being
written to an OST. Fig. 11, Fig. 12, Fig. 13, and Fig. 14
show the effects of adjusting the OST pre-allocation amount.

Fig. 11, OST pre-allocation effects, buffered read

Fig. 12, OST pre-allocation effects, buffered write

Fig. 13, OST pre-allocation effects, direct read

Fig. 14, OST pre-allocation effects, direct write

Notice that as read performance benefits from more

contiguous data on disk, write performance decreases. This
is because the OST must seek to the correct position in the
correct pre-allocated area for a file on the OST in order to
place the 1 MiB data chunk coming from the client. The
OSS can no longer simply stream the data to the OST, it
must properly place it.

B. Lustre Transfer Size (Revisited)

As we have mentioned already, the default transfer size
from a Lustre client to a Lustre server is 1 MiB. With
release 2.4 of Lustre, this can be increased to 4 MiB. This
will increase efficiency of transfers between client and
server.

Using 4 MiB Lustre transfers will also solve the problem
pointed out with large OST pre-allocation sizes. That is, if

we set the OST pre-allocation size to 4 MiB and the server is
receiving 4 MiB transfers from the client, the OSS can once
again simply stream those 4 MiB chunks out to the OST
without seeking. Furthermore, read requests will benefit
from the natural increase in contiguous data within files so
there will be less read seeking in order to fulfill large read
requests. As we see in Fig. 11 and Fig. 13, most of the gains
in read performance were realized with even a 4 MiB pre-
allocation size.

VII. FUTURE AREAS OF RESEARCH

Cray Inc. will be investigating the use of 4 MiB Lustre
network transfers. Also, the Lustre development group of
Cray Inc. is also developing tools and methodologies for
combatting the fragmentation of data on OSTs.

VIII. SUMMARY

There are many tunable Lustre parameters that affect
application and file system performance. There are also
many tools and analysis techniques. This paper has
presented a set of the most commonly use parameters, tools,
and techniques that Cray uses both internally and at customer
sites.

REFERENCES

[1] http://lustre.opensfs.org/documentation

[2] IOR 2.10.3 is available at http://sourceforge.net/projects/ior-sio/

[3] IOR 3.0.0 is available at https://github.com/chaos/ior

[4] D. Petesch and M. Swan, “Instrumenting IOR to Diagnose
Performance Issues on Lustre File Systems,” CUG 2013

