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Abstract—This paper will present performance analysis 

techniques that Cray uses with Sonexion-based file systems. 

Topics will include Lustre client-side tuning parameters, 

Lustre server-side tuning parameters, the Lustre Monitoring 

Toolkit (LMT), Cray modifications to IOR, file fragmentation 

analysis, OST fragmentation analysis, and Sonexion-specific 

information. 
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I. INTRODUCTION 

Lustre file systems, and the clients that interact with 
them, can be quite intimidating and hard to understand.  
Once a file system is working, though, we begin to want to 
understand how to get the most performance out of them.  
Lustre provides many modifiable parameters to allow us to 
tune client and server performance. 

In this paper, we will look at the tools we use to exercise 
the file system, the tools we use when probing and 
modifying tunable parameters, the tools we use when 
looking at file system performance, how data gets from file 
system clients to the file system servers, where data exists on 
the file system, how data exists on the file system, and how 
to take advantage of the nuances of file system 
characteristics. 

II.  CRAY SONEXION OVERVIEW 

The Cray Sonexion 1600 is composed of a single 
Metadata Management Unit (MMU) and one or more 
Scalable Storage Units (SSU). 

The MMU consists of four servers and either a 2U24 or 
5U84 drive enclosure.  The four servers are two cluster 
management servers and two file system metadata servers 
(i.e. the MGS and MDS).  The SSU consists of two Object 
Storage Servers (OSS), each with 32 GiB of memory, and a 
5U84 drive enclosure. 

In the MDRAID configuration, of the 84 drives in the 
5U84 enclosure, there are two SSDs, 80 spinning disks 
arranged into eight Object Storage Targets (OSTs) which are 
RAID 6 8+2 arrays, and two spinning disks as global hot 
spares. Each OSS has primary responsibility for four OSTs.   

As a general guideline, the performance of a single SSU 
is said to be 5 GB/s sustained and 6 GB/s peak.  The SSU is 
the building block of the file system. 

III. THE TOOLS WE USE 

Before immersing ourselves in the details presented in 
this paper, let’s first understand the tools we will be using.  
Information about these tools is readily available online. 

A. LNET Selftest (lst) 

LST is supplied with the Lustre distribution [1] and can 
be used to verify the Lustre NETwork (LNET) bandwidth of 
our system.  It can test all segments of the various networks 
between the file system clients (i.e. compute nodes) and the 
file system servers.  In general, we want to verify that there 
is more LNET bandwidth than the file system servers can 
consume or produce so that the network is not a bottleneck. 

B. obdfilter-survey 

The obdfilter-survey tool is supplied with the Lustre 
distribution [1] and can be used to verify the I/O capabilities 
of the OSTs without having to worry about any higher level 
protocols.  The tool executes directly on the OSS and 
communicates with the OSTs using the proper Lustre 
protocols. 

C. Lustre Control (lctl) 

The Lustre Control (lctl) command is supplied with the 
Lustre distribution [1] and can be used to show or modify 
various tuning parameters of Lustre clients and servers. 

D. pdsh 

The parallel shell utility is supplied with many Linux 
distributions and is used to execute commands on one or 
more hosts in a cluster. 

E. IOR 

The IOR benchmark [2][3] is available in the public 
domain and is used to execute I/O operations on many file 
system clients simultaneously and in a coordinated fashion.  
Cray has made modifications to this benchmark tool to 
gather more information [4]. 

F. Filefrag 

The filefrag utility is part of the Cray Linux Environment 
(CLE) distribution and is used to show information about 
how a file is organized on disk. 



G. Lustre Monitoring Toolkit (LMT) 

LMT is supplied on the file system servers of Cray 
Sonexion as well as the Lustre File System by Cray (CLFS).  
This toolkit gathers a variety of server-side performance 
information and can store that information into a MySQL 
database. 

IV. HOW DATA MOVES 

1) “max_rpcs_in_flight” and “max_dirty_mb” 
While there is a max_rpcs_in_flight associated with the 

metadata client (MDC) and the object storage client (OSC), 
this section is referring to the OSC tunable value.  These two 
client side tunable parameters are described in the Lustre 
documentation.  As a guideline, the documentation says that 
max_dirty_mb should be four times the value of 
max_rpcs_in_flight.  Even though these tunable parameters 
are associated with each OST in the file system, we typically 
set all the tunable parameters the same for all OSTs. 

By default in the Lustre distribution, max_rpcs_in_flight 
is 8 and max_dirty_mb is 32.  What this means is that, on a 
per OST basis, if a client has 8 outstanding requests for a 
particular OST, no more requests will be allowed to be 
started until one or more of the outstanding requests 
completes.  As a practical example, if a client makes a write 
requests for 8 MiB to a particular OST, and we know that 
Lustre is going to chop that request into 1 MiB LNET RPCs, 
the client can have all 8 of those RPCs in flight.  However, if 
that client makes a write request for 16 MiB to a particular 
OST, the client will be limited to only having 8 of the 
possible 16 RPCs in flight. 

In order to increase client performance, Cray suggests 
increasing max_rpcs_in_flight to 64 and max_dirty_mb to 
256.  Fig. 1 and Fig. 2 show the effects of these tunable 
parameters on direct I/O.  Similar effects can be seen with 
buffered I/O as well. 

 
Fig. 1, Effects of client-side tuning on direct reads 

 
Fig. 2, Effects of client-side tuning on direct writes 

2) Lustre 4 MiB Transfers 
In releases prior to 2.4.0, Lustre used 1 MiB RPCs.  

Beginning with release 2.4.0, Lustre can be configured to use 
4 MiB RPCs.  Not only does this increase the efficiency of 
RPC transfers but also creates more contiguous data areas on 
the OSTs.  This paper will discuss contiguous data in more 
detail in the section entitled “How Data Exists In The File 
System”. 

V. WHERE DATA EXISTS IN THE FILE SYSTEM 

Disk drive manufacturers have documented 
specifications for the rate of data movement to and from the 
disk as the different zones of the disk from the “fast edge” to 
the “slow edge”.  OSTs are subdivided into what are called 
“multi-block allocation groups” and each group represents 
32,768 blocks of space (where each block is 4,096 bytes).  
Multi-block allocation group zero (0) is at the beginning of 
the OST.  When the OSS is started (or restarted), it begins 
looking for free space (in which to write data) at multi-block 
allocation group zero.  As more data is written, the allocator 
simply continues to advance to higher numbered multi-block 
allocation groups until the end of the OST is reached at 
which point the allocator “wraps” and begins at the 
beginning of the OST again. 

A. mb_last_group 

Beginning with NEO release 1.2.3, we are able to view 
and change the position at which the allocator will begin 
looking for free space.  This value is stored on each OSS in 
“/proc/fs/ldiskfs/md*/mb_last_group”.  We can simply “cat” 
that file to see the value or “echo” a new value into it.  Fig. 3 
shows the performance of the obdfilter-survey tool as the 
allocation position is moved from the fast edge to the slow 
edge of an OST. 



 
Fig. 3, OST speed zone differences 

 
While the allocator begins looking for free space at the 

beginning of each OST when it is started (or restarted), OSTs 
quickly get “out of sync”.  Different amounts of data are 
written to different OSTs and, very soon, the values of 
mb_last_group can appear to be random on a file system.  
Fig. 4 shows a snapshot of the different allocation positions 
on each OST of a file system. 

B. mb_groups 

Information about each of the multi-block allocation 
groups also exists on the Sonexion OSS.  Alongside the 
“proc/fs/ldiskfs/md*/mb_last_group” special file is one 
named “mb_groups”.  This file contains one line for each 
multi-block allocation group on that OST and each line 
consists of several pieces of information.  One of the 
interesting pieces of information is a column indicating how 
many blocks are free in that multi-block allocation group.  
Fig. 5 shows a plot of this information for a single OST.  
Visualizing this information, as well as noticing where the 
mb_last_group value is, can indicate where (in the OST) 
data already exists and how dense that data is.  Just as the 
mb_last_group value differs from OST to OST, so does the 
placement and density of information of each OST. 

Even though the OST shown in this plot is more than 
86% free, there are areas where the data is quite dense.  The 
vertical blue line at 13,164 is the value of mb_last_group and 
represents where the allocator will begin looking for free 
space when writing data. 

For a file system containing hundreds or thousands of 
OSTs, it becomes somewhat impractical to view and analyze 
one plot for each OST.  My colleague Doug Petesch and I 
are continually attempting to find ways to visualize the space 
usage of an entire file system.  Fig. 6 and Fig. 7 are examples 
of viewing the free space of an entire file system as a “heat 
map”.  Lighter colors represent free space while darker 
colors represent used space. 

 
Fig. 4, Random OST allocation positions 

 
Fig. 5, Multi-block allocation groups 

 
Fig. 6, First example of file system heat map 



 
Fig. 7, Second example of file system heat map 

C. read_cache_enable and writethrough_cache_enable 

These tunable parameters are discussed in the Lustre 
documentation [1].  By default, the OSS cache is enabled.  In 
summary, these parameters enable or disable the use OSS 
cache for OSTs.  From a benchmarking perspective, 
disabling the OSS cache removes caching effects from the 
measurement of OST performance.  In production, it is 
generally a good idea to have the OSS cache enabled. 

D. readcache_max_filesize 

This tunable parameter is also discussed in the Lustre 
documentation [1].  By default, the maximum amount of 
OSS cache is used for caching OST data.  For most 
workloads that benefit from cached access to files, leaving 
this parameter set to the maximum (default) setting may not 
be the right choice if large files are also streamed through the 
same OSTs. 

With the default setting, the OSS will attempt to cache all 
files of all sizes.  When a workflow writes large amounts of 
large files to OSTs (i.e. more data than will fit in the OSS 
cache), any previously cached data will be evicted.  When 
this eviction occurs, future reads of data will need to bring 
the data into the OSS from OST media. 

By changing this parameter’s value to 64 MiB, for 
example, the OSS will attempt to cache any files that are 64 
MiB or smaller.  The OSS will not attempt to cache data for 
files larger than 64 MiB.  Understanding the usage patterns 
of a workflow, and adjusting this tunable parameter 
appriopriately, can provide great benefit. 

VI. HOW DATA EXISTS IN THE FILE SYSTEM 

 
Understanding how data exists in the file system can be 

just as important (and more complicated) than understanding 
where the data exists.  The data in the mb_groups file 
indicates the density of user data in the OST but it does not 
indicate the density of data for any particular file.  For that, 
we look at information from filefrag.  Fig. 8 is a 
representation of how a set of four files are stored on an 
OST.  These files were created with a simple IOR job using 
direct I/O to a single OST, 4 files per OST, and 1 GiB per 
file.  Each color represents one of the 4 files.  To see more 

details of the files, we zoomed into the first 50 MiB in Fig. 9.  
Notice the white column representing a pre-existing 1 MiB 
of data.  Fig. 10 shows the distribution of contiguous data 
sizes for the files.  There are two interesting observations. 

1. If tightly packed, the data for all files should 
consume exactly 4 GiB of space on disk.  
Details of the filefrag output for the job revealed 
that it took only an extra 6 MiB to represent the 
64 GiB on disk (i.e. there was only 6 MiB of 
pre-existing data on disk where we were writing 
data). 

2. The histogram of contiguous data sizes tells us 
that the vast majority of data on disk are single 1 
MiB chunks for any particular file.  In other 
words, there are very few portions of files with 
2 or more MiB of contiguous data. 

Referring back to Fig. 5, if the jobs had been attempting 
to write to areas of the OST where a lot of data already 
existed, our first observation could have been quite different.  
There could have been dozens or even several hundred GiB 
of “distance” between the start of our first file and the end of 
the last. 

Our second observation leads us to look at how blocks of 
data for individual files are stored. 

 
Fig. 8, File fragmentation 

 
Fig. 9, File fragmentation subset 



 
Fig. 10, File fragmentation distribution 

 

A. OST Pre-Allocation Size 

When the OSS receives a 1 MiB chunk of data from a 
client to be written to an OST for a particular file, it 
allocates, by default, a 1 MiB area in which to write.  Since 
the allocated area matches the size of the data from the 
client, the OSS can simply write that data, one after the 
other, to the OST.  No seeking is involved and writing is 
very efficient.  However, the result is often what we saw in 
Fig. 8, Fig. 9, and Fig. 10, in which there are very few 
portions of files that have two or more MiB of contiguous 
data.  In most cases, those 1 MiB chunks of data from 
multiple files are interleaved. 

With data in our files interleaved in this way, reading 
files becomes inefficient.  When receiving a request from a 
client to read a large chunk of data from a file (e.g. 32 MiB), 
it may take as many as 32 seeks to fulfill that request.  
Especially when multiple files are actively being read from 
an OST, the read requests are nearly always received in a 
different order than the write requests were. 

On way to alleviate this high rate of read seeking is to 
create more contiguous areas of data for each file.  That’s 
what OST pre-allocation can do.  An OSS can be configured 
such that it will pre-allocate N MiB of space for files being 
written to an OST.  Fig. 11, Fig. 12, Fig. 13, and Fig. 14 
show the effects of adjusting the OST pre-allocation amount. 

 
 

 
Fig. 11, OST pre-allocation effects, buffered read 

 

 
Fig. 12, OST pre-allocation effects, buffered write 

 

 
Fig. 13, OST pre-allocation effects, direct read 



 
Fig. 14, OST pre-allocation effects, direct write 

 
Notice that as read performance benefits from more 

contiguous data on disk, write performance decreases.  This 
is because the OST must seek to the correct position in the 
correct pre-allocated area for a file on the OST in order to 
place the 1 MiB data chunk coming from the client.  The 
OSS can no longer simply stream the data to the OST, it 
must properly place it. 

B. Lustre Transfer Size (Revisited) 

As we have mentioned already, the default transfer size 
from a Lustre client to a Lustre server is 1 MiB.  With 
release 2.4 of Lustre, this can be increased to 4 MiB.  This 
will increase efficiency of transfers between client and 
server. 

Using 4 MiB Lustre transfers will also solve the problem 
pointed out with large OST pre-allocation sizes.  That is, if 

we set the OST pre-allocation size to 4 MiB and the server is 
receiving 4 MiB transfers from the client, the OSS can once 
again simply stream those 4 MiB chunks out to the OST 
without seeking.  Furthermore, read requests will benefit 
from the natural increase in contiguous data within files so 
there will be less read seeking in order to fulfill large read 
requests.  As we see in Fig. 11 and Fig. 13, most of the gains 
in read performance were realized with even a 4 MiB pre-
allocation size. 

VII. FUTURE AREAS OF RESEARCH 

Cray Inc. will be investigating the use of 4 MiB Lustre 
network transfers.  Also, the Lustre development group of 
Cray Inc. is also developing tools and methodologies for 
combatting the fragmentation of data on OSTs. 

VIII. SUMMARY 

There are many tunable Lustre parameters that affect 
application and file system performance.  There are also 
many tools and analysis techniques.  This paper has 
presented a set of the most commonly use parameters, tools, 
and techniques that Cray uses both internally and at customer 
sites. 
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