Cray XC System Level Diagnosability: Commands, Utilities and Diagnostic Tools for the Next Generation of HPC Systems

Jeffrey J. Schutkoske Cray Administrative Environment (CAE Group) jjs@cray.com

Safe Harbor Statement

2

This presentation may contain forward-looking statements that are based on our current expectations. Forward looking statements may include statements about our financial guidance and expected operating results, our opportunities and future potential, our product development and new product introduction plans, our ability to expand and penetrate our addressable markets and other statements that are not historical facts. These statements are only predictions and actual results may materially vary from those projected. Please refer to Cray's documents filed with the SEC from time to time concerning factors that could affect the Company and these forward-looking statements.

Overview

3

Introduction to System Diagnosability Toolkit

Cray System Diagnosability Toolkit

- Aries High Speed Network
- Intel Processor and Co-Processor
- NVIDIA Processor
- Cabinet Power and Cooling

Future Directions

What is the System Diagnosability Toolkit?

- System Diagnosability is a suite of software tools designed to provide Cray field support and end customers a tool chain to quickly and reliably identify hardware and software problems in the Cray XC system.
- Diagnostics are just one aspect of the tool chain that includes BIOS, user commands, power and thermal data and event logs.
- System Diagnosability features are built into the SMW and CLE commands so that hardware and software problems can be identified at the point of failure.
- System Diagnostics validate hardware and software are executed once a problem is suspected but can be periodically scheduled.

System Diagnosability Toolkit

System Diagnosability Toolkit include:

- Command and Control tools
- Monitoring and Logging tools
- Recovery tools
- Notification tools
- System Diagnostics

System Diagnostics include:

- Boot level validation and tests
- Confidence level diagnostic tests
- Stress level tests
- Performance level tests
- Workload level tests

System Diagnosability Toolkit Usage

6

The right tool for the right job.

"Once you eliminate the impossible, whatever remains, no matter how improbable, must be the truth." Sherlock Holmes

System diagnosability toolkit allows system administrators to eliminate the impossible....

Aries HSN Diagnosability Toolkit

Category	Toolkit
Boot (HSS)	Power on MBIST BIOS PCIe training
Confidence (CLE)	BTE uGNI Tests: xtbte_ata and xtbte_ato FMA uGNI Tests: xtfma_ata and xtfma_ato FMA AMO uGNI Tests: xtfma_amo
Stress (CLE)	FMA & BTE Concurrent uGNI Test: xtfbc
Performance (CLE)	BTE All-To-All MPI/DMAPP Test: xta2a
Error and Data Reporting (SMW)	Linux Advanced Error Reporting (AER) PCIe Error Monitor: xtpcimon Aries Power and Thermal data

Aries HSN Diagnosability Toolkit Example

xta2a results (no problem found)

Bytes	Min	Mean	Max	Dev	Scaled
4096	5457	5603	5668	56	1.0%

xta2a results (problem found)

Bytes	Min	Mean	Max	Dev	Scaled
4096	3626	4897	4891	74	1.5%
4096	3944	4916	4918	74	1.5%
4096	4068	4916	4918	74	1.5%
4096	3617	4915	4919	84	1.7%

Bandwidth low for set 994 nodes 4056 4059: 3617GB/s Bandwidth low for set 1051 nodes 4288 4291: 4012GB/s

Intel Processors Diagnosability Toolkit

9

Category	Toolkit
Boot (HSS)	BIOS processor, QPI, PCIe and memory
Confidence (CLE)	Processor Test: xtcpuburn Memory Tests: xtmemtester NUMA Tests: xtnumatest
Stress (CLE)	Processor Tests: xtcpudgemm
Performance (CLE)	Processor Tests: xtcpudgemm Memory Tests: xtnumatest
Error and Data Reporting (SMW)	Cray Embedded ITP scripts: xtitp MCA Errors: xthwerrlogd/xthwerrlog Intel MCA Decode: xtmcadecode Intel processor Power and Thermal data

COMPUTE | STORE | ANALYZE

Intel Processor Diagnosability Toolkit Example

BIOS

QPI 0 Registers:. QPI Link Status: 0x0606FC00. QPI MISC Status: 3. QPI Error Counter[0]: 0x00000000.

xtnumatest -S 0x100 -s -l 3 -v

Running test08: ***** QPI Bandwidth Test ***** Expected socket 0 to socket 1 is: (22990 MB/s - 25410 MB/s) Expected socket 1 to socket 0 is: (22990 MB/s - 25410 MB/s)

xtitp -t c0-0c0s7 qpi-status 1

Socket 0 QPI0: Link Speed: 8.0 GT/s Configured Tx Width: Full Configured Rx Width: Full

Copyright 2014 Cray Inc.

Intel Co-Processors Diagnosability Toolkit

Category	Toolkit
Boot (HSS)	BIOS PCIe training
Confidence (CLE)	Co-processor Test: xtphidgemm PCIe Tests: xtphibandwidth
Stress (CLE)	Co-processor Test: xtphidgemm
Performance (CLE)	Co-processor Test: xtphidgemm
Workload (CLE)	GEMM, SHOC, and STREAMS
Error and Data Reporting (SMW)	MCA Errors: xthwerrlogd/xthwerrlog Intel MCA Decode: xtmcadecode Intel co-processor Power and Thermal data

Co-Processor Diagnosability Toolkit Example

BIOS

PciBus: KNC detected @ B3|D0|F0 PciBus: KNC [B3|D0|F0] initialized, Width: x16, CurSpd: 5.0 Gbps

xtbounce

**** node_up ****
09:12:12 - Beginning to wait for response(s)
09:15:14 - Received 50 of 54 responses
ERROR: c0-0c0s8n0 - 370 – KNC PCIe link speed mismatch

xtphibandwidth -v -i 10

14:49:41 c0-0c0s8n0 nid00032 0, 128, 6223.58, 134184, 6481.61 14:49:41 c0-0c0s8n0 nid00032 1, 128, 6231.33, 107184, 6489.37 15:46:26 Failed:

Bandwidth actual: 107184,

COMPUTE

Bandwidth expected greater than: 110000

S T O R E

ANALYZE

Nvidia GPU SXM Diagnosability Toolkit

13

Toolkit
BIOS PCIe training
GPU Tests: xkdgemm GPU Memory Tests: xkmemtest PCIe Tests: xkbandwidth
GPU, Memory, PCIe Tests: xkstress
GPU Tests: xkdgemm
HPL (Single NODE GPU)
PCIe Error Monitor: xtpcimon GPU Memory Errors: xtaccecc Nvidia GPU Power and Thermal data

COMPUTE | STORE | ANALYZE

Nvidia GPU Diagnosability Toolkit Example

14

xkdgemm -m 12100 -n 4096 -k 14100 -i 1 -l 10 -g -v

15:08:56 c0-0c2s13n2 nid00182 MPI mode enabled, root node Iteration, GFlops, Temp, Power, P-state, SMClockrate 0, 1229.52, 44, 194.464, 0, 732

On Failure:

12:02:32 c0-0c1s5n1 nid00085 Failed: c0-0c1s5n1 nid00085 8, 1295.29, 74, 194.934, 0, 745 GFlops actual: 1295.29, GFlops expected greater than: 1300

Cray HSS Diagnosability Toolkit

Category	Toolkit
Boot (HSS)	HSS Microcontroller Power on validations HSS Microcontroller Pre-boot validations HSS Microcontroller Post-boot validations
Confidence	System temp, power and status: xtcheckhss
(SMW)	HSS tests: xtcheckhss
Error and Data	HSS Faults, Errors & Warnings: xtconsumer
Reporting	System Environment Data Collections (SEDC)
(SMW)	Processor Power & Thermal data

HSS Diagnosability Toolkit Example

16

DIMM failure: xthwerrlog -f ./hwerrlog.p0-20140503t150204 –M

NodeCount ChanTypeDIMM BIT(s)c0-0c0s7n2260CORRECTABLEJ3000

Low Voltage Failure: xtcheckhss --volts --blade=c0-0c0s7

ComponentModuleSensorHMIN SMIN DATAUNITSMAX HMAX

c0-0c0s7n2 qpdc0_n0_s0_mem_vrm vdd_vdr01_s0_c_i 1200 1350 1339 v*1000 1650 1800

COMPUTE | STORE | ANALYZE

Copyright 2014 Cray Inc.

Future Considerations

- Additional workload tests
- Additional node stress tests
- Add end-to-end storage tests including the Infiniband
- Enhanced diagnostic data analysis tools
- HSS system dashboard

Summary

- Aries High Speed Network
- Intel Processors and Co-Processors
- Nvidia GPU
- HSS Cabinet Power and Cooling

Future focus on the HPC System

- End-to-end storage tests
- Additional Stress and workload tests
- Data Analysis tools
- System dashboard

Legal Disclaimer

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc. products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model number marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are the property of their respective owners.