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Abstract—The Square Kilometer Array telescope will be one
of the worlds largest scientific instruments, and will provide
an unprecedented view of the radio universe. However, to
achieve its goals the Square Kilometer Array telescope will
need to process massive amounts of data through a number
of signal and imaging processing stages. For example, for the
correlation stage the SKA-Low Phase 1 will produce terabytes
of data per second and significantly more for the second
phase. The use of shares filesystems, such as Lustre, between
these stages provides the potential to simplify these workflows.
This paper investigates writing correlator output to the Lustre
filesystem of a Cray XC30 using the HDF5 and ADIOS high
performance I/O APIs. The results compare the performance
of the two APIs, and identify key parameter optimisations for
the application, APIs and the Lustre configuration.
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I. INTRODUCTION

Modern radio astronomy is becoming one of the most
challenging big data applications. Being one of the largest
scientific instruments in the world, the Square Kilometer
Array (SKA) will produce terabytes of visibility data per
second, for Phase 1 of the low frequency component alone.
The amount of data throughput required will potentially
grow by orders of magnitude by the time the full SKA is
operational, and will potentially be the limiting factor of the
entire system.

While the signal processing work flow was traditionally
implemented on dedicated hardware, a recent trend is to
process the data using general purpose supercomputers or
clusters. This provides considerably better flexibility to the
work flow design as improvements can be made by upgrad-
ing software. One advantage of this flexibility is that various
data models can be applied in a single system and switched
dynamically. For instance, visibilities as intermediate data
are often discarded after the posterior processing stage is
accomplished, due to the limitation of the storage system. In
a traditional hardware based system, once it is designed and
fixed in this way, then there is no low-cost workarounds to
obtain the visibility data. With the flexibility of a software
system, this can be solved by simply introducing another
module or plug-in into the pipeline software, and thus easily
enables certain science cases that require such non-standard
data input.

This paper investigates writing visibility data to the Lustre
filesystem using HDF5 and ADIOS I/O APIs. Testing is
across a number of schemes and configurations, varying the
number of compute nodes, the Lustre stripe size, the number
of input data streams, the number of frequency channels and
the number of time slices per file. To illustrate the scalability
of the Lustre filesystem, results from local storage machines
are also given for reference. By analyzing these results, the
key parameter optimizations are identified, in terms of the
application, I/O APIs and the Lustre configuration.

In the following section, we will first introduce some
background knowledge on signal correlation, Lustre filesys-
tem, HDF5 and ADIOS. The data pattern and implementa-
tion strategy we used in this work is then described in the
Method section. This is followed by an introduction to our
hardware and software testing environment, the details on
the testing parameters, and the testing results. Finally, in the
Discussion section, we will identify the optimal parameter
range and discuss issues we noticed during the work.

II. BACKGROUND

This section will give a brief introduction to radio astron-
omy signal correlation, Lustre, HDF5, and Adios, to outline
these technologies and define terms used in subsequent
sections.

A. Radio Astronomy Signal Processing

The raw signal data from the receivers in a radio interfer-
ometer is converted to images of the radio sky via a signal
and imaging processing pipeline. This process is referred to
as aperture synthesis. This is a highly involved process, with
a large number of customized processing stages specific to
a particular telescope array. For the purposes of this section,
this is abstracted into a number of consecutive stages.

After any initial preprocessing, signals undergo correla-
tion, in which streams from each telescope are transformed
to the Fourier domain and conjugate multiplied with every
non-redundant pairing. This produces data known as vis-
ibilities for the each telescope baseline. The visibility data
then undergoes calibration and imaging, which first accounts
for instrumental and atmospheric factors and then grids and
performs an inverse Fourier transform spatially to form an



initial image. Subsequent deconvolution techniques are then
applied to achieve the final image.

For more detailed information on correlation and related
signal processing for radio astronomy, the reader is directed
to the standard references [1], [2].

B. Lustre

Lustre is a high-performance, scalable, open-source
filesystem [3], which is widely used by cluster and su-
percomputing systems. Nodes of such systems are Lustre
clients, and by mounting and accessing the filesystem they
interface with a number of Lustre components. Metadata
Servers (MDS) provides access to file metadata stored in
one or more Metadata Targets (MDT), and Object Storage
Servers (OSS) provide file and network handling for file data
stored across one or more Object Storage Targets (OST). The
interaction of these components is handled by a Management
Server (MGS).

C. HDF5

The Hierarchical Data Format 5 (HDF5) is becoming an
industrial standard as a flexible data format and IO library
for storing and accessing large and complex hierarchical data
objects. It supports a variety set of IO operations for both
serial and parallel applications. In particular, while working
with global filesystems such as Lustre, the HDF5 library

provides the ability to handle synchronous IO via the MPI-
IO interface, as well as asynchronous IO via hyper-slab
operations. The latter was chosen in this work for the HDF5
interface implementation.

D. ADIOS

The Adaptive IO System (ADIOS) [6] is an IO sys-
tem/library aiming to improve parallel IO throughput for
extremely large scientific datasets. ADIOS provides two sets
of application interfaces, one through XML configuration
files and the other based on function calls.

With the XML interface for collective parallel IO, ADIOS
is also a powerful middleware providing the ability to change
the output file format and transport method without touching
a single line of the application code, but rather simply
changing the parameters in XML configuration files. This
feature is highly helpful for comparing different file formats
and transport methods to find the optimum one.

On the other hand, through the non-XML interface,
ADIOS can be used more flexibly compared to the XML
interface in terms of enabling non-collective IO opera-
tions. This work will use the non-XML interface and non-
collective IO of ADIOS for testing, as will be mentioned in
later sections.
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Figure 1. Shown is the output data flow and pattern of the time-division
multiplex radio astronomy signal correlator used in this work.



III. METHOD

The correlation code adopted in this work is a GPU cluster
based prototype correlator [4]. It implements two mod-
els to subdivide and distribute correlation tasks, based on
time-division and baseline-division respectively. The time-
division correlation model is chosen for all testing in this
work, because a global filesystem is more beneficial in this
case, in terms of managing the output data in a more usable
format while achieving good scalability.

More specifically, output data of a baseline-division or
frequency-division correlator can be arbitrarily appended
over time, and one compute node therefore can write output
data for an arbitrary amount of time independently of others.
On the other hand, in a time-division correlator, output data
of different time slices may not be produced in exactly
corresponding sequences, and therefore cannot be easily
appended. Workarounds to this problem could be either to
introduce a management node to re-arrange the output data
into correct sequences before writing to disks, such as what
is done in DiFX [5], or to create a file for every single
time slice. However, having all output data collected by a
single computing node means that all disk output operations
concentrate on a single node, which would inevitably cause
a bottleneck when the problem size is sufficiently large. Cre-
ating a file for every time slice is not a good practice either
due to the fact that for a certain telescope configuration, the
data size of a time slice is usually a fixed number, which
could be highly unoptimal for the file/IO system to create
files for.

This work is based on a more scalable solution. We took
the correlator code in [4] and replaced the output mod-
ule with a switchable implementation between HDF5 and
ADIOS, which writes output data directly from correlation
nodes to global filesystems. As shown in Figure I, the output
data is ensured to be in the correct order by creating global
arrays with pre-defined structures, and then asynchronously
filling in data from multiple compute nodes through IO
libraries while correlation is being processed.

A. ADIOS

For the ADIOS subroutine, the non-XML interface is used
for asynchronous output. This is because that in a typical
cluster based correlator, some nodes need to be allocated for
non-correlation functions, such as data streaming and work
flow management. These non-correlation nodes do not write
any output data, and this results in an unbalanced data output
pattern from each compute node, which is very difficult to be
handled by the XML interface of ADIOS or other collective
IO functions.

Moreover, the correlator works in a time-division pattern,
which means each correlation node processes a time chunk
of data across the entire problem domain, while the total
number of time chunks is arbitrary. Therefore, even for the
correlation nodes alone, the amount of data each node is

writing may not be balanced. As shown in I for instance,
Rank 1 needs to write three times while Rank 2 and 3 only
twice. Collective functions such as the MPI-IO or the XML
interface of ADIOS then become less applicable in this case.
However, ADIOS has the ability to handle such unbalanced
output pattern through the non-XML interface.

In terms of the file format, this work uses the ADIOS
standard configuration with the POSIX transport method.
This results in a set of files with the extension of .bp for
each global array.

B. HDF5

The HDF5 subroutine is implemented in a similar way. A
HDF5 dataset is created with pre-defined size and structure.
Compute nodes then write time slices as HDF5 hyper-slabs
into the HDF5 dataset. Due to the asynchronous nature of
the time-division correlator, the collective MPI interface of
HDF5 library is not applicable. Therefore, this subroutine is
implemented using the serial HDF5 library.

IV. TESTING

This section will introduce the testing environment, in par-
ticular, the hardware and software specificaitons of Magnus
and Fornax supercomputers that have been used in this work.
Testing results are then presented with a variety of figures.

A. Testing Environment

Testing was carried out using iVEC’s Magnus system,
a Cray XC30 supercomputer. Magnus is the first phase of
a petascale system, consisting of 208 compute nodes. Each
node contains two Intel Xeon E5-2670 CPUs, which have
an eight core Sandy Bridge architecture, and 64 GB of
random access memory. The nodes are interconnected by
an Aries interconnect in a dragonfly topology, capable of
72Gbps of bandwidth per node. In addition to the compute
nodes, at the time of testing Magnus had 24 service nodes,
which route traffic between the Aries interconnect and an
Infiniband network. The latter provides access to the Lustre
version 2.2.0 filesystem, provided by a Cray Sonexion 1600.
This has two petabytes of storage via nine Scalable Storage
Units (SSUs). These SSUs have 8 OSTs, each using a 8+2
RAID 6 configuration. The specification of each SSU has a
5 GB per second bandwidth from the IOR benchmark, and
thus the expected peak bandwidth is 45 GB per second.

In terms of software on Magnus, the GCC version 4.7
compiler was used, along with the Cray MPICH version 6.1
library, HDF5 version 1.8.12 and ADIOS version 1.4.1.

Another iVEC supercomputer, Fornax, was used in this
work as a reference system. Fornax was designed for data
intensive research, especially radio astronomy related data
processing. It consists of 96 nodes, each containing two
Intel Xeon X5650 CPUs, an NVIDIA Tesla C2075 GPU and
72 gigabytes of system memory. The Intel 5520 Chipset is
used in the computing node architecture, which enables the



NVIDIA Tesla C2075 GPU to work on an x16 PCI-E slot
and two QLogic Infiniband IBA 7322 QDR cards to run on
two x8 PCI-E slots.

The back-end of Fornax’s Lustre system is a SGI Infinite
S16k, which is a re-badged DDN SFA 10k, consisting of
8 Object Storage Servers (OSSs) and 44 Object Storage
Targets (OSTs), of which 32 are assigned to the scratch
file system used in this testing. Each of the OSSs has dual
4x QDR Infiniband connections to the switch connecting
compute nodes, and the OSTs are connected to the OSSs
via 8 4x QDR Infiniband connections. Each OST consists
of 10 Hitachi Deskstar 7K2000 hard drives arranged into
a 8+2 RAID 6 configuration. Operational testing using the
ost survey Lustre benchmark achieved a mean bandwidth
of 343 MB per second, and thus the expected bandwidth is
approximately 11 GB per second.

The software used on Fornax included the GCC version
4.4 compiler, OpenMPI version 1.6.3, HDF5 version 1.8.12
and ADIOS version 1.4.1.

B. Testing Parameters

Testing was across a wide range of parameters, as shown
in Table I. The number of frequency channels, noted as
f , which is also the length of a visibility in the correlator
output, varies from 128 to 1024. The number of input data
streams, noted as n, varies from 100 to 400, and this number
has a quadratic impact on the output data size. The ranges of
these two parameters taken in the testing are normally seen
in real telescopes. The data size per time slice in bytes, noted
as st, is then given in Equation 1.

st = 4fn(n+ 1) (1)

The number of time slices, noted as t, varies from 100 to
400, covering the optimal data sizes that were identified in
preliminary testing. The global array size in bytes, noted as
s, is then given in Equation 2

s = tst (2)

Testing was conducted using from 20 to 90 compute nodes
on both Fornax and Magnus, as 20 is where different config-
urations start to behave distinctly, and 90 is approaching the
maximum number of nodes available on Fornax. The Lustre
stripe sizes used in the testing varies from 1 to 8. This is
because Fornax has 8 object storage nodes in total, while
Magnus is less sensitive to this configuration as learned in
preliminary testing.

C. Testing Results

Testing was conducted exhaustively within the parameter
ranges. However, due to the space limitation, four testing
schemes that were compiled using some of the most repre-
sentative results are to be presented.

Table I
TESTING PARAMETERS

Parameters Range Stepping
Number of Frequency Channels 128 - 1024 x2
Number of Input Data Streams 100 - 400 +100

Number of Time Slices 100 - 400 +300
Compute Nodes 20 - 90 +10

Lustre Stripe Size 1 - 8 x2

1) Small frequency channels, comparing ADIOS and
HDF5, with varying input streams: This testing scheme
mainly intends to illustrate the performance difference be-
tween ADIOS and HDF5, with a relatively small number of
frequency channels, 256, and a large number of time slices,
400. Testing results for this scheme are shown in Figure 2.

2) Large frequency channels, comparing ADIOS and
HDF5, with varying input streams: In addition to the last
one, this testing scheme changes to a relatively large number
of frequency channels, which is 1024. Other parameter
ranges remain the same. Testing results for this scheme are
shown in Figure 3.

3) ADIOS only, comparing large and small time slices,
with varying input streams: This testing scheme mainly
intends to demonstrate how performance is affected by the
number of time slices in an ADIOS global array, with a
medium number of frequency channels, 512. Testing results
for this scheme are shown in Figure 4.

4) Stability testing, comparing ADIOS and HDF5, with
varying Lustre stripe size: This testing scheme mainly
intends to illustrate the performance stability of ADIOS and
HDF5 by plotting a number of testing result samples and
then conclude to an average curve. A medium number of
frequency channels, 512, and a medium number of input
streams, 200, were chosen for the scheme. Testing results
are shown in Figure 4.

V. DISCUSSION

This section will firstly explain the significance of the
unusual asynchronous data output method used in this work,
and then interpret the testing results presented in the last
section to highlight some of the most valuable information.

A. Asynchronous Data Output

The asynchronous data output method used in this work
is not applied as commonly as synchronous methods such
as algorithms using MPI-IO. In particular, neither HDF5 nor
ADIOS evidently recommends users to implement their ap-
plications in this way. As a result, some lower-level interface
tricks need to be played to do this, particularly, the non-
XML interface of ADIOS. However, for algorithms that have
a non-synchronous nature, for instance, most of the time-
division multiplex systems, asynchronous data operations on
global filesystems still provide a practical and efficient way
to resolve problems.



B. Global Array Size

One interesting result we encountered on Fornax is that
the peak result is higher than expected. We suspect this is
due to caching, and thus we have investigated how the global
array size affects performance, as shown in Figure 6. The
performance for Fornax decreases significantly around the
global array size of 32 GB, matching the cache size of the
SGI Infinite S16K. There is a similar effect for Magnus,
while the performance boost is not as significant, the effect
exist for larger global array sizes

C. ADIOS & HDF5

As seen in the Testing section, ADIOS shows absolute
advantages over HDF5 for this type of asynchronous data
writing to Lustre filesystems. For the largest global array
size, which is least affected by caching, the bandwidth
achieved on Magnus by ADIOS was 11 GB/s, and HDF5
achieved 5.5 GB/s. For global array sizes that fit in cache,
ADIOS performs an order of magnitude faster than HDF5.
This is likely due to the advanced buffering system built-into
ADIOS, and dedicated optimizations for parallel IO.

D. Magnus & Fornax

As seen in Figure 2 and 3, Fornax generally performs
better on smaller datasets that fit in cache, while for larger
global array sizes, Magnus significantly outperforms Fornax.

There is another factor affecting the performance on
Fornax for a large number of compute nodes, for instance,
in Figure 5(g). Fornax has 96 nodes in total, and when the
testing environment approaches this number, it means testing
is occupying the entirety of Fornax, and this removes the
impact of other users on the system. On the other hand,
Magnus consists of 300 compute nodes and occupying 90
is not sufficient to see similar performance benefits.

E. Lustre Stripe Size & Number of Compute Nodes

In ADIOS testing, Fornax is more sensitive than Magnus
in terms of the Lustre stripe size. A small Lustre stripe
size would limit Fornax’s scalability with compute nodes,
while Magnus does not seem to be limited by this. More
specifically, as shown in Figure 5(a) and (c), when a Lustre
stripe size 1 or 2 was chosen, the performance of Fornax is
hardly scalable with the number of compute nodes, whereas
Magnus still shows decent scalability.

For HDF5, however, neither scales well. Even a decreas-
ing trend is seen on Fornax, as shown in Figure 5(d) and
(f).

VI. CONCLUSION

In this paper, we re-implemented the data output module
of a GPU cluster based radio astronomy signal correlator
[4] in a more flexible and scalable way using the HDF5 and
ADIOS libraries, and then carried out a series of testing on
iVEC’s Magnus and Fornax supercomputers. Testing results

showed that under most circumstances ADIOS achieved an
order of magnitude higher throughput than HDF5, therefore,
it came into a conclusion that ADIOS is more suitable for
such multi-node asynchronous data output applications. The
performance is also affected by a number of other factors
such as the global array size, the inner dimension sizes of
the global array, and the Lustre stripe size. In addition, the
two supercomputers used for testing behaved differently.
More specifically, Fornax achieved superior throughputs
with small data scales and large numbers of compute nodes,
whereas the Cray XC30 machine, Magnus, dominated for
larger data scales.

A. Future Work

There are a number of avenues for further research. Larger
global array sizes could be investigated to provide more
information of the domain free from caching effects. Ad-
ditionally, benchmarks using the entirety of Magnus could
be carried out, to see if there is performance peak similar
to that of Fornax when using the whole system. Finally, a
similar investigation on local filesystems of Fornax would
provide an interesting comparison.
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(a) ADIOS: Input Data Streams = 100 (b) HDF5: Input Data Streams = 100

(c) ADIOS: Input Data Streams = 200 (d) HDF5: Input Data Streams = 200

(e) ADIOS: Input Data Streams = 300 (f) HDF5: Input Data Streams = 300

(g) ADIOS: Input Data Streams = 400 (h) HDF5: Input Data Streams = 400

Figure 2. Shown is the testing results for a relatively small data scale, with
256 frequency channels and 400 time slices. Testing varies the number of
input data streams from 100 to 400, and compares the performance between
HDF5 and ADIOS.



(a) ADIOS: Input Data Streams = 100 (b) HDF5: Input Data Streams = 100

(c) ADIOS: Input Data Streams = 200 (d) HDF5: Input Data Streams = 200

(e) ADIOS: Input Data Streams = 300 (f) HDF5: Input Data Streams = 300

(g) ADIOS: Input Data Streams = 400 (h) HDF5: Input Data Streams = 400

Figure 3. Shown is the testing results for a relatively large data scale, with
1024 frequency channels and 400 time slices. Testing varies the number of
input data streams from 100 to 400, and compares the performance between
HDF5 and ADIOS.



(a) 100 time slices, 100 input data streams (b) 400 time slices, 100 input data streams

(c) 100 time slices, 200 input data streams (d) 400 time slices, 200 input data streams

(e) 100 time slices, 300 input data streams (f) 400 time slices, 300 input data streams

(g) 100 time slices, 400 input data streams (h) 400 time slices, 400 input data streams

Figure 4. Shown is the ADIOS testing results for a medium data scale, with
512 frequency channels. Testing varies the number of input data streams
from 100 to 400, and compares the performance between 100 and 400 time
slices.



(a) ADIOS, Lustre stripe size = 1 (b) HDF5, Lustre stripe size = 1

(c) ADIOS, Lustre stripe size = 2 (d) HDF5, Lustre stripe size = 2

(e) ADIOS, Lustre stripe size = 4 (f) HDF5, Lustre stripe size = 4

(g) ADIOS, Lustre stripe size = 8 (h) HDF5, Lustre stripe size = 8

Figure 5. Shown is the results of stability testing, with 512 frequency
channels, 400 time slices. Testing varies the Lustre stripe size from 1 to 8,
and compares the performance between HDF5 and ADIOS.



Figure 6. Shown is the data rate achieved for a range of global array
sizes, using ADIOS on both Magnus and Fornax. A Lustre stripe size of 4
was used. The impact of caching can be seen up to 32 GB on Fornax, and
131 GB on Magnus.


