Transferring User Defined Types in
OpenACC

James Beyer, David Oehmke, Jeff Sandoval
(Cray Inc.)

COMPUTE | STORE | ANALYZE

Safe Harbor Statement .

~

Kl'his presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and

Qhese forward-looking statements.)

Copyright 2014 Cray Inc.

Topics :

e What is this “transferring user define types thing” .
e EXisting solutions

e Deep copy capabilities

e Directive based solutions

e Complications and future work

Disjoint data-structure challenges

e Non-contiguous transfers
e Pointer translation

struct {
int *x; // dynamic size 2
} *A; // dynamic size 2

#pragma acc data copy(A[O:

2])

[Shallow Copy

Host Memory:

A[l] .x

Device Memory:

dA[O] .x

dA[l] .x

Co. . (] — PPNl
Disjoint data-structure challenges o
* \
e Non-contiguous transfers
e Pointer translation
struct {
int *x; // dynamic size 2
} *A; // dynamic size 2
#pragma acc data copy(2[0:2])
Host Memory: x[0] | x[1] A[0].x | A[1] .x x[0] | x[1]
Device Memory:| | x[0] | x[1] dA[0] .x|dA[1l] .x x[0] | x[1]]

[Deep Copy r \—/ _/

Transferring user defined types

e MPI
e MPI_Type_ contiguous()
e MPI_Type_vector()
e MPI_Type_indexed()
e Object serialization
e Write structures to storage and reload later
e Supported in many languages
e OpenACC
o API
e Directives

e “Deep copy”

COMPUTE | STORE | ANALYZE

May 14 Cray Inc. CUG2014

May 14

struct Deep {
Int size;
double scalar;
double* A; /* A[O:size] */
double* B; /* B[O:size] */
I

COMPUTE |

STORE

Cray Inc. CUG2014

ANALYZE

Manual deep copy example =AYy

void deep_copy(struct Deep* P, intn) { ®
inti,j;
struct Deep *dP;
double *dA, *dB;
[* enter copyin(P[O:n]) */
dP =acc_copyin(P, sizeof(struct Deep)*n);
for (i=0; 1 <n; ++i){
dA = acc_copyin(P[i].A, P[i].size*sizeof(double));
acc_memcpy_to_device(&dP[i].A, &dA, sizeof(double*));
dB =acc_copyin(P[i].B, PJi].size*sizeof(double));
acc_memcpy_to_device(&dP[i].B, &dB, sizeof(double*));
}

/* P is available for use on device */

[* exit copyout(P[O:n]) */
for (1=0; i<n; ++i) {
acc_update_self(&PJi].scalar, sizeof(double));
acc_copyout(PJ[i].A, P[i].size* sizeof(double));
acc_copyout(PJi].B, P[i].size* sizeof(double));
}

acc_delete(P, sizeof(struct Deep)*n);

}

Language complications o

e Fortran allocatable and pointer members .
e Self-describing
e Compiler can calculate their shape at runtime
e Opague types
e Difficult to use manual deep copy, pointer hidden
e C/C++ pointers
e Compiler has no way to calculate their shape
e User can easily manipulate since it's a basic type

e Solution

e Allow user to provide shaping information for C/C++ pointer members
e Directives allow compiler to manage dope vectors during transfer

COMPUTE | STORE | ANALYZE

May 14 Cray Inc. CUG2014 @

Full deep-copy

AN

AN

{

(a) Host memory

{

(b) Device memory

Selective member deep-copy ‘

AN

£\

(a) Host memory (b) Device memory

Selective direction deep-copy Qi
)
P /? 1?21?2170 7 PN /> >|>|>1>|> P /
? z“\..?????? ? z“\..?????? ? z“\..<<<<<<
(a) Deep create (b) Selective copyin (c) Selective copyout

e This Is an optimization
e Users can transfer everything in and out

e This Is aconvenience
e Users can do this with deep create and selective update

Mutable deep-copy S

Top down: \

S ST~ S

(a) Selective deep-copy (b) Attach to parent (c) Detach from parent

Bottom up:

el e
~~ -

(a) Copy sub-objects (b) Attach to children (c) Attach to children
)

| ocal Directive <

struct Deep ({
int size;
double scalar;
double* A; /* A[O:size] */
double* B; /* B[0O:size] */
}*p;
// copy n elements of p and size elements of A and B for each p
#pragma acc data copy(p[0:n]::{ copy(A[O:size], B[O:size]) }
// copyin p and B, copyout A
#pragma acc data copyin(p[0:n])::{copyout(A[O:size]),
copyin (B[O:size])}
// copy p, copy A, leave B as shallow copy
#pragma acc data copy(p[0:n])::{ copy(A[O:size]) }
// verify presence of p, copy and attach B, leave A unchanged
#pragma acc data present(p[0:n])::{ copy(B[O:size])}

Global Policies

struct Deep
«. // same

#pragma
#pragma
#pragma
#pragma
#pragma
}i

acc
accC
accC
acc
acc

// Use deep

#pragma

// Use sel dir policy to copyin p,
#pragma acc data copyin(sel dir
// Use sel mem policy to copyin p,
#pragma acc data copyin(sel mem :
// Use mut copy policy to attach B
#pragma acc data present(mut copy

acc

{

as last slide

policy(shape) shape(A[0O:size], B[0O:size])
policy("deep'") inherit (¥*)
policy("sel dir") copyout(A[*]) copyin(B[*])

policy("sel mem") copy(A[*])
policy ("mut copy") copy(B[*])

policy to copy p, copy A and B

: pl[0:n])
copyout A and copyin B

: pl[0:n])
copy A

p[0:n])
to existing p

: p[0:n])

data copy(deep

Implicit policies, template o

template<typename T>
class my vector ({
private:

T* begin;

T* end data;

T* end storage;
public:

// Shape begin to size of active elements, others are aliases
#pragma acc policy(shape) \
shape(begin[0:(((end data - begin)/sizeof(T)) - 1)])

// Create implicit data policy using begin shape policy
#pragma acc policy(data) inherit(_begin[*])

present(end data[@ begin])

present(end storage[@ begin])
// Create implicit update policy using begin shape policy
#pragma acc policy(update) update(begin[*]) \

maintain(end data, _end storage)

~ -~

};
O,

Implicit policies, use template o

class Data {
private:
my vector<double> A;
my vector<double> B;
my vector<int> C;
my vector<int> Other;
// Crate shape policy using shape from template
// for A, B and C, other is forced shallow
#pragma acc policy(shape) shallow(Other)
// Create data policy using template data policy and shape
#pragma acc policy(data) inherit (*)
// Create update policy using template update policy
#pragma acc policy(update) update (*)
};

®
CcCRAaNY

Implicit policies, use template and class .

® o

-

// Example 1

my vector<double> vecl, vec2;

// implicit policies let my vector be treated
// like a simple variable

#pragma acc data copyin(vecl) copy(vec2)
#pragma acc update self(vecl)

//Example 2

Data datl;

// equivalent to copy(datl)::{ copy(A,B,C) }

#pragma acc data copy(datl)

// override policy when you need to,

// copyin(B) don't copy A, copy (C)

#pragma acc data copyin(datl)::{ shallow(A) copy(C) }

\

Complications and future work

e Modifying pointers in data regions

e Allocation/deallocation on the device
e Polymorphic objects

e Function pointers

e C++ “this->” shallow or deep?

e C++templates

e elcC.

g
- : cRAY |
Legal Disclaimer SOON
Information in this document is provided in connection with Cray Inc. products. No license, express or * \ y

implied, to any intellectual property rights is granted by this document.
Cray Inc. may make changes to specifications and product descriptions at any time, without notice. \

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray Inc.: ACE,
APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI,
NODEKARE, THREADSTORM. The following system family marks, and associated model number marks,
are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

Copyright 2013 Cray Inc.

