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Topics :

e What is this “transferring user define types thing” .
e EXisting solutions

e Deep copy capabilities

e Directive based solutions

e Complications and future work



Disjoint data-structure challenges

e Non-contiguous transfers
e Pointer translation

struct {
int *x; // dynamic size 2
} *A; // dynamic size 2

#pragma acc data copy( A[O:

2] )

[ Shallow Copy

Host Memory:

A[l] .x

Device Memory:

dA[O] .x

dA[l] .x
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Disjoint data-structure challenges o
* \
e Non-contiguous transfers
e Pointer translation
struct {
int *x; // dynamic size 2
} *A; // dynamic size 2
#pragma acc data copy( 2[0:2] )
Host Memory: x[0] | x[1] A[0].x | A[1] .x x[0] | x[1]
Device Memory:| | x[0] | x[1] dA[0] .x|dA[1l] .x x[0] | x[1] ]

[ Deep Copy r \—/ \_/




Transferring user defined types

e MPI
e MPI_Type_ contiguous()
e MPI_Type_vector()
e MPI_Type_indexed()
e Object serialization
e Write structures to storage and reload later
e Supported in many languages
e OpenACC
o API
e Directives

e “Deep copy”
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struct Deep {
Int size;
double scalar;
double* A; /* A[O:size] */
double* B; /* B[O:size] */
I
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Manual deep copy example =AYy

void deep_copy( struct Deep* P, intn) { ®
inti,j;
struct Deep *dP;
double *dA, *dB;
[* enter copyin( P[O:n] ) */
dP =acc_copyin( P, sizeof( struct Deep)*n );
for (i=0; 1 <n; ++i){
dA = acc_copyin( P[i].A, P[i].size*sizeof( double));
acc_memcpy_to_device( &dP[i].A, &dA, sizeof( double*));
dB =acc_copyin(P[i].B, PJi].size*sizeof( double));
acc_memcpy_to_device( &dP[i].B, &dB, sizeof( double*));
}

/* P is available for use on device */

[* exit copyout( P[O:n] ) */
for (1=0; i<n; ++i) {
acc_update_self( &PJi].scalar, sizeof(double) );
acc_copyout( PJ[i].A, P[i].size* sizeof(double) );
acc_copyout( PJi].B, P[i].size* sizeof(double) );
}

acc_delete( P, sizeof( struct Deep )*n );

}



Language complications o

e Fortran allocatable and pointer members .
e Self-describing
e Compiler can calculate their shape at runtime
e Opague types
e Difficult to use manual deep copy, pointer hidden
e C/C++ pointers
e Compiler has no way to calculate their shape
e User can easily manipulate since it's a basic type

e Solution

e Allow user to provide shaping information for C/C++ pointer members
e Directives allow compiler to manage dope vectors during transfer

COMPUTE | STORE | ANALYZE

May 14 Cray Inc. CUG2014 @



Full deep-copy
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(a) Host memory

{

(b) Device memory



Selective member deep-copy ‘
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(a) Host memory (b) Device memory



Selective direction deep-copy Qi
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(a) Deep create (b) Selective copyin (c) Selective copyout

e This Is an optimization
e Users can transfer everything in and out

e This Is aconvenience
e Users can do this with deep create and selective update



Mutable deep-copy S

Top down: \

S ST~ S

(a) Selective deep-copy (b) Attach to parent (c) Detach from parent

Bottom up:

el e
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(a) Copy sub-objects (b) Attach to children (c) Attach to children
)



| ocal Directive <

struct Deep ({
int size;
double scalar;
double* A; /* A[O:size] */
double* B; /* B[0O:size] */
}*p;
// copy n elements of p and size elements of A and B for each p
#pragma acc data copy( p[0:n]::{ copy( A[O:size], B[O:size] ) }
// copyin p and B, copyout A
#pragma acc data copyin( p[0:n])::{copyout( A[O:size] ),
copyin ( B[O:size] )}
// copy p, copy A, leave B as shallow copy
#pragma acc data copy( p[0:n] )::{ copy( A[O:size] ) }
// verify presence of p, copy and attach B, leave A unchanged
#pragma acc data present( p[0:n] )::{ copy( B[O:size] )}



Global Policies

struct Deep
«. // same

#pragma
#pragma
#pragma
#pragma
#pragma
}i

acc
accC
accC
acc
acc

// Use deep

#pragma

// Use sel dir policy to copyin p,
#pragma acc data copyin( sel dir
// Use sel mem policy to copyin p,
#pragma acc data copyin( sel mem :
// Use mut copy policy to attach B
#pragma acc data present( mut copy

acc

{

as last slide

policy( shape ) shape( A[0O:size], B[0O:size] )
policy("deep'") inherit (¥*)
policy("sel dir") copyout( A[*] ) copyin( B[*] )

policy("sel mem") copy( A[*] )
policy ("mut copy") copy( B[*] )

policy to copy p, copy A and B

: pl[0:n] )
copyout A and copyin B

: pl[0:n] )
copy A

p[0:n] )
to existing p

: p[0:n] )

data copy( deep



Implicit policies, template o

template<typename T>
class my vector ({
private:

T* begin;

T* end data;

T* end storage;
public:

// Shape begin to size of active elements, others are aliases
#pragma acc policy( shape ) \
shape( begin[0:((( end data - begin)/sizeof(T)) - 1)] )

// Create implicit data policy using begin shape policy
#pragma acc policy( data ) inherit( _begin[*] )

present( end data[@ begin] )

present( end storage[@ begin] )
// Create implicit update policy using begin shape policy
#pragma acc policy(update) update( begin[*] ) \

maintain( end data, _end storage )

~ -~

};
O,



Implicit policies, use template o

class Data {
private:
my vector<double> A;
my vector<double> B;
my vector<int> C;
my vector<int> Other;
// Crate shape policy using shape from template
// for A, B and C, other is forced shallow
#pragma acc policy( shape ) shallow( Other )
// Create data policy using template data policy and shape
#pragma acc policy( data ) inherit (*)
// Create update policy using template update policy
#pragma acc policy( update ) update (*)
};
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Implicit policies, use template and class .

® o

-

// Example 1

my vector<double> vecl, vec2;

// implicit policies let my vector be treated
// like a simple variable

#pragma acc data copyin( vecl ) copy( vec2 )
#pragma acc update self( vecl )

//Example 2

Data datl;

// equivalent to copy( datl )::{ copy(A,B,C) }

#pragma acc data copy( datl )

// override policy when you need to,

// copyin(B) don't copy A, copy (C)

#pragma acc data copyin( datl )::{ shallow(A) copy(C) }

\



Complications and future work

e Modifying pointers in data regions

e Allocation/deallocation on the device
e Polymorphic objects

e Function pointers

e C++ “this->” shallow or deep?

e C++templates

e elcC.
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