
Transferring user-defined types in OpenACC

James Beyer, David Oehmke, Jeff Sandoval
Cray, Inc.

Saint Paul, USA
(beyerj|doehmke|sandoval)@cray.com

Abstract—A preeminent problem blocking the adoption of
OpenACC by many programmers is support for user-defined
types: classes and structures in C/C++ and derived types in
Fortran. This problem is particularly challenging for data
structures that involve pointer indirection, since transferring
these data structures between the disjoint host and accelerator
memories found on most modern accelerators requires deep-
copy semantics. This paper will look at the mechanisms
available in OpenACC 2.0 to allow the programmer to design
transfer routines for OpenACC programs. Once these mecha-
nisms have been explored, a new directive-based solution will be
presented. Code examples will be used to compare the current
state-of-the-art and the new proposed solution.

Keywords-OpenACC; user-defined types; accelerators; com-
piler directives; heterogeneous programming

I. INTRODUCTION

A preeminent problem blocking the adoption of Open-
ACC by many programmers is support for user-defined
types: classes and structures in C/C++ and derived types in
Fortran. User-defined types are an important part of many
user applications; for example, in C and C++ something
as simple as a complex number is really a structure of
two floats. This problem is particularly challenging for data
structures that involve pointer indirection, since transferring
these data structures between the disjoint host and acceler-
ator memories found on most modern accelerators requires
deep-copy semantics. Unfortunately, the current OpenACC
specification only allows for shaping the top-level of an
array; there is no mechanism for shaping a pointer inside of
a structure. This problem is manageable for Fortran, where
most objects are self-describing, but unavoidable for C and
C++, where all pointers are unshaped.

There are really only two solutions to this problem
available in OpenACC 2.0 [1]: (1) refactor the code to stop
using pointers in structures (i.e. use arrays of structures to
replace structures of arrays) and (2) use an API to move the
objects to the device.

The second solution is preferable because it affects only
code that performs data transfers rather than all code that
makes use of the user-defined type. This paper will look
at the mechanisms available in OpenACC 2.0 to allow
the programmer to design transfer routines for OpenACC
programs. Using a simple example we will show that this
approach requires writing large amounts of low-level code
to manage device memory, which defeats the goal of a

high-level directive-based programming model. In fact, the
resulting code is very similar to that required when writing
a CUDA program [2]. For OpenACC, these details should
instead be handled by the compiler.

The Cray compiler provides a deep-copy command line
option for Fortran [3]. However, experience has shown that
users often have extremely large data sets contained in their
derived types and only want to transfer the parts that they
need for a given kernel. As a result, this paper will present a
more flexible directive-based solution. Code examples will
be used to compare the current state-of-the-art and the new
proposed solution. The directives we propose provide a
mechanism to shape an array contained inside of a structure,
which will bring C and C++ programs to the same level
as Fortran concerning deep copies. This same mechanism
can also be used to limit which parts of a user defined
object are transferred, avoiding the all-or-nothing problem
encountered with the Cray deep- copy option. Along with
elegantly solving the shaping problem, this mechanism also
reduces the level of difficulty for the programmer since they
only need to express the shape of a pointer rather than
program how to move the memory behind the pointer.

II. BACKGROUND AND PROBLEM

OpenACC has limited support for user-defined types: a
variable of user-defined type must be a flat object – that
is, it may not contain pointer indirection (including Fortran
allocatable members). This restriction simplifies implemen-
tations, ensuring that all variables are identical on both host
and device and may be transferred as contiguous blocks
of memory. However, feedback from the OpenACC user
community indicates that this restriction is a significant
impediment to porting interesting data structures and algo-
rithms to OpenACC. This section describes the challenges
to relaxing this restriction.

Variables and data structures that contains pure data are
interpreted the same on the host and device – therefore,
an implementation may transfer such a variable to and
from device memory as a simple memory transfer, without
regard for the contents of that block of memory.1 On

1Although it is technically possible for a host and device to interpret
pure data differently, architectures that follow common conventions and
standards (e.g., equivalent endianness, two’s complement and IEEE floating
point) are compatible.

Host Memory:

Device Memory:

Shallow Copy

dA[0].x dA[1].x

A[0].x A[1].x x[0] x[1] x[0] x[1]

struct {

 int *x; // dynamic size 2

} *A; // dynamic size 2

#pragma acc data copy(A[0:2])

Figure 1. Shallow copy

the other hand, data structures that contain pointers are
interpreted differently on the host and device. A host pointer
targets a location in host memory and a device pointer
targets a location in device memory; either pointer may
be legally dereferenced only on its corresponding device.2

If an implementation transfers a data structure using a
simple transfer, then pointers in that data structure will
refer to invalid locations – this transfer policy is referred
to as shallow copy, which is illustrated in Figure 1. For
comparison, shallow copy is acceptable for shared-memory
programming models like OpenMP because it is always
legal to dereference a pointer (although shallow-copy does
imply that the target of member pointers will be shared
among all copies). In contrast, shallow copy is less useful
in OpenACC because dereferencing the resulting pointer
may not be legal. Instead, users often require deep-copy
semantics, as illustrated in Figure 2, where every object in a
data structure is transferred. Deep copy requires recursively
traversing pointer members in a data structure, transferring
all disjoint memory locations, and translating the pointers
to refer to the appropriate device location. This technique is
also known as object serialization or marshalling, which is
commonly used for sending complex data structures across
networks or writing them to disk. For example, Cray’s first
deep-copy prototype implementation was inspired by MPI,
which has basic support for describing the layout of user-
defined data types and sending user-defined objects between
ranks [4].

A Fortran compiler could automatically perform deep
copy, since Fortran pointers are self-describing dope vectors.
In fact, deep copy is the language-specified behavior for
intrinsic assignment to a derived type containing allocatable
members. Unfortunately, a C/C++ compiler cannot automat-
ically perform deep copy, since C/C++ pointers are raw
pointers that do not contain shape information. Further, even
for self-describing dope-vectors in Fortran, a user may desire

2Pointers are functionally equivalent if a host and device share common
memory. Even so, dereferencing such a non-local pointer will likely affect
performance due to memory locality; thus, on these devices it may still be
desirable to physically transfer memory targeted by pointers.

Host Memory:

Device Memory:

A[0].x A[1].x x[0] x[1] x[0] x[1]

dA[0].x dA[1].x x[0] x[1] x[0] x[1]

Deep Copy

struct {

 int *x; // dynamic size 2

} *A; // dynamic size 2

#pragma acc data copy(A[0:2])

Figure 2. Deep copy

to copy only some subset of deep members. Addressing
these problems requires additional information from the
programmer.

Finally, throughout the paper we will distinguish between
two types of members for user-defined types: direct members
and indirect members. Direct members store their contents
directly in the contiguous memory of the user-defined type.
A scalar or statically-sized array member is a direct member.
In contrast, indirect members store their contents outside of
the contiguous memory of the user-defined type, where it
is accessed through pointer indirection. Thus, an indirect
member always has a corresponding direct member that
stores the address or access mechanism of the indirect
part. For example, a pointer member in C/C++ is a direct
member, but the target of the pointer is an indirect member.
In Fortran, an allocatable member is an indirect member,
but the underlying dope vector for the allocatable data is a
direct member. Since direct members are contained directly
in an object, they are automatically transferred as part of that
object. But indirect members are not contained directly in
an object, and thus require deep-copy semantics to correctly
transfer them.

A. Desired capabilities

There are several distinct capabilities that we can attempt
to offer users to improve support for user-defined types with
indirect members. These techniques are all various forms of
deep-copy, where every sub-object on the device must be
accessible through a chain of parent objects originating at a
single base object – this ensures that addressing calculations
and access mechanisms are identical for both host and
device code. Additionally, these techniques all assume that
individual objects are transferred in whole and have an
identical layout in both host and device memory.

Member shapes: Allowing users to explicitly shape
member pointers puts C/C++ on the same footing as Fortran:
pointers become self describing. This first step is important
because it makes automatic deep-copy possible. However,
member shapes aren’t useful alone, since they don’t imply
allocation or transfer – instead, they must be used with other

(a) Host memory (b) Device memory

Figure 3. Full deep copy

data clauses to achieve deep-copy semantics.
In most cases, member shapes should be global properties

of a user-defined type, accessible to all data regions that
transfer objects of that type. However, member shapes could
certainly be defined as a local property, only affecting data
regions at the same program scope.

Full deep-copy: With self-describing dope-vectors in
Fortran and user-supplied shape declarations in C/C++, an
implementation can automatically perform deep copy for
user-defined types with indirect members. This approach
is known as full deep-copy, since it results in a complete
duplication of a host data structure in device memory.
Figure 3 shows a full deep copy from (a) host memory to
(b) device memory – the entire data structure is replicated.

In contrast to shallow copy, which only requires repli-
cating an individual object, deep copy requires replicating
all sub-objects in a data structure that are accessible from
a common base object. Deep copy also requires replicating
all object-to-object pointer relationships, which is done by
initializing pointer members in the replicated objects.

Although we describe deep-copy in terms of copy-clause
behavior, the concept is applicable to all of the data clauses.
Deep create replicates all objects in a data structure,
but the data members need not be initialized. However,
unlike shallow create, where no transfer is required, deep
create requires transfers to properly initialize member
pointers. Deep free deallocates all objects in a data struc-
ture and deep update updates all objects in a data structure.
Finally, deep copyin and deep copyout can be described
as combinations of deep create, deep update and deep
free.

The present clause could imply either shallow or deep
semantics. Shallow present implies a present check only
for the top-level object in a data structure – it is programmer
responsibility to ensure that all required sub-objects are also
present and properly accessible through member pointers.
On the other hand, deep present implies a present check
for all objects in a data structure. However, presence alone
does not indicate that a data structure is available for use –
object-to-object member pointers must also be properly con-

(a) Host memory (b) Device memory

Figure 4. Selective member deep copy

figured. Ensuring that these pointer relationships are valid
could be handled by the programmer or the implementation.
In either case, member pointers must be properly initialized
for the data structure to be usable as expected.

Full deep-copy is most appropriate for user-defined types
that represent indivisible collections of members, commonly
seen in pure object-oriented programming styles. Such an
object is only useful when all or most of its members are
available. In this case, full deep-copy can create a complete
clone of the object, rendering that object fully usable on
the device. As an example, support for member shapes and
full deep-copy would make it possible to provide OpenACC-
aware versions of the common C++ STL containers.

Selective members: Full deep-copy is not appropriate
for user-defined types that are used for coarse-grained or-
ganizational purposes. These objects are rarely treated as
single entities, but instead various subsets of the members
are used in different contexts. In this case, it is very
inefficient to make a complete clone of the object, since
many or most of the members are not needed at one time.
Instead, it is preferable to allow users to select different
members to include and exclude in different data regions, a
capability that we refer to as selective member deep-copy.
This capability requires a mechanism for specifying different
deep-copy policies based on context.

Selective member deep-copy differs from full deep-copy
in that some pointers in a host data structure will not be
traversed during a transfer, instead leaving invalid pointers
in the device data structure. Of course, a user request-
ing selective deep-copy is responsible for only accessing
members that are transferred – accessing a member that is
not transferred is considered a programmer error, just like
accessing an out-of-bounds value. Figure 4 shows selective
member deep-copy, where the greyed-out objects are not
transferred to device memory. Selective member deep-copy
saves device memory and transfer bandwidth by skipping
some sub-objects that are not referenced on the device. How-
ever, every present sub-object must be accessible through a
chain of objects originating at a single base object – this
ensures that addressing calculations and access mechanisms

?

?

?

?

?

? ? ? ? ? ?

? ? ? ? ? ?

(a) Deep create

?

?

?

?

?

> > > > > >

? ? ? ? ? ?

(b) Selective copyin

?

?

?

?

?
< < < < < <

(c) Selective copyout

Figure 5. Selective direction deep copy

are identical for both host and device code.
Selective member deep-copy in an inherently local op-

eration, since different contexts in a program may require
different deep-copy behaviors. This differentiation can be
achieved in various ways, however. One possible solution
is to use local member shapes to shape member pointers
differently in different contexts. This requires a means of
canceling or overriding any global member shapes that may
be visible. Another possible solution is to allow global
named policies to be declared for a particular user-defined
type. Then different contexts may request policies for the
user-defined type. Ultimately, the end result is the same for
both solutions – a data structure is partially replicated in
device memory.

Selective directionality: For scalars and arrays of prim-
itive type, a single data-clause behavior (e.g., create,
copyin, copyout, etc.) is usually sufficient for an entire
object. However, because user-defined types are a collection
of individual members, it is reasonable to expect that dif-
ferent members will require different data-clause behavior.
For example, consider an object where one member is
read-only and another is write-only. Transferring this entire
object with a copy clause is functionally sufficient, but
using a copyin clause for the read-only member and a
copyout clause the write-only member could significantly
reduce transfer bandwidth. As a result, it may be useful
to provide mechanisms for specifying different members in
different data clauses. We refer to this as selective direction
deep-copy, since different members will transfer in different
directions.

Conceptually, selective direction deep-copy is a multi-step
process3, as illustrated in Figure 5. First, a data structure
is allocated on the device with deep-create semantics,
only initializing the required pointers and leaving all other
elements uninitialized. This step is shown in Figure 5a, with
“?” labels indicating uninitialized data. Next, the copyin
sub-objects are transferred to device memory, shown in
Figure 5b with > labels. Then, at the end of the data

3In practice, the steps at the start the data region can be merged into a
single operation, as can the steps at the end of the data region.

region the copyout sub-objects are transferred back to
host memory, shown Figure 5c with < labels. Only the
parts of the data structure that are used on the device
need to be initialized or transferred – other than for active
pointer members, the two parent objects remain uninitialized
throughout the data region.

Note that selective directionality is not required for func-
tionality. A user can always use the data-clause behavior that
satisfies all references to all members and sub-objects. For
example, using a copy clause is sufficient for a user-defined
object that has one read-only member and another write-only
member. However, this approach is coarse grained and may
issue unnecessary transfers in both directions.

Moreover, note that selective directionality can always be
achieved through update directives. Accomplishing this
requires two steps: (1) issue a deep create to allocate an
uninitialized clone of a data structure and (2) issue individual
update directives to move specific members in the desired
direction. When the data structure is no longer needed it will
be deep deallocated. The only caveat with using update
directives is that they are unconditional, so using them with
a present_or_create clause can be awkward.

Mutable deep-copy: Even with selective member and
direction, deep copy treats a user-defined object as a single
entity, particularly with respect to allocation and dealloca-
tion. That is, a base object and all required sub-objects are
allocated and deallocated at the same time – the composition
of a data structure is immutable throughout its lifetime.
However, there may be times when a user does not want
to assemble or disassemble a data structure in a single step;
instead, they may want to assemble or disassemble it over a
period of time, using a series of distinct steps. For example,
a data structure may be so large that only a subset of its
members fit in device memory at one time. A user may
want to copy one group of sub-objects for one part of a data
region and another group of sub-objects for another part of
the same data region, all while leaving a third group of sub-
objects on the device for the entire data region. Because it
allows modifying the composition of a data structure during
its lifetime, we call this capability mutable deep-copy.

(a) Selective member deep-copy (b) Attach to parent (c) Detach from parent

Figure 6. Top-down mutable deep-copy

Mutable deep-copy allows a user to attach objects to and
detach them from one another, independently of allocating
or transferring those objects. That is, an object may attach
to an existing parent object or an existing sub-object. This
capability differs from other deep-copy capabilities, which
require the composition of a data structure remain fixed
throughout a data region.

Pointer translation for mutable deep-copy can be either
top-down or bottom-up. Top-down translation occurs when
an object is attached to its existing parent object – this
paradigm allows a user to assemble a data structure in a
top-down manner. Figure 6 illustrates a three-step top-down
mutable deep-copy. First, selective deep-copy transfers a
base object and a sub-object; then, another sub-object is
attached to that data structure; finally, that sub-object is
detached from the data structure, leaving only the original
base object and single sub-object. In contrast, bottom-up
translation occurs when an object is attached to its existing
sub-objects – this paradigm allows a user to assemble a
data structure in a bottom-up manner. Figure 7 illustrates
bottom-up mutable deep-copy. First, a set of sub-objects are
transferred to the device, independent of their parent objects.
Next, another set of sub-objects are transferred to the device,
some of which attach to other existing sub-objects. Finally,
the top-level base object is transferred to the device and
attaches to existing sub-objects.

B. Data layout
Programmers often misunderstand the distinction between

direct and indirect members. For example, they don’t always
realize that direct members are automatically included when
transferring an object of user-defined type. Instead, they
sometimes want to selectively transfer a subset of direct
members of a user-defined type, a capability that at first
glance appears very similar to selective-member deep-copy.
But beneath the surface they are vastly different capabilities.

Because a direct member is contained directly in the
contiguous memory of a user-defined type, it is always
accessed at a fixed offset from the start of an object. If
direct members were allowed to be placed on the device

selectively, then any missing direct members would skew the
offsets for subsequent members. We refer to this capability
as data layout.

Changing the data layout of a variable essentially changes
the type of that variable, since it removes some members
and affects the offsets and addressing calculations for the
remaining members. Although not impossible, supporting
data layout for anything more than simple cases is difficult
and beyond the scope of this paper.

On the other hand, deep-copy applies to indirect members.
Every object and sub-object involved in a deep-copy oper-
ation is transferred in whole, including all direct members.
This preserves equivalent offsets and address calculations
between host and device. Selective-member deep-copy sim-
ply makes some indirect members unavailable, but the cor-
responding direct member (i.e., the pointer) is still available,
even if it may not be legally dereferenced.

The primary motivation for data layout is for large user-
defined types, containing many large direct members. If
only a small fraction of those members are needed on the
device, then programmers would prefer to save the memory
and bandwidth that allocating and transferring them would
consume. Although the memory cannot be saved without
data layout, the transfer bandwidth can be. For example,
an object can always be allocated in full but selectively
transferred, allowing the programmer to reduce transfer
bandwidth by skipping members that are not needed.

C. Motivation

After the completion of OpenACC 2.0, the dominant user
request heard by the OpenACC language committee has
been support for deep copy. This section describes one real-
world example where deep-copy is required for porting an
application to OpenACC.

ICON, a climate code developed by the German Weather
Service (DWD) and the Max Planck Institute for Mete-
orology (MPI-M), uses derived types that must be made
available on the device.

For example, one derived type is t_nh_state, declared
in Figure 8. For CCE, the shallow size of this derived type is

(a) Copy sub-objects (b) Attach to existing children (c) Attach to existing children

Figure 7. Bottom-up mutable deep-copy

TYPE t_nh_state

!array of prognostic states at different timelevels
TYPE(t_nh_prog), ALLOCATABLE :: prog(:) !< shape:

(timelevels)
TYPE(t_var_list), ALLOCATABLE :: prog_list(:) !< shape:

(timelevels)

TYPE(t_nh_diag) :: diag
TYPE(t_var_list) :: diag_list

TYPE(t_nh_ref) :: ref
TYPE(t_var_list) :: ref_list

TYPE(t_nh_metrics) :: metrics
TYPE(t_var_list) :: metrics_list

TYPE(t_var_list), ALLOCATABLE :: tracer_list(:) !< shape
: (timelevels)

END TYPE t_nh_state

Figure 8. ICON data structure

roughly 19KB, but the deep size of this derived type is much
larger because the member metrics contains roughly 84
pointer/allocatable members and the member diag contains
roughly 86 pointer/allocatable members. Moreover, only the
following members are needed on the device at one time:

p_nh_state(:)%metrics%rayleigh_w(:)
p_nh_state(:)%metrics%rayleigh_vn(:)
p_nh_state(:)%diag%vn_ie(:,:,:)
p_nh_state(:)%diag%vt(:,:,:)
p_nh_state(:)%diag%dvn_ie_ubc(:,:)
p_nh_state(:)%diag%e_kinh(:,:,:)
p_nh_state(:)%diag%w_concorr_c(:,:,:)
p_nh_state(:)%prog(:)%vn(:,:,:)

Because a relatively small number of pointer/allocatable
members are actually referenced on the device, this data
structure is a poor candidate for full deep copy – OpenACC
developers of this code agree with this assessment. However,
selective deep-copy may be a viable option. All of the mem-
bers referenced represent a single level of indirection except
for p_nh_state(:)%prog(:)%vn(:,:,:), which represents a se-
lective deep copy of derived type type(t_nh_prog). This size
of this type is roughly 1KB per element, plus the additional
selective deep copy of member vn. Selective directionality

could be helpful for this code, since some members are read-
only and others are read-write.

Additionally, this data structure contains many conve-
nience pointers, which are designed to alias other members
in the data structure. This aliasing introduces an ordering
complexity, since the aliases must be processed after the
members to which the aliases point. Section IV-A1 describes
a solution to this problem.

Finally, the ICON data structure contains embedded
linked lists. Fortunately, the developers indicate that these
linked lists are not currently needed on the device, since
they are only used for I/O. Even so, it is likely that
other applications will require transferring recursive data
structures to an accelerator, so it is prudent to keep this
use-case in mind when designing deep-copy support.

III. EXISTING SOLUTIONS

A. Refactoring

The most basic way a programmer can avoid deep-copy
related problems with OpenACC is to rewrite their applica-
tion to not require it. For example, user-defined types with
pointer members would need to be converted to equivalent
user-defined types with statically-sized arrays. This approach
of restructuring and packing a data structure is often used
by CUDA programmers to reduce transfer costs for data
structures used on the device.

However, porting an application to CUDA requires rewrit-
ing it. Given such a large effort, the additional incremental
effort to rewrite the data structures at the same time is small.
In contrast, porting an application to OpenACC only requires
adding directives. In this case, the additional incremental
effort to rewrite the data structures is much larger. Thus,
refactoring an application to avoid deep-copy is an undesir-
able solution.

B. API

OpenACC 2.0 introduced a function API that provides
low-level data transfer functions [1]. A programmer can
use these functions to perform deep copy manually [5].

struct Deep {
int size;
double scalar;
double* A; /* A[0:size] */
double* B; /* B[0:size] */
};

void deep_copy(struct Deep* P, int n) {
int i,j;
struct Deep* dP;
double* dA;
double* dB;

/* enter copyin(P[0:n]) */
dP = acc_copyin(P, sizeof(struct Deep)*n);
for (i=0; i<n; ++i) {
/* copyin P[i].A[0:P[i].size] */
dA = acc_copyin(P[i].A, P[i].size*sizeof(double));
/* update dP[i].A to point to device copy */
acc_memcpy_to_device(&dP[i].A, &dA, sizeof(double*));
/* copyin P[i].B[0:P[i].size] */
dB = acc_copyin(P[i].B, P[i].size*sizeof(double));
/* update dP[i].B to point to device copy */
acc_memcpy_to_device(&dP[i].B, &dB, sizeof(double*));

}

/* P is available for use on device */

/* exit copyout(P[0:n]) */
for (i=0; i<n; ++i) {
/* update P[i].scalar (if necessary) */
acc_update_self(&P[i].scalar, sizeof(double));
/* copyout P[i].A[0:P[i].size] */
acc_copyout(P[i].A, P[i].size*sizeof(double));
/* copyout P[i].B[0:P[i].size] */
acc_copyout(P[i].B, P[i].size*sizeof(double));

}
/* delete P[0:n] */
/*
* We can’t copyout because pointers A and B have been

* changed to point to device memory in the device copy.

* If we copy the entire structure back to the host we

* will overwrite the host pointers.

*/
acc_delete(P, sizeof(struct Deep)*n);
}

Figure 9. Full manual deep-copy

Figure 9 shows how to manually achieve full deep-copy
for a struct containing two pointer members that are shaped
by another integer member. The code follows a top-down
strategy, first copying the top-level objects. Then, for each
second-level sub-object it copies the sub-object and fixes the
device pointer in the device copy (since the member pointers
in the top-level objects contain host pointers). The pointer
fix-up is just a small transfer to move the device pointer
into the appropriate location in the device copy of the data
structure.

The copyout operation is accomplished in a manner
similar to the copyin operation, but the order is reversed
to use a bottom-up strategy. The second-level sub-objects
are transferred back to the host and deleted. Then, the top-
level objects are transferred back to the host, taking care to
avoid overwriting a host pointer with a device pointer – the
non-pointer members must be transferred, while the pointer
members must be skipped (or reverse-translated from device
addresses to host addresses). In general, implementing any of

struct Deep {
int size;
double scalar;
double* A; /* A[0:size] */
double* B; /* B[0:size] */
};

void selective_direction(struct Deep* P, int n) {
int i,j;
struct Deep* dP;
double* dA;
double* dB;

/* enter copyin(P[0:n], P[0:n].B[]) create(P[0:n].A[]) */
dP = acc_copyin(P, sizeof(struct Deep)*n);
for (i=0; i<n; ++i) {
/* create P[i].A[0:P[i].size] */
dA = acc_create(P[i].A, P[i].size*sizeof(double));
/* update dP[i].A to point to device copy */
acc_memcpy_to_device(&dP[i].A, &dA, sizeof(double*));
/* copyin P[i].B[0:P[i].size] */
dB = acc_copyin(P[i].B, P[i].size*sizeof(double));
/* update dP[i].B to point to device copy */
acc_memcpy_to_device(&dP[i].B, &dB, sizeof(double*));

}

/* P is available for use on device */
/* P[:].A[:] = P[:].B[:]*P[:].scalar */

/* exit delete(P[0:n], P[0:n].B[]) copyout(P[0:n].A[]) */
for (i=0; i<n; ++i) {
/* copyout P[i].A[0:P[i].size] */
acc_copyout(P[i].A, P[i].size*sizeof(double));
/* delete P[i].B[0:P[i].size] */
acc_delete(P[i].B, P[i].size*sizeof(double));

}
/* delete P[0:n] */
/* can’t copyout because pointers A and B

are changed on device */
acc_delete(P, sizeof(struct Deep)*n);
}

Figure 10. Selective-direction manual deep-copy

the other data clauses or update directives follows the same
pattern as described for this example, but requires writing
slightly different code for each operation.

Figure 10 shows how to manually achieve selective-
direction deep-copy for the same struct used in Figure 9. Just
like that example, the code employs a top-down strategy at
the start of the logical data region and a bottom-up strategy
at the end of it. First, it performs a copyin operation on
the top-level objects. Then, it either performs a create or
copyin operation on the second-level objects, depending
on how those objects are used on the device. Since member A
is computed on the device it doesn’t need to be transferred to
device memory. But, member B is read-only on the device,
so it must be allocated and transferred. However, in both
cases the pointer members in the top-level objects still must
be properly initialized.

Again, the copyout process is reversed, following a
bottom-up strategy. This time member A is transferred back
to host memory and deleted, while member B can just be
deleted (since it was not modified). Finally, just like the last
example care must be taken to not overwrite the member
pointers in the top-level host object with device pointers.

struct Deep {
int size;
double scalar;
double* A; /* A[0:size] */
double* B; /* B[0:size] */
};

void selective_member(struct Deep* P, int n) {
int i,j;
struct Deep* dP;
double* dA;

/* enter copyin(P[0:n], P[0:n].A[]) */
dP = acc_copyin(P, sizeof(struct Deep)*n);
for (i=0; i<n; ++i) {
/* copyin P[i].A[0:P[i].size] */
dA = acc_copyin(P[i].A, P[i].size*sizeof(double));
/* update dP[i].A to point to device copy */
acc_memcpy_to_device(&dP[i].A, &dA, sizeof(double*));

}

mutable_copy(P, n);

/* exit delete(P[0:n]) copyout(P[0:n].A[]) */
for (i=0; i<n; ++i) {
/* copyout P[i].A[0:P[i].size] */
acc_copyout(P[i].A, P[i].size*sizeof(double));

}
/* delete P[0:n] */
/* can’t copyout because pointers A and B are changed on

device */
acc_delete(P, sizeof(struct Deep)*n);
}

void mutable_copy(struct Deep* P, int n) {
int i;
struct Deep* dP;
double* dB;

/* enter present(P[0:n]) copyin(P[0:n].B[]) */
dP = acc_deviceptr(P);
for (i=0; i<n; ++i) {
/* copyin P[i].B[0:P[i].size] */
dB = acc_copyin(P[i].B, P[i].size*sizeof(double));
/* update dP[i].B to point to device copy */
acc_memcpy_to_device(&dP[i].B, &dB, sizeof(double*));

}

/* A and B are both now available on the device */

/* exit copyout(P[0:n].B[]) */
for (i=0; i<n; ++i) {
/* copyout P[i].B[0:P[i].size] */
acc_copyout(P[i].B, P[i].size*sizeof(double));
/* restore the pointer on the device to the host version

*/
acc_memcpy_to_device(&dP[i].B, &P[i].B, sizeof(double*))

;
}
}

Figure 11. Mutable manual deep-copy

In this case the top-level object may just be deleted, since
the non-pointer members did not change. Notice how similar
this code looks to that in Figure 9 – the deep-traversal pattern
is the same, while the operations at each step differ.

Finally, figure 11 shows how to manually achieve
selective-member and mutable deep-copy for the same struct
used in the last two examples. This example differs from the
last two in that the composition of the device copy of the
data structure changes throughout the logical data region.

The selective-member copyin functionality is achieved
by performing deep-copy for member A, but shallow-copy
for member B. These steps are reversed for the copyout
operation at the end of the logical data region. For both
cases, the pointer for member B is treated as raw data – the
host pointer is transferred to the device without translation,
and it is not transferred back because it is not modified.

The mutable deep-copy comes from another logical data
region, nested within the outer one. At the start of the inner
region, the top-level object and member A is available. This
data region essentially transfers member B and attaches it
to the top-level object; at the end of the region, it transfers
member B back to the host, detaches it from the top-level
object, and deletes it. It is important for the detachment
operation to restore the member pointer B back to the
original host pointer, to avoid the possibility of transferring
a device pointer back to the host (since the outer data region
did not translate that pointer).

The reader should note that performing manual deep copy
in Fortran is not quite as straightforward as in C/C++,
since performing pointer fix-up requires knowledge about
an implementation’s underlying dope vector. In C/C++,
raw pointers are exposed to the programmer and may be
explicitly re-assigned to point to different memory loca-
tions. As a result, attach and detach operations reduce to
simple pointer assignments of pointers in device memory.
On the other hand, Fortran encapsulates raw pointers in
an opaque, implementation-defined dope-vector that users
cannot modify directly. Further, dope-vector re-association
is only supported for true pointer variables, but not for
allocatable variables.

In summary, the OpenACC 2.0 API makes manual deep-
copy possible for pointer members. But, this solution is
inherently ill-suited to a directive-based programming model
because it requires the user to write significant amounts of
code. That code is tedious and error-prone, involving deep
loop nests, requiring careful address calculations, pointer
assignments, and non-contiguous transfers. The code does
follow a common boilerplate for all cases, but it requires
replication and subtle modification for every distinct data
type, deep-copy policy, and context in which it is in-
voked. Moreover, attempting asynchronous manual deep-
copy would add an additional dimension of complexity,
not to mention that the current API does not provide
the necessarily asynchronous functionality. As a result, we
view manual deep-copy as an undesirable and temporary
workaround for the lack of deep-copy support in OpenACC.

C. Fortran automatic deep-copy

Because pointer indirection in Fortran is encapsulated
in self-describing dope vectors, a Fortran compiler could
automatically perform deep copy. As an extension to the
OpenACC standard, the Cray Fortran compiler in CCE 8.2
provides a deep-copy option that automates all of the work in

transferring derived types with allocatable and pointer mem-
bers [3]. Simply adding the -hacc_model=deep_copy
option enables full deep-copy for pointer and allocatable
members in Fortran derived types (the default option is
-hacc_model=no_deep_copy). Although this feature
is not portable across vendors, it is available today in a
released and supported product.

Automatic deep-copy is very user-friendly, since it doesn’t
require any code changes or directives; but, it has several
drawbacks that limit its usefulness. First, it enables full deep-
copy for all derived types in all contexts – a user has no
means of requesting selective deep-copy, which can result
in wasted device memory and transfer bandwidth. Second,
automatic deep-copy does not support aliasing. This aliasing
limitation is fine for allocatable members, which by defi-
nition cannot alias, but is problematic for pointer members
that alias. Third, and most importantly, automatic deep-copy
only applies to Fortran – it is not possible for C/C++, since
pointer indirection in these languages is accomplished with
raw pointers that do not contain shape information. Moving
beyond these limitations requires additional information
from the programmer.

IV. DIRECTIVE-BASED SOLUTION

There are several key design choices one faces when con-
sidering a directive-based solution for deep copy. Should the
deep-copy behavior be specified locally, explicitly repeated
at each data region that requires deep copy, or should it be
specified once globally, where it applies to every visible data
region? Should deep copy be specified for specific variables,
or should it be specified for all variables of some type?

Specifying a deep-copy behavior globally allows that
behavior to apply consistently throughout a program; but,
it becomes difficult to customize the policy for different
contexts. Specifying deep-copy behavior locally allows dif-
ferent behavior for every context, but achieving a consistent
policy requires duplicating the same deep-copy specification
in many places throughout the program.

Similarly, associating a deep-copy behavior with a par-
ticular user-defined type allows consistent behavior for all
variables of that type, but makes it difficult to customize the
policy for some variables. Associating a deep-copy behavior
with a particular variable allows better customization, but
consistency across variables of the same type now requires
duplicating the same deep-copy specification for multiple
variables.

We opted to strike a balance in these design decisions. To
achieve the most general and expressive syntax, we chose a
relatively low-level, local syntax that applies to specific vari-
ables. But for convenience we provide a higher-level, global
syntax that allows defining reusable policies that apply to
user-defined types. The two forms can be used together,
with local syntax taking precedence over global syntax. This
allows users to define default, global policies that can be

overridden and further customized locally. We believe this
approach offers the best balance between expressiveness and
convenience.

The next two sections describe our proposed local, low-
level syntax and our global policy syntax. Although a full
formal specification of our proposed syntax is beyond the
scope of this paper, we point out key differences with
the existing OpenACC 2.0 specification [1]. Our proposed
changes appear relatively simple, but as our examples will
show they are quite powerful.

A. Low-level, local syntax

The syntax described in this section is the foundation for
our deep-copy solution. It is meant to be general enough to
express all of the capabilities described in Section II-A. We
refer to it as low level because it is meant to be a framework
upon which we can define other higher-level syntaxes that
offer more convenience. But, the higher-level syntaxes can
always be lowered into the low-level, local syntax.

The fundamental idea for the local syntax is to extend
standard data clauses with optional nests of clauses. For a
data clause of the form

clause(var-list)

we extend it to support a nested form

top-clause(var-list)[::{ nest-clause-list }]
where top-clause is an ordinary data clause, var-list is a list
of objects with the same user-defined type, and nest-clause-
list is a list of data clauses applied to members of that user
defined type. Informally, the nesting syntax allows a user
to specify data clauses for the members of a user-defined
type. The nesting generalizes to arbitrary depth, supporting
user-defined types that have members of user-defined type,
and it applies similarly to update directives.

Figure 12 shows how the low-level syntax can express
full deep-copy, selective direction, selective member, and
mutable deep-copy for a user-defined type with two pointer
members. For name resolution, the nest is evaluated as
though it is in the namespace of the user-defined type;
this allows placing pointer members directly in nested data
clauses, and it allows a shape expression to directly reference
other member variables. In this example the user-defined
type contains an integer member that specifies the shape
of the member pointers. When a shaped member pointer
appears in a nest, it implies an attach operation at the start
of the data region and a detach operation at the end of the
data region.

The nested syntax allows specifying the top-level object
and every sub-object in a separate data clause. So, full deep-
copy is achieved by specifying the copy clause for the top-
level object and all nested sub-objects. Selective-direction
deep-copy just requires using different data clauses for the
top-level object and various sub-objects. In the example,

struct Deep {
int size;
double scalar;
double* A; /* A[0:size] */
double* B; /* B[0:size] */
};

void deep_copy(struct Deep* p, int n) {
#pragma acc data copy(p[0:n])::{ copy(A[0:size],

B[0:size]) }
{
/* p is available for use on device */

}
}

void selective_direction(struct Deep* p, int n) {
#pragma acc data copy(p[0:n])::{ copyout(A[0:size])

copyin(B[0:size]) }
{
/* p is available for use on device */
/* p[:].A[:] = p[:].B[:]*p[:].scalar */

}
}

void selective_member(struct Deep* p, int n) {
#pragma acc data copyin(p[0:n])::{ copy(A[0:size]) }
{
mutable_copy(p, n);

}
}

void mutable_copy(struct Deep* p, int n) {
#pragma acc data present(p[0:n])::{ copy(B[0:size]) }
{
/* A and B are both now available on the device */

}
}

Figure 12. Local nested syntax

the top-level object and sub-object B appear in copyin
clauses and sub-object A appears in a copyout clause.
Similarly, selective-member deep-copy can be achieved by
not specifying a data clause for a member that should not be
transferred. In the example, the top-level object appears in
a copy clause, sub-object A appears in a copy clause, and
sub-object B is not specified in any clause. The local syntax
is fully explicit, so allocations and transfers only occur for
members that appear in clauses. Finally, mutable deep-copy
is just a more general form of selective-direction deep-copy
where at least one clause is a present clause. In the
example the top-level object appears in a present clause
and sub-object B appears in a copy clause. This directive
triggers a lookup on the top-level object to ensure it is indeed
present; then sub-object B is allocated and copied to the
device, and it is attached to the existing top-level object. At
the end of the data region sub-object B is transferred back
to the host, detached from the top-level object, and deleted.
The top-level object is left on the device, since it appeared
in a present clause.

1) Implementation details: We made several design de-
cisions that simplify the use of our syntax by increasing the
complexity of an implementation. This section will describe
these decisions and the impact they have on implementa-
tions. In both cases we made a tradeoff to favor improving a

user’s experience over reducing implementation complexity.
Automatic alias resolution : OpenACC does not cur-

rently define a processing order for the data clauses on a
directive. However, deep copy in the presence of aliasing
introduces an ordering constraint. If a data structure contains
no aliases, then the order in which that data structure is
traversed and replicated on the device does not matter.
Further, traversal order does not matter for data structures
with only external aliases, which are aliases to objects that
are already present prior to the current transfer directive. But,
order does matter for data structures with internal aliases,
which are aliases to objects within the same data structure.
All internal aliases must be resolved last, to ensure that
the aliased object is created prior to translating an alias.
The most complex case is when two or more conditional
aliases (i.e., present_or aliasing) appear in the same data
structure. In this case the conditional clause that is processed
first will create the object, and all other aliased conditional
clauses will find the existing object and simply use that. So,
the largest conditional alias must be processed first to avoid
under-allocating the object.

Because the ordering constraints can be so complex, it
is impossible to define a static order that will address all
situations. Allowing the user to specify a traversal order
might work, but providing mechanisms to cover all the
cases becomes very awkward (e.g., depth-first vs. breadth-
first, pre-order vs. post-order, and sibling order). Moreover,
applications can exhibit complex aliasing properties that can
be difficult for even the application developers themselves to
describe. As a result, we chose to place the ordering burden
on the implementation rather than the user. This means that
a deep-copy implementation must perform automatic alias
resolution and traversal ordering.

Deciding the proper traversal order requires multiple
passes over the data structure to detect internal aliases.
If there are no aliases, or only external aliases, then any
traversal order will suffice. If there are internal aliases, then
an implementation must traverse the objects in an order
that resolves allocation conflicts and ensures all aliases are
present when traversed. In essence, the deep-copy implemen-
tation must defer all allocations until the entire data structure
has been considered. At that point it can automatically
perform the allocations and translations in the proper order.

Although the requirement for automatic alias resolution
complicates implementing our proposed deep-copy syntax,
we believe it is better to hide the complexity in the imple-
mentation than to expose it to users. This decision allows
users to express deep-copy in a natural manner, without
regard for traversal ordering or aliasing considerations. In
other words, users will get the behavior they expect without
concern for how it is achieved.

Translated pointer table: Raw data, which is inter-
preted the same on both host and device, can be copied
between host and device memory using ordinary memory

transfers. But when an object contains an attached pointer,
as is the case for deep copy, it cannot be simply copied
between host and device memory – it must be properly
translated. For data regions that employ deep copy, all
necessary pointer translation is implied by the deep-copy
operation. But, update operations differ. Consider the case
where an object is deep-copied in a data region but shallow-
copied in an update directive. If implemented naively, the
shallow update will transfer the entire top-level object,
including translated pointer members. This will result in a
device pointer on the host or a host pointer on the device,
depending on the direction of the transfer, and the sub-
objects will no longer be accessible through the top-level
member pointers.

To address this problem we’re proposing a new clause,
maintain, which is allowed in an update nest. The
maintain clause specifies that a member should not
be modified by an update. So, a shallow update can be
performed on an object with translated pointer members if
the pointer members appear in nested maintain clauses.
This clause essentially instructs an implementation to trans-
fer around any specified members, avoiding the translated
pointer problem altogether.

The responsibility of specifying a maintain clause
where necessary could be relegated to the programmer;
but we believe this requirement would place a non-trivial
burden on the programmer. Instead, we again decided to
ease programmer burden by shifting responsibility to the
implementation. Thus, an implementation must track all
translated pointers and treat them as though they appear
in maintain clauses for update directives. This allows
programmers to perform shallow updates of variables with
member pointers without concern for whether or not those
member pointers have been translated.

The main concern with requiring an implementation to
track translated pointers is overhead, both time and space.
OpenACC already requires that an implementation maintain
a present table to map host address ranges to corresponding
device address ranges. The present table requires one entry
per distinct object or array. The translated pointer table, on
the other hand, requires one entry per translated pointer.

For data structures with no aliasing, every object will have
exactly one pointer targeting it. Thus, the sizes of the present
table and the translated pointer table will both be O(n),
where n is the number of objects. For this case, the overhead
of managing the translated pointer table is only a constant
factor more than managing the present table.

For data structures with extreme aliasing, however, the
translated pointer table can be significantly larger than the
present table. Consider a sparse-matrix representation with
two arrays, a flat data array and an array of row pointers
that each target some location in the data array. The present
table will only contain two entries, one for each array. But,
the translated pointer table will contain an entry for each

element in the row-pointer array. In this case, the size of
the present table is O(n), where n is the number of objects,
while the size of the translated pointer table is O(n ∗ m),
where m is the maximum number of pointers per object.
In theory, an application with many objects and extensive
aliasing could begin to experience scaling problems.

But despite poor worst-case scaling, we expect that for
most applications the translated pointer table will incur
little overhead, especially when compared to the cost of
transferring memory between host and device. Further, the
translated pointer table can be optimized in several ways.
First, it can be represented with a hash table, since every
entry is a single fixed-size address (in contrast to the present
table, which stores address ranges). Second, each entry in
the present table could store its own translated pointer table
for all pointers in that range. This does not reduce the total
size of the translated pointer table, but it does make accesses
more efficient by leveraging locality in the present table.

In short, requiring an implementation to maintain a trans-
lated pointer table certainly increases the complexity of
an implementation. However, the end goal is to improve
user experience. With an implementation that is aware of
all translated pointers, users can update variables without
concern for whether or not they contain translated pointers.
In the end, users will be much less likely to unexpectedly
find host or device pointers in the wrong place.

B. Transfer policies

The advantage of a local deep-copy syntax, one that
is specified completely at the point of transfer, is that it
allows every data region and update to express a custom
deep-copy behavior. But limiting the syntax to only local
specifications can be problematic. First, a purely local syntax
inhibits reuse – a deep-copy behavior that applies to many
different variables in many different locations must be fully
specified for each variable and location. Second, and more
importantly, a purely local syntax breaks object encapsula-
tion, which is an important property for user-defined types,
particularly for programs that follow an object-oriented
paradigm. Consider a user-defined type with private pointer
members. Achieving deep copy with a local syntax requires
exposing those private pointer members to the code that
performs the transfer. Exposing private members is not so
much a permission problem as it is a philosophical one –
client code of a user-defined type should never be required to
understand or even know the names of its private members.
Instead, a properly encapsulated user-defined type should
have corresponding shaping and deep-copy specifications
that are provided by the author of the type. Then, any code
using that type need not know anything about the type’s
internals or how to invoke deep-copy (or even whether deep-
copy is necessary). Hence, we propose a new acc policy
directive as a mechanism for specifying default and named
transfer policies for user-defined types.

struct Deep {
int size;
double scalar;
double* A; /* A[0:size] */
double* B; /* B[0:size] */
#pragma acc policy(shape) shape(A[0:size], B[0:size])
#pragma acc policy("deep") inherit(*)
#pragma acc policy("sel_dir") copyout(A[*]) copyin(B[*])
#pragma acc policy("sel_mem") copy(A[*])
#pragma acc policy("mut_copy") copy(B[*])
};

void deep_copy(struct Deep* p, int n) {
#pragma acc data copy(deep:p[0:n])
{
/* p is available for use on device */

}
}

void selective_direction(struct Deep* p, int n) {
#pragma acc data copyin(sel_dir:p[0:n])
{
/* p is available for use on device */
/* p[:].A[:] = p[:].B[:]*p[:].scalar */

}
}

void selective_member(struct Deep* p, int n) {
#pragma acc data copy(sel_mem:p[0:n])
{
mutable_copy(p, n);

}
}

void mutable_copy(struct Deep* p, int n) {
#pragma acc data present(mut_copy:p[0:n])
{
/* A and B are both now available on the device */

}
}

Figure 13. Named transfer policies

Figure 13 illustrates how transfer policies are specified
with the acc policy directive. The special shape policy
is used to define default shapes for member pointers; shapes
defined in this manner are for convenience, as they are made
available to all other policies and local nest syntax. In the
example, members A and B appear in a shape policy.

The example also has a named policy, "deep", that
uses the new inherit clause. The inherit clause
only applies to members, and it indicates that a member
will behave as though it appeared in the same clause as
the parent object. The “*” argument to the inherit
clause expands to include all shaped indirect members.
To illustrate, the data clause that invokes this "deep"
policy is copy(deep:p[0:n]). The named policy
lowers into low-level syntax as copy(deep:p[0:n]
)::{ inherit(*) } The inherit clause pulls in the
default shape policy, lowering to copy(deep:p[0:n]
)::{ copy(A[0:size], B[0:size]) }. Through
these lowering steps, it becomes clear that the "deep"
policy specifies a full deep-copy. Using the same mecha-
nisms, the "sel_dir", "sel_mem", and "mut_copy"
policies define behavior for selective-direction, selective-
member, and mutable deep-copy. The [*] syntax indicates

template<typename T>
class my_vector {
private:
T* _begin;
T* _end_data;
T* _end_storage;

public:
T& operator[](int index) {
return _begin[index];

}
const T& operator[](int index) const {
return _begin[index];

}
#pragma acc policy(shape) shape(\
_begin[0:(((_end_data - _begin)/sizeof(T)) - 1)])

#pragma acc policy(data) inherit(_begin[*]) \
present(_end_data[@_begin]) \
present(_end_storage[@_begin])

#pragma acc policy(update) update(_begin[*])
};

class Data {
private:
my_vector<double> A;
my_vector<double> B;
my_vector<int> C;
my_vector<int> Other;

#pragma acc policy(shape) shallow(Other)
#pragma acc policy(data) inherit(*)
#pragma acc policy(update) update(*)
};

// Examples

my_vector<double> vec1,vec2;

// implicit policies let my_vector be treated like a
// simple variable
#pragma acc data copyin(vec1) copy(vec2)

#pragma acc update self(vec1)

Data dat1;

// equivalent to copy(dat1)::{ copy(A,B,C) }
#pragma acc data copy(dat1)

// override policy when you need to, copyin(B) don’t
// copy A, copy(C)
#pragma acc data copyin(dat1)::{ shallow(A) copy(C) }

Figure 14. Implicit transfer policies

that an array shape is specified in a shape policy.
In addition to named policies, users may define implicit

data and update transfer policies. These special policies
are applied in all data clauses that do not specify an explicit
policy name. This feature allows an author or a user-defined
type to define default deep-copy behavior that will apply to
all variables of that type.

Figure 14 illustrates how implicit policies can be used
to encapsulate deep-copy behavior in a simplified C++
std::vector class. The vector is a template type, where
the template parameter defines the vector element type. The
class has three pointers, designating the beginning of the
data, the end of the data, and the end of the reserved storage.
The two end pointers alias the memory targeted by the begin
pointer, although the end of storage pointer actually points

to one-past the end of valid memory.
The shape policy encapsulates most of the complexity

of this example. The begin pointer is shaped with a size
computed by subtracting the begin pointer from the end
pointer. This policy chooses to transfer the active data rather
than reserved storage, although we could define another
named policy to achieve both behaviors.

Both the data and update policies inherit the previ-
ously defined shapes, using them in inherit and update
clauses. These two policies define default deep-copy behav-
ior for data regions and updates. This allows variables of
type my_vector to appear directly in data clauses, like
copyin(vec1) or copy(vec2). For the data policy,
the two end pointers appear in present clauses and are
shaped with the new @ syntax, which indicates that they are
aliases with respect to the begin pointer. Thus, these pointers
will be translated when transferring an object of this type.

Further, the class Data contains direct members of type
my_vector. These members will behave as though they
have an implicit shape. So, they may be deep-copied by
explicitly specifying them in a data clause or implicitly
specifying them with a data clause using the * argument.
The default shape policy for the Data class specifies
shallow(Other), which disables the default policies
for that member; so, the inherit(*) and update(*)
clauses only specify deep-copy for members A, B, and C.

With implicit data and update policies in the Data
class, it may be specified directly in a data clause
like copy(dat1). Doing so is equivalent to specifying
copy(dat1)::{ copy(A,B,C) }. Finally, an implicit
policy can always be overridden with local syntax, as shown
at the end of the example.

V. COMPLICATIONS AND FUTURE WORK

In addition to the primary challenges described in Sec-
tion II, there are many secondary complications related
to implementing deep-copy. These issues are certainly not
an absolute road-block for implementations, but they do
suggest that initial versions will likely impose several key
restrictions.

Modifying pointers in data regions: A major assump-
tion throughout this paper is that the structure of a deep data
structure remains fixed throughout the entire data region that
places it on the device. That is, the pointer relationships
between objects in a data structure may not change. This
limitation is similar to requiring the shape of a flat object
to remain fixed throughout the data region that places it
on the device. For example, if a variable is transferred
to the device with copy(x[0:n]), then the variable n
may not be altered prior to the end of the data region.
Relaxing this constraint complicates the transfer at the end
of the data region – should the transfer honor the original
or new value of n? Likewise, altering a pointer relationship
within a data region presents similar ambiguities – should

the final deep-transfer and deep-free honor the original or
new pointer relationship? Honoring the new pointer could
result in complex memory management issues, such as
freeing the same pointer more than once or failing to free
a pointer at all (i.e., orphaning an object). Given these
challenges, we believe at least initial support for deep-
copy in OpenACC will prohibit modifying pointers within
data regions. Future revisions might be able to relax this
limitation in various ways. For example, allowing simple
pointer aliases to be modified is relatively straightforward,
since it just requires translating the pointer upon transfer.
Alternatively, requiring a user to notify an implementation
when a pointer has changed (perhaps through an explicit
pointer update directive) might reduce the complexity of the
problem.

Memory management on the device: OpenACC defines
a master-slave model where a thread on the host initiates
all actions on the device. Conceptually, all device memory
management is initiated by the host, and all device objects
are created to mirror corresponding host objects.4 It is
unclear what behavior should result if a compute region
attempts to allocate or free memory, particularly if that
memory is previously or subsequently involved in a data
transfer between host and device. Presumably a compute
region could manage memory that is only active for the
lifetime of that compute region – in this case, the memory
would be allocated after the start of the compute region and
deallocated before the end of the compute region, and there
would be no need to allocate corresponding host memory.
But, what if a compute region attempts to deallocate memory
that mirrors a host object? Should an implementation detect
this situation, perhaps also deallocating the host object at the
end of the data region? Similarly, if pointer reassociation is
allowed on the device, then a compute region could allocate
an object and store the pointer in a deep data structure
that will be copied back to the host at the end of the data
region. Should an implementation detect this and allocate a
corresponding host object at the end of the data region? Both
of these cases deviate from the expected paradigm, where
all device memory management is initiated by the host, and
all device objects mirror host objects.

This question of device memory management arises for
standard C++ containers, such as std::vector. Transfer-
ring a vector requires deep copy, but supporting a resize
operation on the device requires much more – it requires
allowing pointers to change and allowing memory manage-
ment on the device. Since both of these capabilities introduce
significant complications, it seems likely that initial versions
of deep-copy will likely prohibit resizing standard contain-
ers. Application developers with whom we’ve been working
seem willing to accept this limitation, as long as containers

4Technically the device_resident clause allows an implementation
to elide a host copy of an object; but, the device copy is still a logical
mirror of the host copy, even if the host copy hasn’t been created.

may be resized between data regions.
A possible workaround for std::vector is to reserve

additional space prior to a data region. Then the deep-copy
policy would need to transfer the reserved space, not just
the occupied space, allowing the compute region to append
into the pre-reserved space.

Conditional deep traversal: The semantics of a data-
clause nest require that it always be traversed, even for
conditional data clauses. So, for a present_or clause,
the nest is traversed regardless of the outcome of the present
test. This traversal is needed to support top-down mutable
deep-copy, where a conditional top-level clause contains a
conditional nested clause. Even if both objects are present,
the nest must be traversed to attach the two objects.

There are subtle implications of this design decision. First,
it is impossible to express a conditional, shallow present test
for a deep-copy nest where the top-level object appears in a
conditional clause. (An unconditional, shallow present test
can be achieved by using a present clause without a nest.)
Second, it is not possible to handle recursive, cyclic data
structures, since a nest is always processed regardless of the
outcome of a conditional clause present test.

We considered extending the nest syntax with
ifpresent and ifnotpresent clauses, which
would make nest processing conditional based on the
outcome of the present test for the parent clause. These
clauses address the problems described above, but we
decided to defer them because they complicate the syntax.
As a generalization, we could also consider a generic if
clause.

C++ semantics: C++ exposes object creation, deletion,
and assignment through explicit constructors, destructors and
operators. However, OpenACC does not specify whether
transferring a C++ object will invoke these standard routines.
The essential question is whether a device copy of C++ ob-
ject is truly a new object, or whether it is a temporary clone
of the original host object. If we view it as a new object,
then creating and transferring such an object should invoke
the appropriate constructors, destructors and operators. The
advantage of this approach is that it exposes the transfer
mechanism to programmers, potentially giving them a way
to control an object’s transfer behavior. The disadvantage
is that the behavior will differ for systems with unified
memory, where an actual transfer is not required.

On the other hand, if we view a device object as a tem-
porary relocation of the original host object, then creating
and transferring an object should not imply language-level
creation and copying of objects. In this case, the two objects
are logically the same object, they just appear in different
physical and temporal localities. The authors of this paper
tend to prefer this view, where object transfer is not subject
to ordinary language semantics.

Finally, there may be a middle ground where we define
special member functions to be called when an object is

transferred. This solution still views host and device objects
as a single logical object, but it exposes transfer operations
to the programmer.

Pointers in unions: Our deep-copy proposal does not
provide a direct mechanism for scoping a pointer that
appears in a C/C++ union. In such cases the pointer may
or may not be valid, depending on the dynamic manner in
which the union is used. The best option with our current
proposal is to shape the pointer with a conditional size,
where the size evaluates to 0 when the pointer is not valid.
If we extend the syntax to support conditional clauses, then
the pointer could just be shaped conditionally. Fortunately,
the OpenACC user community has not expressed any need
for supporting pointers in unions.

Unstructured data regions: For unstructured data di-
rectives, do enter and exit deep-copy policies have to
match? This problem also exists in the absence of deep-copy,
where an enter and exit directive use different shapes.
The main complication for deep-copy is that pointer traversal
and translation could differ for the two directives. However,
the attachment table can at least catch errors. For example,
if a shallow-copyout follows a deep-copyin then an
implementation could detect that an object being deleted
contains attached pointers. It could detach the sub-objects,
and optionally delete those sub-objects if the reference count
drops to 0. Similarly, if a deep-copyout follows a shallow-
copyin then an implementation could issue an error that
the object is not attached.

Untranslated pointers: How should pointers that aren’t
translated be handled? Should they remain as host pointers?
Should they be set to null? Several users have indicated that
setting them to null could be a useful debugging aid, or
even a mechanism to check for presence of a sub-object.
The disadvantage of setting them to null is that it causes
the translated pointer table to grow larger. Also, behavior
differs for systems with unified memory. Thus, the easiest
solution is to make it undefined behavior to access an
untranslated pointer member. An implementation could then
provide various debug options to help users detect problems.

C++ templates: we need to be able to use these direc-
tives inside of “templatized” types (possibly even declar-
ing policies outside of them); what if the template type
parameter is a pointer? we can currently handle a type
parameter that is a user-defined type with an implicit policy,
but not for a raw pointer; might need to use template
specialization, or policy specialization based on template
type (e.g., “type is pointer”); might want a way to declare
a named policy for a non-struct pointer, which could then
be specified as the “base type policy” for a template class

Polymorphism: Polymorphic types present a unique
challenge to deep-copy. Namely, the exact size of a polymor-
phic type may not be known statically. Thus, polymorphism
is not supported by our current proposal.

The most natural way to support polymorphic types is

to support virtual policies, similar to virtual function calls.
A base class defines a virtual policy, and all sub-classes
override that policy. At runtime, a virtual policy is resolved
to that of the proper concrete type.

However, polymorphism presents additional challenges
in OpenACC. For example, virtual function tables must
be translated to target the device copy of each member
function. Given these additional complexities, full support
for polymorphism will likely take some time. Fortunately,
high-performance codes often avoid polymorphism, so this
functionality is not urgently needed.

Recursive data structures: Our proposed local syntax
doesn’t support recursive data structures, since it requires
explicitly specifying a nest for every sub-object. Instead,
defining a transfer policy naturally supports recursive types.
Even so, cyclic data structures pose a termination problem
discussed previously in conditional deep traversal.

Asynchronous deep-copy: Achieving high performance
with OpenACC often requires asynchronous transfers and
computation. In theory, a deep-copy transfer is perfectly
capable of running asynchronously. But, performing pointer
translations asynchronously adds an additional level of com-
plexity. Fortunately, an initial implementation can legally
synchronize to ensure correctness, later adding true asyn-
chronous deep-copy in future versions.

Scaling: In the absence of deep-copy, every variable
specified in a data clause triggers a single memory allo-
cation and transfer. Even large, dynamically-sized arrays
corresponded to a single block of contiguous memory. This
implies that the number of independent objects that an
implementation must manage is relatively small, bounded
by the number of variables appearing in data clauses in a
program. In contrast, deep-copy allows a single variable to
trigger allocation and transfer of an arbitrary number of dis-
joint objects. This is a fundamental paradigm shift, moving
from few large objects to many small objects, and it has
direct scaling implications for OpenACC implementations.
Since an implementation must track all host and device
object mappings, a implementation with poor scaling will
quickly become apparent for large deep-copy use cases. To
reduce such scaling problems, programmers could employ
aggregate allocation strategies, such as allocating many
small objects with a single large allocation. This allows
transferring a large group of objects with a single contiguous
transfer. Implementations could automate similar strategies
when applicable.

VI. CONCLUSION

OpenACC has received much attention in the high-
performance computing community recently, and it is
viewed by many people as a notable step forward in easing
the difficulty of programming heterogeneous accelerator
systems. The promises are lofty: a directive-based approach
allows a single source-code base to target both homogeneous

and heterogeneous systems; a descriptive rather than pre-
scriptive set of directives facilitates performance portability
by giving an implementation the flexibility to optimize and
efficiently map a program onto different accelerator targets;
and, the abstraction of disjoint host and device memory,
coupled with compiler and runtime assistance in managing
device memory, frees a programmer from the tedious details
of manually managing device memory, a task that was histor-
ically synonymous with accelerator programming. However,
as excitement around the initial success of OpenACC begins
to fade, it becomes clear that lack of deep-copy support
is the single largest impediment to porting a wider range
of interesting data structures and applications to OpenACC.
With no better option, users are forced into manually man-
aging device memory and rewriting large portions of their
application code – an outcome that runs counter to the entire
purpose of a directive-based programming model.

The potential benefit of providing a directive-based solu-
tion for deep copy is great, as it would extend the usefulness
of OpenACC to a much larger set of applications. But in
general it is a very challenging problem, as illustrated in
this paper. Even so, we believe the problem is solvable,
especially with some reasonable assumptions and limitations
that we’ve outlined in the paper. Our proposed low-level,
local syntax is relatively compact and concise, yet it is
capable of expressing the deep-copy capabilities that real
applications need: selective member, selective direction, and
mutable deep-copy. Moreover, our member shape and policy
syntax builds naturally upon the local syntax and facili-
tates good software engineering techniques such as policy
encapsulation and reuse. With this new syntax the deep-
copy requirements for many applications can be expressed
solely through compiler directives, without any additional
code modification, allowing a compiler and runtime to
automatically handle the tedious details of allocating and
transferring complex data structures between host and device
memory.

REFERENCES

[1] The OpenACC Application Programming Interface, v2.0,
OpenACC.org, Aug. 2013. [Online]. Available: http://www.
openacc.org/sites/default/files/OpenACC.2.0a 1.pdf

[2] CUDA Toolkit Documentation, Nvidia. [Online]. Available:
http://docs.nvidia.com/cuda/index.html

[3] Cray Fortran Reference Manual S–3901–82, Cray Inc.,
Sep. 2013. [Online]. Available: http://docs.cray.com/books/
S-3901-82/S-3901-82.pdf

[4] MPI: A Message-Passing Interface Standard, Message
Passing Interface Forum, Knoxville, TN, USA, Sep. 2012.
[Online]. Available: http://www.mpi-forum.org/docs/mpi-3.0/
mpi30-report.pdf

[5] OpenACC.examples, Man Page, Cray Inc., Sep. 2013. [Online].
Available: http://docs.cray.com/cgi-bin/craydoc.cgi?mode=
Show;q=;f=man/xt prgdirm/82/cat7/openacc.examples.7.html

http://www.openacc.org/sites/default/files/OpenACC.2.0a_1.pdf
http://www.openacc.org/sites/default/files/OpenACC.2.0a_1.pdf
http://docs.nvidia.com/cuda/index.html
http://docs.cray.com/books/S-3901-82/S-3901-82.pdf
http://docs.cray.com/books/S-3901-82/S-3901-82.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=Show;q=;f=man/xt_prgdirm/82/cat7/openacc.examples.7.html
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=Show;q=;f=man/xt_prgdirm/82/cat7/openacc.examples.7.html

	Introduction
	Background and problem
	Desired capabilities
	Data layout
	Motivation

	Existing solutions
	Refactoring
	API
	Fortran automatic deep-copy

	Directive-based solution
	Low-level, local syntax
	Implementation details

	Transfer policies

	Complications and future work
	Conclusion
	References

