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Abstract—Power constraints are forcing HPC systems to
continue to increase hardware concurrency. Efficiently scaling
applications on future machines will be essential for improved
science and it is recognised that the “flat” MPI model will start
to reach its scalability limits. The optimal approach is unknown,
necessitating the use of mini-applications to rapidly evaluate new
approaches. Reducing MPI task count through the use of shared
memory programming models will likely be essential. We examine
different strategies for improving the strong-scaling performance
of explicit Hydrodynamics applications. Using the CloverLeaf
mini-application across multiple generations of Cray platforms
(XC30, XK6 and XK7), we show the utility of the hybrid
approach and document our experiences with OpenMP, CUDA,
OpenCL and OpenACC under both the PGI and CCE compilers.
We also evaluate Cray Reveal as a tool for automatically
hybridising HPC applications and Cray’s MPI rank to network
topology-mapping tools for improving application performance.

Keywords-Exascale, HPC, Hydrodynamics, MPI, OpenMP,
OpenACC, CUDA, OpenCL, Tools

I. INTRODUCTION

Power constraints are forcing emerging HPC systems to
continue to increase hardware concurrency in order to enhance
floating point performance with decreased energy use. With
CPU clock-speeds constant or even reducing, node level
computational capabilities are improving through increasing
core and thread counts. We must be able to efficiently utilise
this increased concurrency if we are to harness the power of
future systems. The ability to scale applications across multi-
petascale platforms is also essential if we are to use this class
of machine for improved science. Irrespective of the nodal
hardware, there is a common need for scalable communication
mechanisms within future systems.

The established method of utilising current platforms em-
ploys a “flat” MPI model for intra- and inter-node commu-
nications. This model takes no regard of the shared memory
available at the node level within the application. This ap-
proach has served the scientific community well for 20 years,
however, with increasing nodal core counts it is anticipated
that it will reach its scalability limits due to congestion caused
by the number of MPI tasks across a large distributed simula-
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tion. Additionally, on machines incorporating GPU accelerator
technologies “flat” MPI is not a viable solution and precludes
the use of them without transition to a hybrid model.

The optimal approach is, however, unknown and probably
application and machine specific. Production codes are usually
legacy codes which are generally old, large, unwieldy and
inflexible, with many man years of development that cannot be
discarded and rewritten from scratch for the latest hardware.
Decisions made now could severely affect scientific produc-
tivity if the path chosen is not amenable to future hardware
platforms. Research is needed to assess the relative merits of
new programming models and hardware evolution in order
to retain scientific productivity. Attempting this in a fully
functional legacy code has been found to be time consuming
and impractical, due to the number of potential solutions
available. A rapid, low risk approach for investigating the
solution space is therefore extremely desirable.

The approach we adopt is based on the use of a mini-
application or mini-app. Mini-apps are small, self-contained
codes, which emulate key algorithmic components of much
larger and more complex production codes. Their use enables
new methods and technologies to be rapidly developed and
evaluated.

In this work we utilise a simplified but meaningful struc-
tured, explicit hydrodynamic mini-app called CloverLeaf [1]
to investigate the optimal configurations for achieving portable
performance across a range of Cray machines. We document
our experiences hybridising the existing MPI code base with
OpenMP, OpenACC, CUDA and OpenCL and compare the
performance under both the PGI and CCE compilers for the
OpenACC implementation.

OpenACC is a high level pragma based abstraction intended
to provide support for multi-core technology for Fortran, C
and C++ without resorting to vendor and hardware specific
low level languages. Support is provided by a number of
vendors and is defined through an open standard. However
the standard is new and the compiler implementations are still
maturing. This paper evaluates the maturity of two compilers
by assessing two approaches to the OpenACC programming
model, namely the Parallel and Kernel constructs. We



then assess the performance and portability of the Clover-
Leaf mini-app across two Cray platforms. These are in turn
compared against CUDA and OpenCL on each architecture to
determine whether OpenACC provides a level of abstraction
that is suitable for enabling existing large code bases to exploit
emerging multi-core architectures, while maintaining scientific
productivity.

Weak- and strong-scaling scenarios are important on multi-
petascale machines. The former are likely to scale well as
the ratio of communication to computation remain close to
constant. While the latter is more challenging because the
amount of computation per node reduces with increased scale
and communications eventually dominate. Historically, the
use of shared memory has not been vital for this class of
application and treating each core/thread as a separate address
space has been a valid strategy. If the expected explosion
in thread counts materialises, reducing MPI task count using
shared memory programming models is a strategy that needs
research.

In this work we examine hybrid programming models for
improving the strong-scaling performance of explicit hydro-
dynamics applications on the XC30 Cray platform. Using the
“flat” MPI version as a baseline, we measure the relative
performance against a hybrid version incorporating OpenMP
constructs.

The task of developing, porting and optimising applica-
tions for future generations of HPC systems is becoming
increasingly complicated as architectures evolve. The analysis
of legacy applications in order to convert them to hybrid
models is non-trivial. Even with an in-depth knowledge of
the algorithm and target hardware, extracting the maximum
concurrency is a difficult task. Improving the tool-suite avail-
able to developers will be essential if optimal performance
is to be achieved productively. We therefore evaluate Cray’s
Reveal tool as a technology for improving this situation by
automatically hybridising the “flat” MPI version of Clover-
Leaf and compare its performance to that of a hand-crafted
MPI+OpenMP implementation. We also comment on devel-
oping an OpenMP code as the basis for an OpenACC one.

The increased scale and complexity of modern interconnects
is also forcing us to question the placement of MPI ranks
within the network for optimal performance. With the help
of Cray’s profiling and network topology mapping tools we
explore the potential for optimisation based on application
communication characteristics.

II. RELATED WORK

A considerable body of work exists which has examined the
advantages and disadvantages of the hybrid (MPI+OpenMP)
programming model compared to the purely “flat” MPI model.
A number of studies have already examined the technology but
these have generally focused on different scientific domains,
classes of applications, or different hardware platforms, to
those we examine here.

The results from these studies have also varied significantly,
with some authors achieving significant speed-ups by employ-

ing hybrid constructs and others performance degradations.
Substantially less work exists which directly evaluates the
MPI and hybrid programming models when applied to the
same application. We are also unaware of any work which has
directly compared approaches based on OpenACC, OpenCL
and CUDA for implementing the hybrid programming model
on systems incorporating accelerator devices. Our work is
motivated by the need to examine each of these programming
models when applied to Lagrangian-Eulerian explicit hydrody-
namics applications. In previous work Mallinson reported on
his experiences scaling the CloverLeaf mini-application large
node counts on the Cray XE6 and XK7 architectures [2].

Additionally we have also previously reported on our expe-
riences of porting CloverLeaf to a range of different architec-
tures, both CPU and GPU based using CUDA, OpenACC and
OpenCL, but only at small scale [3], [4]. Although we are not
aware of any existing work which has examined using these
technologies to scale this class of application to the levels
we examine here, Levesque et al. examine using OpenACC at
extreme scale with the S3D application [5].

The application examined by Lavallee et al. has similarities
to CloverLeaf, and their work compares several hybrid ap-
proaches against a purely MPI based approach, however, they
focus on a different hardware platform and do not examine
the OpenACC-based approaches [6].

Studies such as [7]-[9] report performance degradations
when employing hybrid (MPI+OpenMP) based approaches,
whilst others experience improvements [10]-[12]. In partic-
ular, Kornyei presents details on the hybridisation of a com-
bustion chamber simulation which employs similar methods to
CloverLeaf. However, the application domain and the scales
of the experiments are significantly different to those in our
study.

Drosinos et al. also present a comparison of several hybrid
parallelisation models (both coarse- and fine-grained) against
the “flat” MPI approach [13]. Again, their work focuses on a
different class of application, at significantly lower scales and
on a different experimental platform to our work.

Nakajima compares the hybrid programming model to “flat”
MPI for preconditioned iterative solver applications within the
linear elasticity problem space [14]. Whilst the application do-
main; the scales of the experiments (<512 PEs) and platform
choice (T2K HPC architecture) are again significantly different
to ours, he does, as we do, explore several techniques for
improving the performance of these applications.

Additionally, Adhianto et al. discuss their work on perfor-
mance modelling hybrid MPI+OpenMP applications and its
potential for optimising applications [15]. Li et al. employ
the hybrid approach in their work which examines how to
achieve more power-efficient implementations of particular
benchmarks [16]. Various approaches and optimisations for
executing large-scale jobs on Cray platforms are also examined
by Yun et al. in [17]. Minimising communication operations
within applications has also been recognised as a key approach
for improving the scalability and performance of scientific
applications [16].
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Fig. 1: The staggered grid used by CloverLeaf

Baker et al. [18] looked at a hybrid approach using Ope-
nACC within the BT-MZ benchmark application. They con-
centrate however on hybridising the application rather than
on assessing the OpenACC implementations employed, their
results are also focused on a single architecture: Titan.

There are a small number of comparative studies presenting
direct comparisons of OpenACC against alternative program-
ming models. Reyes et al. present a direct comparison between
CUDA, PGIs Accelerator model and OpenACC using their
own novel implementation of OpenACC: accULL [19]. Again,
this focuses on a single type of accelerator, and a single
instance of an architecture: an NVIDIA Tesla 2050.

A comparison of OpenCL against OpenACC can be found
in [20] by Wienke et al. The paper compares OpenACC against
PGI Accelerator and OpenCL for two real world applications,
demonstrating OpenACC can achieve 80% of the performance
of a best effort OpenCL for moderately complex kernels,
dropping to 40% for more complex examples. The study only
uses Crays CCE compiler and only the parallel construct. Also,
it is limited to a single hardware architecture: an NVIDIA
Tesla C2050 GPU.

III. BACKGROUND

In this section we provide details on the hydrodynamics
scheme employed in CloverLeaf, and an overview of the
programming models examined in this study.

A. Hydrodynamics Scheme

CloverLeaf is part of the Mantevo test suite [1]. It has been
written with the purpose of assessing new technologies and
programming models both at the node and interconnect level.

CloverLeaf uses a Lagrangian-Eulerian scheme to solve
Euler’s equations of compressible fluid dynamics in two spatial
dimensions. These are a system of three partial differential
equations which are mathematical statements of the conser-
vation of mass, energy and momentum. A fourth auxiliary
equation of state is used to close the system; CloverLeaf uses
the ideal gas equation of state to achieve this.

The equations are solved on a staggered grid (see Figure 1)
in which each cell centre stores the three quantities: energy,
density, and pressure; and each vertex stores a velocity vector.
This is a hyperbolic system which allows the equations to be
solved using explicit numerical methods, without the need to

invert a matrix. An explicit finite-volume method is used to
solve the equations with second-order accuracy in space and
time. Currently only single material cells are simulated by
CloverLeaf.

The solution is advanced forward in time repeatedly until
the desired end time is reached. Unlike the computational grid,
the solution in time is not staggered, with both the vertex
and cell data remaining at the same time level by the end
of each computational step. One iteration, or timestep, of
CloverLeaf proceeds as follows: (i) a Lagrangian step advances
the solution in time using a predictor-corrector scheme, with
the cells becoming distorted as the vertices move due to the
fluid flow; (ii) an advection step restores the cells to their
original positions by moving the vertices back, and calculating
the amount of material that has passed through each cell
face. This is accomplished using two sweeps, one in the
horizontal dimension and the other in the vertical using Van
Leer advection [21]. The direction of the initial sweep in each
step alternates in order to preserve second order accuracy.

The computational mesh is spatially decomposed into rect-
angular mesh chunks and distributed across MPI tasks within
the application, in a manner which attempts to minimise
the communication surface area between processes. Data that
is required for the various computational steps and is non-
local to a particular process is stored in outer layers of halo
cells within each mesh chunk. Halo data exchanges occur
between immediate neighbouring processes (vertically and
horizontally), within the decomposition. A global reduction
operation is required by the algorithm during the calculation
of the minimum stable timestep, which is calculated once per
iteration. The initial implementation was in Fortran90 and this
was used as the basis for all other versions.

The computational intensity per memory access of Clover-
Leaf is low. This makes the code limited by memory band-
width speeds, which is a very common property of scientific
codes.

B. Programming Models

1) MPI: As cluster-based designs have become the pre-
dominant architecture for HPC systems, the Message Pass-
ing Interface (MPI) has become the standard for developing
parallel applications for these platforms. Standardised by the
MPI Forum, the interface is implemented as a parallel library
alongside existing sequential programming languages [22].

The technology is able to express both intra- and inter-node
parallelism. Current implementations generally use optimised
shared memory constructs for communication within a node
and explicit message passing for communication between
nodes. Communications are generally two-sided meaning that
all ranks involved in the communication need to collaborate
in order to complete it.

2) OpenMP: OpenMP is an Application Program Interface
(API) and has become the de facto standard in shared memory
programming [23]. The technology is supported by all the
major compiler vendors and is based on a fork-join model of
concurrency, it consists of a set of pragmas that can be added



to existing source code to express parallelism. An OpenMP-
enabled compiler is able to use this additional information to
parallelise sections of the code.

Programs produced from this technology require a shared
memory-space to be addressable by all threads. Thus, this
technology is aimed primarily at implementing intra-node
parallelism. At present the technology only supports CPU-
based devices although proposals exist in OpenMP 4.0 for the
inclusion of additional directives to target accelerator based
devices such as GPUs [24]. This has been implemented to
varying levels in a number of compilers, but is not yet mature.

3) CUDA: NVIDIA’s CUDA [25] is currently a well estab-
lished technology for enabling applications to utilise NVIDIA
GPU devices. CUDA employs an offload-based programming
model in which control code, executing on a host CPU,
launches parallel portions of an application (kernels) on an
attached GPU device.

CUDA kernels are functions written in a subset of the
C programming language, and are comprised of an array
of lightweight threads. Subsets of threads can cooperate via
shared memory which is local to a particular multiproces-
sor, however, there is no support for global synchronisation
between threads. This explicit programming model requires
applications to be restructured in order to make the most
efficient use of the GPU architecture and thus take advantage
of the massive parallelism inherent in them. Constructing
applications in this manner also enables kernels to scale up
or down to arbitrary sized GPU devices.

CUDA is currently a proprietary standard controlled by
NVIDIA. Whilst this allows NVIDIA to enhance CUDA
quickly and enables programmers to harness new hardware
developments in NVIDIA’s latest GPU devices, it does have
application portability implications.

4) OpenCL: OpenCL [26] is an open standard that en-
ables parallel programming of heterogeneous architectures.
Managed by the Khronos group and implemented by over
ten vendors—including AMD [27], Intel [28], IBM [29], and
Nvidia [30]—OpenCL code can be run on many architectures
without recompilation. Each compiler and runtime is, however,
at a different stage of maturity, so performance currently varies
between vendors.

The programming model used by OpenCL is similar to
NVIDIA’s CUDA model. Therefore, mapping OpenCL pro-
grams to GPU architectures is straightforward. The best way
to map OpenCL programs to CPU architectures, however, is
less clear.

The OpenCL programming model distinguishes between
a host CPU and an attached accelerator device such as a
GPU. The host CPU runs code written in C or C++ that
makes function calls to the OpenCL library in order to control,
communicate with, and initiate tasks on one or more attached
devices, or on the CPU itself. The target device or CPU runs
functions (kernels) written in a subset of C99, which can be
compiled just-in-time, or loaded from a cached binary if one
exists for the target platform. OpenCL uses the concepts of
devices, compute units, processing elements, work-groups, and

work-items to control how OpenCL kernels will be executed
by hardware. The mapping of these concepts to hardware is
controlled by the OpenCL runtime.

Generally, an OpenCL device will be an entire CPU socket
or an attached accelerator. On a CPU architecture, both the
compute units and processing elements will be mapped to the
individual CPU cores. On a GPU this division can vary, but
compute units will typically map to a core on the device, and
processing elements will be mapped to the functional units of
the cores.

Each kernel is executed in a Single Program Multiple Data
(SPMD) manner across a one, two or three dimensional range
of work-items, with collections of these work-items being
grouped together into work-groups. Work-groups map onto a
compute unit and the work-items that they contain are exe-
cuted by the compute unit’s associated processing elements.
The work-groups which make up a particular kernel can be
dispatched for execution on all available compute units in any
order. On a CPU, the processing elements of the work-group
will be scheduled across the cores using a loop. If vector code
has been generated, the processing elements will be scheduled
in SIMD, using the vector unit of each CPU core. On a GPU,
the processing-elements run work-items in collections across
the cores, where the collection size or width depends on the
device vendor; NVIDIA devices run work-items in collections
of 32 whereas AMD devices use collections of 64 work-items.

OpenCL is therefore able to easily express both task and
data parallelism within applications. The OpenCL program-
ming model provides no global synchronisation mechanism
between work-groups, although it is possible to synchronise
within a work-group. This enables OpenCL applications to
scale up or down to fit different hardware configurations.

5) OpenACC: The OpenACC [31] Application Program
Interface is a high-level programming model based on the
use of pragmas. Driven by the Center for Application Ac-
celeration Readiness (CAAR) team at Oak Ridge National
Laboratory (ORNL) [32] and supported by an initial group
of three compiler vendors. The aim of the technology is to
enable developers to add directives into their source code to
specify how portions of their applications should be paral-
lelised and off-loaded onto attached accelerator devices, thus
minimising the modifications required to existing code bases
in Fortran, C and C++ and easing programmability whilst
also providing a portable, open standards-based solution for
multi-core technologies. It provides an approach to coding
complicated technologies without the need to learn complex,
vendor specific, languages, or understand the hardware at the
deepest level. Portability and performance are the key features
of this programming model, which are essential to productivity
in a real scientific application.

Prior to the support of a common OpenACC Standard, Cray,
PGI and CAPS each had their own bespoke set of accelerator
directives from which their implementations of OpenACC
were derived.

The PGI 10.4 release supported the PGI Accelerator model
[33] for NVIDIA GPUs. This provided their own bespoke di-



!$OMP PARALLEL
!$OMP DO PRIVATE(v, pressurebyenergy , &
pressurebyvolume , sound_speed_squared)
DO k = y_min, y_max
DO j = x_min, x_max

p(j.k) = (1.4—=1.0)*d(j.k)*xe(j,.k)
pe (1.4 —1.0)xd(j,k)

pv = —d(j,k)*p(j,k)

v = 1.0/d(j,k)

ss2 = vkv*(p(j,k)*pe—pv)

ss (j ,k)=SQRT(ss2)

END DO
END DO
!$OMP END DO
!/$OMP END PARALLEL

Fig. 2: CloverLeaf’s ideal_gas kernel

rectives for acceleration of regions of source code. In particular
their region construct evolved into their implementation of
the OpenACC Kernel construct. CUDA is generated from
the OpenACC code which then uses NVCC to generate a GPU
ready executable. There are plans to support alternative back-
ends to allow the targeting of a wider range of hardware.

Cray originally proposed accelerator extensions to the
OpenMP standard [34] to target GPGPUs, through their
Cray Compilation Environment (CCE) compiler suite. These
evolved into the Parallel construct in the OpenACC stan-
dard. Rather than creating CUDA source for the kernels, CCE
translates them directly to NVIDIAs low-level Parallel Thread
Execution (PTX) programming model [35]. CCE is currently
only available on Cray architectures.

Initially, CAPS provided support for the OpenHMPP direc-
tive model [36], which served as their basis for the OpenACC
standard. A major difference with CAPS is the necessity to use
a host compiler. Code is directly translated into either CUDA
or OpenCL [26] which in case of the latter, opens up a wide
range of architectures which can be targeted.

All compilers now support both the Kernel and
Parallel constructs. The main differences between these
constructs relate to how they map the parallelism in the
particular code region, which is being accelerated, to the
underlying hardware. The Parallel construct is explicit,
requiring the programmer to additionally highlight loops for
parallelisation within the code region, it closely resembles
several OpenMP constructs, while with the Kernel construct
the parallelisation is carried out implicitly. Example code is
shown in Figure 3 for the same code fragment using both
constructs.

IV. IMPLEMENTATION

The computational intensive sections of CloverLeaf are
implemented via fourteen individual kernels. In this instance,
we use “kernel” to refer to a self contained function which
carries out one specific aspect of the overall hydrodynam-
ics algorithm. Each kernel iterates over the staggered grid,
updating the appropriate quantities using the required stencil
operation. Figure 2 shows the Fortran code for one of these

!$ACC DATA &
!$ACC PRESENT(density , energy, pressure , soundspeed)
!$ACC PARALLEL LOOP PRIVATE(v, pressurebyenergy ,

I$ACC pressurebyvolume , sound_speed_squared )
VECTOR_LENGTH(1024)
DO k = y_min, y_max
DO j = x_min, Xx_max

p(j.k) = (1.4—=1.0)xd(j,k)*e(j,k)
pe (1.4—1.0)xd(j,k)

pv = —d(j.k)*p(j,k)

v = 1.0/d(j.k)

ss2 = vkv*(p(j,k)xpe—pv)
ss(j,k)=SQRT(ss2)

END DO
END DO
!$ACC END PARALLEL LOOP
!$ACC END DATA

(a) Using the OpenACC Parallel constructs

!/$ACC DATA &
!$ACC PRESENT(density , energy,pressure ,soundspeed)
!$ACC KERNELS
!$ACC LOOP INDEPENDENT
DO k=y_min,y_max
!$ACC LOOP INDEPENDENT PRIVATE(v, pressurebyenergy ,
I$ACC pressurebyvolume , sound_speed_squared)
DO j=x_min, x_max
v=1.0_8/density (j,k)
pressure (j,k)=(1.4_8—1.0_8)xdensity (j,k)xenergy(j.k)
pressurebyenergy=(1.4_8—1.0_8)*xdensity (j,k)
pressurebyvolume=—density (j,k)*pressure (j,k)
sound_speed_squared=v*vsx(pressure (j,k)
xpressurebyenergy —pressurebyvolume)
soundspeed (j ,k)=SQRT(sound_speed_squared)
ENDDO
ENDDO
!$ACC END KERNELS
!$ACC END DATA

(b) Using the OpenACC Kernel constructs
Fig. 3: The ideal_gas kernel OpenACC implementations

kernels. The kernels contain no subroutine calls and avoid
using complex features like Fortran’s derived types, making
them ideal candidates for evaluating alternative approaches
such as OpenMP, CUDA, OpenCL or OpenACC. They have
minimised dependencies, allowing them to be driven indepen-
dently of the host code.

Not all the kernels used by CloverLeaf are as simple as the
example in Figure 2. However, during the initial development
of the code, the algorithm was engineered to ensure that all
loop-level dependencies within the kernels were eliminated
and data parallelism was maximised. Most of the dependencies
were removed via small code rewrites: large loops were broken
into smaller parts; extra temporary storage was employed
where necessary; branches inside loops were replaced where
possible; atomics and critical sections removed or replaced
with reductions; memory access was optimised to remove
all scatter operations and minimise memory stride for gather
operations.

A. MPI

The MPI implementation is based on a block-structured
decomposition in which each MPI task is responsible for a
rectangular region of the computational mesh. These processes



each maintain a halo of ghost cells around their particular
region of the mesh, in which they store data which is non-
local to the particular process. As in any block-structured,
distributed MPI application, there is a requirement for halo
data to be exchanged between MPI tasks.

The decomposition employed by CloverLeaf attempts to
minimise communications by minimising the surface area
between MPI processes, whilst also assigning the same number
of cells to each process to balance computational load. The
depth of the halo exchanges also varies during the course of
each iteration, depending on the numerical stencil. CloverLeaf
v1.0 sends one MPI message per data field in exchanges in-
volving multiple fields. CloverLeaf v1.1 aggregates messages
for multiple fields to reduce latency and synchronisation costs.

To reduce synchronisation, data is only exchanged when re-
quired by the subsequent phase of the algorithm. Consequently
no explicit MPI Barrier functions exist in the hydrodynamics
timestep. All halo exchange communications are performed
by processes using MPI_ISend and MPI_IRecv operations
with their immediate neighbours, first in the horizontal di-
mension and then in the vertical dimension. MPI_WaitAll
operations are used to provide local synchronisation between
these data exchange phases. To provide global reduction
functionality between the MPI processes, the MPI_Reduce and
MPI_AlIReduce operations are employed. The MPI implemen-
tation therefore uses MPI constructs for both intra- and inter-
node communication between processes.

Twelve of CloverLeaf’s kernels perform computational op-
erations only. Communication operations reside in the overall
control code and two other kernels. One kernel is called
repeatedly throughout each iteration of the application, and
is responsible for exchanging the halo data associated with
one (or more) data fields, as required by the hydrodynamics
algorithm. The second carries out the global reduction required
for the minimum timestep. A further reduction is carried out
to report intermediate results, but this is not essential for the
numerical algorithm.

B. OpenMP

The hybrid version of CloverLeaf combines both the MPI
and OpenMP programming models. This is effectively an
evolution of the MPI version of the code in which the
intra-node parallelism is provided by OpenMP, and inter-
node communication provided by MPI. The number of MPI
processes per node and the number of OpenMP threads per
MPI process can be varied to achieve this and to suit different
machine architectures. This approach reduces the amount of
halo-cell data stored per node as this is only required for
communications between the top-level MPI processes, not the
OpenMP threads.

To implement this version, OpenMP parallel constructs were
added around the loop blocks within CloverLeaf’s fourteen
kernels to parallelise them over the available OpenMP threads.
The data-parallel structure of the loop blocks within the
CloverLeaf kernels is very amenable to this style of paral-
lelism. Figure 2 shows how this was achieved for the ideal

gas kernel. Private constructs were specified where necessary
to create temporary variables that are unique to each thread.
OpenMP reduction primitives were used to implement the
intra-node reduction operations required by CloverLeaf. It was
also essential to minimise fork and join overheads between
parallel loop-blocks by containing them within one larger
parallel region. To do this correctly, all race conditions had
to be removed.

The process of producing data parallel kernels with opti-
mised memory access patterns and minimal branching natu-
rally lends itself to producing vector friendly code. All compu-
tational loops vectorise though this does not necessarily mean
improved performance in an algorithm limited by memory
bandwidth.

C. OpenACC

The OpenACC version of CloverLeaf was based on the
hybrid MPI/OpenMP version of the code, and uses MPI for
distributed parallelism. Although driver code executes on the
host CPUs within each node, only the GPU devices are
used for computational work. The host CPUs are employed
to coordinate the computation, launching kernels onto the
attached GPU device, and for controlling MPI communications
between nodes. Data transfers between the host processors and
the accelerators are kept to a minimum and the code and data
are fully resident on the GPU device.

In order to convert each kernel to OpenACC, loop-level
pragmas were added to specify how the loops should be
executed on the GPU, and to describe their data dependencies.
Fully residency was achieved by applying OpenACC data
“copy” clauses at the start of the program, which results in
a one-off initial data transfer to the device. The computational
kernels exist at the lowest level within the application’s
call-tree and we employ the OpenACC “present” clause to
indicate that all input data is already available on the device.
Immediately before halo communications, data is transferred
from the accelerator to the host using the OpenACC “update
host” clause. Following the MPI communication the updated
data is transferred back from the host to its local accelerator
using the OpenACC “update device” clause. The explicit
data packing (for sending) and unpacking (for receiving) of
the communication buffers is carried out on the GPU for
maximum performance.

The first OpenACC version of CloverLeaf was developed
under CCE using the Cray compiler using the OpenACC
Parallel constuct. As alternative OpenACC implementa-
tions became available, the initial code was ported to these.
Once a port was successfully carried out, the new source
was ported back to the other compilers in order to remove
all compiler specific implementations and produce a single,
fully portable OpenACC source. Separate Parallel and
Kernel construct based versions were created to allow fair
comparisons to be made between all compilers. In the case of
single loops the two constructs are virtually interchangeable.



D. OpenCL

Integrating OpenCL with Fortran is not trivial as the C and
C++ bindings described by the OpenCL standard are not easy
to call directly from Fortran. In order to create the OpenCL
implementation of CloverLeaf, we wrote a new OpenCL-
specific version for each of the existing kernel functions.

The implementation of each kernel is split into two parts:
(1) an OpenCL device-side kernel that performs the required
mathematical operations and; (ii) a host-side C++ routine to
set up the actual OpenCL kernel. The Fortran driver routine
calls the C++ routine, which is responsible for transferring the
required data, setting kernel arguments, and adding the device-
side kernel to the OpenCL work-queue with the appropriate
work-group size.

Since each kernel performs a well defined mathematical
function, and the Fortran versions avoid the use of any
complex language features, writing the OpenCL kernels is
almost a direct translation. In order to produce comparable
results to the Fortran kernel, all computation is performed in
double precision.

Each C++ setup routine relies on a static class, CloverCL,
which provides common functionality for all the different
setup routines. We moved as much logic as possible from the
actual kernel functions into this static class. This helped to
ensure that particular pieces of logic (e.g. the kernel setArg
commands) are only re-executed when absolutely necessary
thus improving overall performance.

All Fortran intrinsic operations (such as SIGN, MAX
etc.) were also replaced with the corresponding OpenCL
built-in function to ensure optimal performance.

The majority of the control code in the original Fortran
kernels was moved into the C++ setup routines. Figure 4a
illustrates this for the ideal_gas kernel. This ensures that
branching is also always performed on the host instead of
on any attached device, enabling the device kernels to avoid
stalls and maintain higher levels of performance. It was also
necessary to implement our own reduction operations.

E. CUDA

The CUDA version of CloverLeaf was based on the hy-
brid MPI/OpenACC version of the code, and uses MPI for
distributed parallelism.

Integrating CloverLeaf’s Fortran code base directly with
CUDA’s C bindings is difficult. A global class was written
to handle interoperability between the Fortran and CUDA
code-bases and to coordinate the data transfers with, and
computation on, the GPU devices. Full device residency is
achieved by creating and initialising all data items on the
device, and allowing these to reside on the GPU throughout
the execution of the program. Data is only copied back to the
host when required for MPI communications and in order to
write out visualisation files.

In order to create the CUDA implementation, we wrote a
new CUDA version of each CloverLeaf kernel. The imple-
mentation of these was split into two parts:

try {

ideal_knl.setArg(0, x_min);

if (predict == 0) {
ideal_knl.setArg (4,
CloverCL :: densityl_buffer);
} else {
ideal_knl.setArg (4,
CloverCL :: densityO_buffer);

}
} catch(cl:: Error err) {

CloverCL :: reportError(err, ...);
}

CloverCL :: enqueueKernel (ideal_knl , x_min,
y_min,y_max);

X_max ,

(a) The ideal_gas kernel OpenCL C++ host code

for (int k = get_global_id(1); k <= y_max;
k += get_global_size (1)) {
for (int j = get_global_id(0); j <= x_max;

j += get_global_size (0)) {
double ss2,v,pe,pv;

p[ARRAY2D(j ,k,...)]= (1.4—1.0)
*d [ARRAY2D(j ,k,...)]
*e [ARRAY2D(j ,k,...)];

pe=(1.4—1.0)+d[ARRAY2D(j .k,...)];
pv=—d [ARRAY2D(j ,k,...)] *p[ARRAY2D(j .k,...)];

v = 1.0/d[ARRAY2D(j ,k,...)];
ss2=v*v*(p[ARRAY2D(j ,k,...)]*pe—pv);

ss [ARRAY2D(j ,k,...)]=sqrt(ss2);

(b) The ideal_gas kernel OpenCL device code

Fig. 4: The two components of the OpenCL version of the
ideal_gas kernel

(i) a C-based routine which executes on the host CPU and
sets up the actual CUDA kernel(s); and (ii) a CUDA kernel that
performs the required mathematical operations on the GPUs.
Each loop block within the original C kernels was converted
to an individual CUDA kernel, which typical resulted in
numerous device-side kernels being developed to implement
one original host-side kernel. This approach enabled us to keep
the vast majority of the control code within the host-side C
based routines and ensure that branching operations are always
performed on the host instead of the attached GPU. This also
ensures that the device-side kernels avoid stalls and maintain a
high level of performance. The intra-node reduction operations
were implemented using the Thrust library.

V. RESULTS

To assess the current performance of CloverLeaf and the
effectiveness of the optimisation techniques examined as part
of this work we conducted a series of experiments.

A. Experimental Configuration

The hardware used in these experiments is summarised in
Table I.



| MACHINE | CPU | GPU | NODES | INTERCONNECT |
Chilean Pine AMD Opteron X2090 40 Gemini
Archer Intel Sandybridge None 3008 Aries
Swan Intel Sandybridge K20X 130/8 Aries
Titan AMD Opteron K20X 18688 Gemini

TABLE I: Summary of Cray platforms

Chilean Pine is a 40 node Cray XK6, each node consisting
of one 16-core AMD Opteron 6272 CPU and one NVIDIA
Fermi X2090 GPU, each with 512 “Cuda cores” clocked at
1.15 GHz.

Titan is an XK7 16-core AMD Opteron CPUs and NVIDIA
Tesla K20 GPU. The Cray XK7 system contains 18,688 nodes,
with each holding a 16-core AMD Opteron 6274 processor.
This too has the Gemini interconnect.

Archer is an 3008 node XC30 compute nodes contain two
2.7 GHz, 12-core E5-2697 v2. The Cray Aries interconnect
links all compute nodes in a Dragonfly topology. It has no
attached accelerators.

Swan is primarily a Cray XC series system, however a
subset is configured as an XK7 consisting of 8 nodes each
with an 8 core Intel Xeon E5-2670 and an attached NVIDIA
Kepler K20X, with 2688 732 MHz cores and 6 GB of memory.

B. Intra-node Programming Model Experiments

A small and large representative square-shock benchmark
test case has been taken from CloverLeaf’s input suite. These
have 960% and a 38402 meshes respectively, simulating a shock
propagating from high-density region of ideal gas expanding
into a larger, low density region of ideal gas. Execution is for
2955 and 87 timesteps respectively, which for their respective
sizes, give reliable compute time for benchmarking.

Although CloverLeaf is capable of multi accelerated node
runs these experiments were limited to a single card.

We compare performance for OpenACC for Parallel
and Kernel variants for the CCE and PGI compilers. We
also compare the performance of these against alternative
programming methods to achieve acceleration, OpenCL and
CUDA.

1) OpenACC: Table II shows the total run time for the
small test problem for Chilean Pine and Swan. The results for
the two OpenACC compilers for the Parallel and Kernel
construct are shown alongside the CUDA and OpenCL figures.

| MACHINE | CCEP | CCEK | PGIP | PGIK | CUDA | OpenCL |
Chilean Pine | 67.67 86.58 90.89 | 100.33 | 58.07 | 59.95
Swan 46.07 | 4436 61.89 | 47.04 | 3484 | 36.06
TABLE II: Small Test Run Time
| MACHINE | CCEP | CCEK | PGIP | PGIK | CUDA | OpenCL |
Chilean Pine | 31.69 | 32.23 3512 | 397 | 2405 | 26.59
Swan 18.22 19.54 2146 | 1895 | 13.71 14.97

TABLE II: Large Test Run Time

Table III shows the same information as Table II for the large
test problem.

For the small test case on Chilean Pine, CCEs Parallel
version is the fastest OpenACC implementation, followed by
the CCE Kernel version. The PGI Parallel version is
outperformed by its Kernel version, but both fall short of
the CCE times, by approximately 25% for the two best cases.
The hand coded OpenCL and CUDA both outperform all the
OpenACC implementations. CUDA is about 14% faster than
the best case OpenACC result.

For the small test case on Swan, CCEs Kernel version is
now the fastest OpenACC implementation, and the difference
between CCE and PGI best cases drops to only about 6%. The
PGI Parallel is now outperformed by its Kernel version
again, and the Kernel version has improved significantly
from the Chilean Pine result. The hand coded OpenCL and
CUDA still outperform all the OpenACC implementations, but
CUDA now drops to 21% faster than the best case OpenACC
result.

For the large test case on Chilean Pine the results are
broadly the same but there are noticeable changes in relative
performance compared to the small test. The CCE Parallel
version is still the fastest OpenACC implementation, but now
the CCE Kernel version and the PGI Kernel version are
much closer in performance. Hand coded OpenCL and CUDA
also outperform all the OpenACC implementations. CUDA is
about 24% faster than the best case OpenACC result.

For the large test case on Swan, CCEs Parallel construct
now outperforms its Kernel construct. The PGI Kernel
version is now faster than the CCE Kernel version and only
lags the best CCE result by about 4%. The PGI Parallel
version also performs significantly better for the larger data
set. Clearly, the various implementations are tuned to different
vector lengths. Hand coded OpenCL and CUDA still outper-
form all the OpenACC implementations. CUDA is about 25%
faster than the best case OpenACC result.

All the systems used NVIDA hardware so it is not unex-
pected that CUDA is the most performant option, but OpenCL
only falls short of the CUDA result by about 3% and 9% for
the small and large tests on Chilean Pine respectively, and by
3% and 8% on Swan, but its open status potentially allows a
wider range of platforms to be targeted.

The NVIDIA hardware performed significantly better from
the X2090 to the K20X, achieving a speed up of 2.4 and 1.75
for the two test problems respectively.

C. Multi-node Strong Scaling Experiments

To assess the performance, at scale, of the various program-
ming models and the optimisations techniques examined we
conducted a series of strong-scaling experiments, on the Cray
platforms, using the 153602 cell problem from the CloverLeaf
benchmarking suite. For each job size examined we executed
all versions of CloverLeaf within the same node allocation to
eliminate any performance effects due to different topology
allocations from the batch system.
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Fig. 6: Relative performance improvement of the reference
MPI implementation due to rank reordering on Archer (XC30)

1) Hybrid (MPI+OpenMP) Programming Model: To as-
sess the affect of employing a hybrid programming model
compared to a “flat” MPI model we conducted a series of
experiments on the Archer Cray XC30 platform. Figure 5
shows the relative performance of the hybrid model against
the “flat” MPI result. In this chart a positive result rep-
resents an improvement in performance. This demonstrates
that employing a hybrid programming model can deliver a
significant improvement in performance over the “flat” MPI
model, reaching as much as 20% at some scales. Our results
seem to show the hybrid model initially performing better
than the “flat” MPI model, before the relative performance
falls off and is comparable with the “flat” MPI model at 512
nodes, before increasing again at the higher nodes levels (1024
and 2048 nodes). We speculate that these effects are initially
due to memory savings enabled by the hybrid model and are
due to message aggregation at the higher node counts. All
configurations of our hybrid model which utilise at least 1 MPI
process per Numa region deliver a performance improvement,
however, the configurations which only use 1 MPI process per
node and 24 OpenMP threads across the node, consistently
perform worse compared to the “flat” MPI model. In our
experiments this slowdown was as much as 60% in the worse
case.

2) MPI rank reordering: When a parallel program executes,
MPI tasks are assigned to compute cores within the overall
system. Since compute nodes (which each contain 24 cores
on Archer) may be located on different “islands” within the
Dragonfly topology (Aries network), communication time be-
tween tasks will vary depending not only on node placement,
but also the placement of each task within the allocated nodes.
Intra-node communications should perform more efficiently
compared to inter-node communications due to the increased
bandwidth available via on-node shared memory compared to
the data transfers over the interconnect.

One way to change MPI task placement on cores is to

change the rank ordering, the order in which MPI tasks (or
ranks) are assigned to cores. By default CloverLeaf takes
no account of MPI task-to-node placement when assigning
chunks of the decomposed mesh to MPI ranks. If MPI tasks
are reordered so that neighbouring mesh blocks within the
overall decomposition are co-located on the same node, then
the communication traffic over the interconnect should be
minimised and communication exchange times reduced.

On Cray platforms when a parallel program is executed
the environment variable Mpich_Rank_Reorder_Method de-
termines the order in which tasks are assigned to cores. This
environment variable can be set to an integer ranging between
0 and 3: O represents a round robin allocation, 1 is SMP style
and 2 indicates that folded-rank should be used, SMP style is
the default option. Setting this variable to 3 allows a custom
rank reordering to be employed which is read in from a file
by the job on startup.

The custom rank reordering file can be generated either
manually or automatically using Cray tools. Cray provides the
Grid_order tool to manually explore alternative placement
options. Additionally Cray’s CrayPAT suite of tools can be
used to automatically generate a suggested rank reordering
placement. This can be achived by building the applica-
tion with the perftools module loaded then using the
pat_build tool to produce an instrumented binary. Next
the instrumented binary can be executed using the default rank
order method to produce a profile. Finally pat_report can
be used to generate two recommended rank orders: d and u.
Figure 7 shows this workflow diagrammatically.

To assess the affect on performance of the rank reordering
optimisation on CloverLeaf we conducted a series of strong-
scaling experiments using the Archer Cray XC30 platform. In
these experiments we used the Grid_order tool to manually
generate a custom rank reordering file. As the Cray XC
platform (Archer) used in these experiments has 24 cores per
node, we specified the local blocks of chunks assigned to each
node to have dimensions of 4x6 chunks, as shown in figure 8.

We then executed the reference MPI implementation of
CloverLeaf using both the default rank ordering and the new
custom rank reordered placement file. Figure 6 shows the
results of these experiments. This shows that as the scales of
the experiments are increased the rank reordering optimisation
has a greater affect on overall performance relative to the
default ordering. In our experiments the performance improve-
ment reached 16.8% and 14.4% at the 1024 and 2048 node
experiments respectively. It is the view of the authors’ that this
represents a relatively straightforward mechanism with which
to improve the performance of applications at scale, as it does
not actually involve any changes to the code of the application.

3) Cray Reveal: Hybrid programming (MPI+OpenMP) has
been recognised as a potential solution for improving the scala-
bility and performance of parallel scientific applications. It has
also been recognised that incorporating OpenMP directives
into existing MPI applications is an extremely complex and
time consuming task. To alleviate this problem Cray developed
the Reveal tool to automatically hybridise applications.
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Reveal is included in CrayPat v6+ as part of the Perftools
tool suite and must be used with the Cray compiler suite. It
allows compiler feedback information to be viewed along with
performance information.

It helps to identify time consuming loop blocks, with
compiler feedback on dependency and vectorisation, however
the loop scope analysis was the main functionality used in
this study. This provides variable scope and compiler directive
suggestions for inserting OpenMP parallelism into a serial or
pure MPI code. Reveal works through a GUI which gives
scoping assistance and suggests directives that can be added.
It is not intended as a full solution but as a guide to improve
programmer productivity.

The tool successfully scoped all of the loop blocks within

the “flat” MPI version of CloverLeaf with the exception of
three variables which it requested user assistance for. After
specifying scoping information for these additional variables
the generated code was tested and verified to be correct. It
recognised all reductions correctly and did not require any
atomics or critical sections, which was the correct solution.

Overall Reveal is very easy to use and successfully hy-
bridised the full codebase of CloverLeaf within a couple
of hours. This could potentially be reduced significantly if
the tool had a mechanism which allowed all the files of
an application to be queued up and analysed automatically.
Currently however each file needs to be analysed separately.

The main issue encountered, however, was that the tool is
currently unable to assess whether multiple separate parallel
loop blocks could be included within one larger parallel region.
Consequently the generated code wraps each parallel loop
block within its own parallel region which potentially increases
thread synchronisations and overheads. The ability to detect
race conditions would also be a useful addition to the tool as
would the inclusion of support for OpenACC.

In these experiments we conducted a series of strong-scaling
experiments to assess the performance of the hybrid version
of CloverLeaf produced by Reveal from the reference “flat”
MPI implementation of CloverLeaf. We again used the 153602
benchmark problem from the CloverLeaf suite and executed all
of the application runs within the same node allocation from
the batch system to eliminate the effect of different topology
allocations.

We compared the performance of the hybrid version of
CloverLeaf produced by Reveal with that of our hand-coded



hybrid version on the Archer Cray XC30 platform. Figure 9
shows the results of these experiments.

Overall the hybrid version produced by Reveal was sur-
prisingly performant, it was consistently within 2% of the
performance of the hand-coded hybrid version. On occasions,
however, this performance disparity slipped to 8%

VI. CONCLUSIONS AND FUTURE WORK
A. OpenACC

While performance is important, for a new programming
standard like OpenACC, the convergence of the standard
across a range of compilers is an equally important factor for
portability.

CCE provided the best performance on both test problems
and both platforms, but for the large data set size on Swan
all the run times were close and the PGI Kernel version
ran quicker than the equivalent CCE version. This shows that
value has been added by all providers and also that there is
room for improvement in performance towards the low level
representations. The CUDA and OpenCL versions achieve a
higher level of performance across all four test configurations,
but never more than 25% better.

It is eighteen months since the first OpenACC implemen-
tation of CloverLeaf was developed on the Cray compiler. At
this time other compilers either refused to compile the code or
crashed at run time or produced the wrong answer. This was
partly due to the fact that the code was originally developed
on the Cray compiler and the immaturity of the compilers in
general. Another reason was the starting point of OpenMP at
the loop level, which maps more readily to the Parallel
construct. If another compiler had been chosen as a starting
point then the same outcome would have occurred, it would
work on that compiler and not the others.

We now have a single source for the Parallel and the
Kernel construct versions that works without modification
on both compilers and delivers similar run times. OpenACC
has matured significantly in both its portability and perfor-
mance, which is major step forward. To achieve this, the source
tended towards the lowest common denominator which had
some minor impact on performance. Once the initial optimisa-
tions that re-factored the essentially serial algorithm into a data
parallel algorithm had been implemented, the actual computa-
tional kernels changed very little between versions. The fact
that the re-factored code also performed better on a traditional
CPU showed that the same optimisations are important on
all platforms, though the impact of poorly optimised code is
less noticeable than on many core architectures. It should be
noted that the Parallel and Kernel constructs are not
mutually exclusive, and can be mixed and matched depending
on individual accelerator region performance, and optimal
constructs could be used depending on specific compiler and
target architecture configurations, as part of an optimisation
strategy.

The easy translation from OpenMP to OpenACC and then
into Offload and OpenMP 4.0 is a major boon for OpenACC

and it is hoped that it will converge with OpenMP 4.0 in the
coming years.

We have shown that mini-apps allow us to rapidly mea-
sure the reduction in performance due to abstraction. They
also enable us to provide value in compiler and runtime
development by allowing multiple versions to be evaluated
in different programming models. Vendors have used these
multiple versions to enhance their OpenACC implementations.

We have also shown that simple Fortran kernels, which as a
whole, make up a valid scientific application, albeit it in mini-
app form, can use OpenACC as a abstraction to the hardware
and low level programming models, with an acceptable level
of performance.

CloverLeaf contains an internal profiler which records total
run times of individual kernels. In the future we will carry out
a kernel to kernel comparison to see if the relative differences
in performance between CCE, PGI, CUDA and OpenCL can
be explained, based on kernel function. Currently we are only
using one element of the compute node, the GPGPU. We also
intend to investigate using all the compute on a heterogeneous
node.

The compiler vendors are also planning to provide a wider
range of back-ends including PTX, LLVM, SPIR, OpenCL and
CUDA. This will allow us to target a wider range of hardware,
not limited to GPGPUs and NVIDIA devices in the future.

B. Multi-node Strong Scaling Experiments

Our strong scaling experiments demonstrate the utility of
the hybrid (MPI+OpenMP) programming model. In our ex-
periments the performance of the hybrid (MPI+OpenMP) is
consistently superior to that of the “flat” MPI implementation.
With performance improvements due to hybridisation reaching
as much as 20% at some scales. At 512 nodes however the
performance of both versions is broadly similar. Below this
we believe the performance improvements are due to mem-
ory savings, whilst above this we attribute the performance
improvement to the superior message aggregation which the
hybrid approach delivers.

Cray’s Reveal tool also provided a very robust and reliable
method of automatically producing a hybrid (MPI+OpenMP)
version of the code from the original “flat” MPI version.
Although the code had already been re-factored to remove
data dependencies and atomics, it successfully threaded all the
kernels correctly. Its inability to check dependencies between
parallel loops does mean that some unnecessary synchroni-
sations are included, however we feel that the application
programmer is probably best placed to assess potential race
conditions. Its full definition of private and public variables
around the OpenMP loop constructs is also a very useful
feature. We feel that it should also be relatively straightforward
to convert the hybrid code produced by Reveal to a full
OpenACC based implementation. It would therefore also be
extremely useful if Reveal was able to recognise when data
transfers would be required between host and accelerator
devices.
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on Archer (XC30)

As we approach the era of Exascale computing improv-
ing the scalability of applications will become increasingly
important in enabling applications to effectively harness the
parallelism available in future architectures and to achieve
the required levels of performance. Our experiments also
demonstrate the importance of selecting a process-to-node
mapping which accurately matches the communication pattern
inherent in the application, particularly at scale. In this work
we have demonstrated that Cray’s Grid_order tool can be
effective is producing MPI rank reorder files to achieve this.

Additionally, developing hybrid applications which are able
to effectively harness the computational power available in
attached accelerator devices such as GPUs will also become
increasingly important.

Overall, we feel that MPI is still the most likely candidate
programming model for delivering inter-node parallelism go-
ing forward towards the Exascale era. Hybrid programming
approaches primarily based on OpenMP will also become
increasingly important and can, as this work has shown, deliver
significant performance advantages at a range of different
job scales. We also feel that utilising, in some form, the
computational power available through the parallelism inherent
in current accelerator devices will be crucial in reaching
Exascale levels of performance. However a performant open
standards based approach will be vital in order for large
applications to be successfully ported to future architectures.
In this regard OpenACC shows promise, however, we eagerly
await the inclusion of accelerator directives into OpenMP
implementations.

In future work, using CloverLeaf, we plan explore additional
alternative rank-to-topology mappings which may deliver fur-
ther performance benefits e.g. increasing the number of net-
work hops between neighbouring processing may effectively
increase the bandwidth available to each process by increasing
the number of communication paths available to them. This
may present an interesting trade-off against the increased
communication latency in such an arrangement. To determine
whether our hypotheses are correct, regarding the causes of the
performance disparities presented here, we plan to conduct
additional experiments to produce detailed profiles of the

various implementations. We also plan to experiment with
Reveal on a code that hasn’t yet been optimised to be fully data
parallel, as would be the case for most legacy and production
codes.
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