
Optimising Hydrodynamics Applications for
the Cray XC30 with the Application tool Suite

Wayne Gaudin, Andy Herdman, Olly Perks – AWE
Andy Mallinson, Stephen Jarvis – University of Warwick
Simon McIntosh-Smith, Michael Boulton – University of Bristol
John Levesque - Cray

Abstract

Power constraints are forcing HPC systems to continue to increase hardware
concurrency. Efficiently scaling applications on future machines will be essential for
improved science and it is recognised that the “flat'' MPI model will start to reach its
scalability limits. The optimal approach is unknown, necessitating the use of mini-
applications to rapidly evaluate new approaches. Reducing MPI task count through the
use of shared memory programming models will likely be essential. We examine different
strategies for improving the strong-scaling performance of explicit Hydrodynamics
applications. Using the CloverLeaf mini-app across multiple generations of Cray
platforms (XC30, XK6 and XK7), we show the utility of the hybrid approach and
document our experiences with OpenMP, CUDA, OpenCL and OpenACC under both the
PGI and CCE compilers. We also evaluate Cray Reveal as a tool for automatically
hybridising HPC applications and Cray's MPI rank to network topology-mapping tools for
improving application performance.

3

Agenda
§  Background and motivation
§  OpenACC performance evaluation
§  XK6, XK7 and XC30 comparison

§  Hybrid programming models
§  Cray tool-chain evaluation

§  Reveal
§  Rank Reordering

§  Conclusions
§  Future work

Background & Motivation
§  Exascale challenge

§  We need to maintain and develop production (legacy) codes
§  In an ever evolving environment

§  New hardware – 3 levels of parallelism
§  New programming models – too many choices

§  That maintains portable performance
§  While maximising scientific productivity
§  Looking for a suitable level of abstraction and tools to achieve this

§  At the core and node level
§  At the interconnect level

§  We adopt a Co-design approach
§  Internally using multi-disciplinary teams
§  Externally with peers and academia
§  And industry - working with Cray/Nvidia/PGI/Intel in this instance

5

Background & Motivation
§  Assess node level parallel models

§  OpenMP
§  OpenACC
§  OpenCL
§  CUDA

§  Improve the strong-scaling performance of CloverLeaf (and other
applications)

§  Evaluate hybrid programming models at scale
§  Interested in evaluating new tools which can assist with software

development and maintenance
§  Two Cray tools examined as part of this work:

§  Reveal
§  Grid_order

CloverLeaf
§  Mini-app to solve Euler’s equations on a structured grid
§  Our code base is FORTRAN
§  Uses an explicit finite volume method

§  In 2D
§  Using stencil operations
§  On a staggered grid

§  Domain decomposed
§  Local halo exchange using MPI

§  Refactored to be
§  Data parallel
§  Compute optimised
§  Memory access optimised

§  But remains memory bound – typical of our applications

CloverLeaf Test Problem
§  Plot of density

§  Propagating
shock wave

§  Reflections leads
to interacting
shocks

Programming Models
§  MPI

§  Minimises communication surface area
§  No explicit barriers in compute – only in WaitAll
§  And scalar reduction for timestep control

§  OpenMP+MPI
§  OpenACC+MPI
§  CUDA+MPI
§  OpenCL+MPI
§  Plus others not used in this talk (CAF, SHMEM)

Target Hardware
§  Chilean Pine:

§  40 Node XK6
§  X2090
§  Gemini Interconnect

§  Titan:
§  18,000 Node XK7
§  K20X
§  Gemini Interconnect

§  Swan:
§  8 Node XC30
§  K20X
§  Aries Interconnect

§  Archer:
§  3008 Node XC30
§  No GPUs
§  Aries Interconnect

Performance Portability of OpenACC
§  OpenACC is a relatively new standard
§  CloverLeaf implementation evolved from OpenMP

version
§  We assess the CCE and PGI compilers

§  Across XK6 and XK7
§  On two problems sizes

§  We compare KERNEL and PARALLEL models
§  That evolved from vendor specific directives

§  Assess performance portability
§  against performance of native/low level models

OpenACC – does it meet our criteria?
§  Portability

§  Single Source
§  Across many platforms

§  Performance
§  Against native

§  Productivity
§  FORTRAN – continue to develop physics
§  Simple pragmas
§  Expert knowledge of hardware not essential

OpenACC Results – Small Test 960x960
CCE
PARALLEL

CCE
KERNEL

PGI
PARALLEL

PGI
KERNEL

CUDA OpenCL

XK6 67.67 86.58 90.89 100.33 58.07 59.95

XC30 46.07 44.36 61.89 47.04 34.84 36.06

§  CUDA is fastest is both platforms
§  OpenCL is close
§  CCE is fastest OpenACC
§  PGI much closer on XC30

OpenACC Results – Large Test 3840x3840
CCE
PARALLEL

CCE
KERNEL

PGI
PARALLEL

PGI
KERNEL

CUDA OpenCL

XK6 31.69 32.23 35.12 39.17 24.05 26.59

XC30 18.22 19.54 21.46 18.95 13.71 14.97

§  CUDA is fastest is both platforms
§  OpenCL is close
§  CCE is fastest OpenACC
§  PGI much closer on XC30 and better for larger data set

14

Take away points
§  Maturing compilers now allow

§ Single source OpenACC
§ For KERNEL and PARALLEL models

§  OpenACC provides portable performance
§ Within 25% of best native version

§  Allows developers
§ To continue to develop in a known language
§ As long as they understand data parallelism

Strong Scaling of Hybrid Code
§  Interested in improving the strong scaling at scale

§  15360x15360 mesh

§  We compare “Flat” MPI model against
§  MPI+OpenMP

§  Varying MPI/Thread balance

§  Demonstrate performance on hybrid architecture
§  MPI+OpenACC vs MPI+CUDA

§  One MPI task per GPU

16

Strong Scaling of Flat MPI

1

10

100

128 256 512 1024 2048 4096
Sp

ee
du

p
Sockets

Archer (XC30): Speedup

MPI Speedup
Linear

0

50

100

150

200

250

300

350

400

128 256 512 1024 2048 4096

W
al

l-t
im

e
(s

)

Sockets

Archer: MPI

MPI

17

Hybrid OpenMP vs MPI: Results

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

128 256 512 1024 2048 4096

R
el

at
iv

e
Sp

ee
du

p
(%

)

Sockets

Archer: Hybrid (MPI+OMP) vs MPI

MPI_OMP_1mpi MPI_OMP_2mpi MPI_OMP_4mpi MPI_OMP_6mpi MPI_OMP_12mpi

Scaling on Titan – XK7
Strong and Weak Scaling

0

5

10

15

20

25

30

35

40

1 10 100 1000 10000 100000

Nodes

Ti
m

e

OpenACC Weak Scaling
CUDA Weak Scaling
OpenACC Strong Scaling
OpenACC Strong Scaling

19

Take away points
§  Hybrid (MPI+OMP) delivering some performance

advantages on the XC30
§  Hybrid (MPI+OpenACC/CUDA) is essential for

accelerated machines and scales well
§  Use of a mini-app was crucial in enabling this

analysis to be conducted in a timely, efficient
manner

20

Cray Tool-chain Evaluation
§  Reveal:

§  A tool for automatically hybridising (MPI+OMP) applications
§  Hybridised the flat MPI version and compared its

performance to a hand-coded hybrid version
§  Grid_order:

§  Automatically generates a MPI rank reorder file
§  Used to improve the mapping between the application and

the physical machine topology
§  minimise off-node communications

Reveal
§  Helps the hybridisation of applications through a GUI
§  Helps to identify time consuming loop blocks and

dependencies
§  It is intended as helper and a guide
§  The loop scope analysis was the main functionality used

§  Provides variable scope and compiler directives
§  Suggests pragmas for inserting OpenMP parallelism into codes
§  Provides scoping assistance
§  Requests user assistance for unresolved variables
§  Writes the directives into the source

§  Tested and verified to be correct
§  CloverLeaf fully converted within a couple of hours

22

Cray Tool-chain Evaluation Results

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

128 256 512 1024 2048

R
el

at
iv

e
Sp

ee
du

p
(%

)

Sockets

Archer: Reveal vs hand-coded hybrid version

Reveal_2mpi_12omp Reveal_4mpi_6omp Reveal_6mpi_4omp

23

Cray Tool-chain Evaluation Results

0

2

4

6

8

10

12

14

16

18

512 1024 2048 4096 8192

R
el

at
iv

e
Sp

ee
du

p
(%

)

Sockets

Mira: Reveal vs hand-coded hybrid version

Reveal_16ppn_2omp Reveal_16ppn_4omp

24

Rank Reordering
§  Rank Reordering Process:

§  Automated or manual approaches

§  Automated:
Normal build è CrayPAT build è CrayPAT.xf files è pat_report

 ê
 Run the program ç Normal build ç Rank-reorder files

25

Rank Reordering
§  Manual:

§  Using knowledge of the application comms pattern pass input
parameters to Grid_order

§  Use Grid_order to manually generate a rank-reorder file
§  6x4 blocking used due to 24 core nodes on Archer (XC30)
§  Minimise off-node communication

26

Cray Tool-chain Evaluation: Results

0

2

4

6

8

10

12

14

16

18

128 256 512 1024 2048 4096

R
el

at
iv

e
Sp

ee
du

p
(%

)

Sockets

Archer: MPI rank reordering

Rank reordering

27

Take away points
§  Reveal and Grid_order are both extremely easy to use
§  Reordering MPI ranks to improve communication locality can

deliver significant performance advantages at scale
§  The hybrid version produced by Reveal can deliver

comparable performance to the hand-coded version on the
XC30 and superior performance on the BG/Q

§  Could potentially reduce hybrid code development
significantly

§  Reveal only operates on individual loop nests
§  It is not currently able to extend OpenMP parallel regions

across multiple blocks of loop nests

Conclusion
§  OpenACC

§  Is portable
§  Allows use of familiar language
§  And performance is acceptable

§  Hybrid code
§  Scales better
§  Is more amenable to attached devices

§  Reveal provides
§  A big first step into developing Hybrid code
§  A gateway to an OpenACC code

§  Rank reordering improves performance
§  Free lunch

29

Future Work
§  Expand OpenACC code suite to:

§  New platforms
§  New algorithms

§  Further optimise the hybrid code
§  Explore whether data placement can be improve in the

hybrid version
§  Improve locality for full node OpenMP

§  Conduct a similar study on the 3D version of CloverLeaf
§  MPI 3.0 one-sided operations
§  Examine MPI configuration comms/comp overlap
§  Continue to increase scale of the experiments
§  Further tool evaluation on legacy code

Acknowledgments
§  Cray

§  Alistair Hart
§  John Levesque
§  Cray Partner Network

§  PGI
§  Doug Miles
§  Michael Wolfe
§  Craig Toepfer
§  Matt Colgrove

§  NVIDIA
§  Thomas Bradley
§  Tim Lanfear

31

Thanks For Listening …

§  Any Questions?

