
CP2K PERFORMANCE
FROM CRAY XT3 TO XC30
Iain Bethune (ibethune@epcc.ed.ac.uk)
Fiona Reid
Alfio Lazzaro

Outline
• CP2K Overview

•  Features
•  Parallel Algorithms

• Cray HPC Systems
•  Trends

• Water Benchmarks
•  2005 – 2013

• Comprehensive Benchmarking
•  XE6 vs XC30

• CP2K with Accelerators

CP2K Overview

“CP2K is a program to perform atomistic and molecular
simulations of solid state, liquid, molecular, and biological
systems. It provides a general framework for different
methods such as e.g., density functional theory (DFT) using
a mixed Gaussian and plane waves approach (GPW) and
classical pair and many-body potentials.”

From www.cp2k.org (2004!)

CP2K Overview •  Many force models:
•  Classical
•  DFT (GPW)
•  Hybrid Hartree-Fock
•  LS-DFT
•  post-HF (MP2, RPA)
•  Combinations (QM/MM, mixed)

•  Simulation tools
•  MD (various ensembles)
•  Monte Carlo
•  Minimisation (GEO/CELL_OPT)
•  Properties (Spectra, excitations …)

•  Open Source
•  GPL, www.cp2k.org
•  1m loc, ~2 commits per day
•  ~10 core developers

CP2K Overview •  Many force models:
•  Classical
•  DFT (GPW)
•  Hybrid Hartree-Fock
•  LS-DFT
•  post-HF (MP2, RPA)
•  Combinations (QM/MM, mixed)

•  Simulation tools
•  MD (various ensembles)
•  Monte Carlo
•  Minimisation (GEO/CELL_OPT)
•  Properties (Spectra, excitations …)

•  Open Source
•  GPL, www.cp2k.org
•  1m loc, ~2 commits per day
•  ~10 core developers

CP2K Overview
• HECToR Phase 3 code usage (Nov 2011-Mar 2014)

• CP2K usage £1.6m notional cost
•  (+ £2.4m on Phase 2)

Rank Code Node
hours

Fraction of
total

Method

1 VASP 5,822,878 19.34% DFT
2 CP2K 2,222,059 7.38% DFT
3 GROMACS 1,594,218 5.29% Classical
4 DL_POLY 1,359,751 4.52% Classical
5 CASTEP 1,351,163 4.49% DFT

CP2K Overview
• QUICKSTEP DFT: Gaussian and Plane Waves Method

(VandeVondele et al, Comp. Phys. Comm., 2005)
•  Advantages of atom-centred basis (primary)

•  Density, KS matrices are sparse
•  Advantages of plane-wave basis (auxiliary)

•  Efficient computation of Hartree potential
•  Efficient mapping between basis sets

•  -> Computation of the KS Matrix is O(nlogn)

• Orbital Transformation Method (VandeVondele & Hutter, J. Chem.
Phys., 2003)
•  Replacement for traditional diagonalisation to orthogonalise wave

functions
•  Cubic scaling but ~10% cost

CP2K Overview
•  (A,G) – distributed

matrices
•  (B,F) – realspace

multigrids
•  (C,E) – realspace data

on planewave
multigrids

•  (D) – planewave grids

•  (I,VI) – integration/
collocation of
gaussian products

•  (II,V) – realspace-to-
planewave transfer

•  (III,IV) – FFTs
(planewave transfer)

CP2K Overview
• Distributed realspace grids

•  Overcome memory bottleneck
•  Reduce communication costs
•  Parallel load balancing

•  On a single grid level
•  Re-ordering multiple grid levels
•  Finely balance with replicated tasks

Data layout in CP2K:
realspace grids (III)

Load balance work done on these grids!
Assign different regions of space at each level to the same MPI rank,
further balance on replicated grids

1 2 3

654

7 8 9

Level 1, fine grid, distributed Level 2, medium grid, dist Level 3, coarse grid, replicated

5 6 8

713

9 4 2

grids are allocated on each process corresponding to their virtual ranks. There are a
number of changes required in the realspace to planewave transfer routines to ensure
that the reordered grid data is sent to the correct process for transferring to the plane
wave grid, but this is facilitated by the use of a pair of mapping arrays real2virtual

and virtual2real which are members of the real space grid data structure and are used
to convert between the two orderings as needed.

For the same problem as above, using the new load balancing scheme, the load on
the most overloaded process is reduced by 30%, and this is now only 3.5 times the load
of the least loaded process. For this particular problem it is not possible to find a perfect
load balance, as there is a single grid level block which has more load associated with
it than then total average load. It is possible to overcome this by setting up the grid
levels so that they are more closely spaced, and thus there is less load on each grid level.
However, this comes at an increased memory cost for the extra grid levels and also affects
the numerics of the calculation slightly (1 in 106). As shown in figures 5 and 6 if it is
possible to balance the load perfectly, then this algorithm will succeed.

After load_balance_distributed

Maximum load: 1165637

Average load: 176232

Minimum load: 0

After load_balance_replicated

Maximum load: 1165637

Average load: 475032

Minimum load: 317590

Figure 5: W216 load balance on 16 cores - perfect load balance achieved

14

CP2K Overview
•  Fast Fourier Transforms

•  1D or 2D decomposition
•  FFTW3 and CuFFT library interface
•  Cache and re-use data

•  FFTW plans, Cartesian
communicators

• DBCSR
•  Distributed Sparse MM based on

Cannon’s Algorithm
•  Local multiplication recursive, cache

oblivious
•  libsmm for small block

multiplications

from a compilation on the XE6 TDS system. Especially for small block sizes (or blocks
where one or more dimensions is small) we find that libsmm outperforms the BLAS in
Cray’s libsci by up to 10 times. Similar results have been found comparing with e.g.
MKL on an Intel platform. For larger block sizes, the performance tends towards Libsci
BLAS indicating that a faster method could not be found. It should be noted that in the
limit of very large blocks (1000x1000), DGEMM achieves around 12.8 GLOP/s, which is
around 5.5 FLOPs/cycle, indicating that the library is making use of the AMD Bulldozer
architecture’s FMA4 instructions since for these tests only a single thread is running.

0"

1"

2"

3"

4"

5"

6"

7"

8"

1,1
,1"

1,9
,9"

1,2
2,2
2"

4,9
,6"

4,2
2,1
7"

5,9
,5"

5,2
2,1
6"

6,9
,4"

6,2
2,1
3"

9,9
,1"

9,2
2,9
"

13
,6,
22
"

13
,22
,6"

16
,6,
17
"

16
,22
,5"

17
,6,
16
"

17
,22
,4"

22
,6,
13
"

22
,22
,1"

GF
LO

P/
s(

M,N,K(

Libsmm(vs.(Libsci(DGEMM(Performance(

SMM"(Gfortran"4.6.2)"

Libsci"BLAS"(11.0.04)"

Figure 5: Comparing performance of SMM and Libsci BLAS for block sizes up to 22,22,22

Libsmm is distributed with the CP2K source package, and a version of the library
optimised for the current HECToR Phase 3 ‘Interlagos’ processors can be found in
/usr/local/packages/cp2k/2.3.15/libs/libsmm/.

3.1.3 Threading

Recall that DBCSR matrices are decomposed by rows, which each row being ‘owned’
by a specific OpenMP thread. The current load balancing strategy (rows are assigned
weighted by the block size of each row) results in some load imbalance since it does not
take account of the sparsity of each row.

When investigating how to improve the load balance it was discovered that thread 0
was consistently taking longer than the other threads by up to 20% (even for artificial in-
puts which are perfectly load balanced). Careful inspection of the code revelead this was
due to timing routines called by every thread which contained !$omp master directives.

10

CP2K Overview
• OpenMP

•  Now in all key areas of CP2K
•  FFT, DBCSR, Collocate/Integrate, Buffer Packing
•  Incremental addition over time

2!

20!

10! 100! 1000! 10000! 100000!

Ti
m

e
pe

r M
D

st
ep

 (s
ec

on
ds

)!

Number of cores!

XT4 (MPI Only)!
XT4 (MPI/OpenMP)!
XT6 (MPI Only)!
XT6 (MPI/OpenMP)!

Cray HPC Systems
Table I

CRAY SYSTEM SPECIFICATIONS AT EPCC AND CSCS

Name Arch. Processor Clock Nodes Cores/ Peak GFlop/s/ Year
(GHz) Node TFlop/s Node

XT3 Stage 0 XT3 AMD Opteron 146 2.0 84 1 0.336 4.0 2005
XT3 Stage 1 XT3 AMD Opteron 152 2.6 1100 1 5.72 5.2 2006
Piz Palü XT3 AMD Opteron 185 Dual Core 2.6 1664 2 17.31 10.4 2007
HECToR Phase 1 XT4 AMD Opteron 1220 “Santa Ana” Dual Core 2.8 5664 2 63.44 11.2 2007
HECToR Phase 2a XT4 AMD Opteron 2356 “Barcelona” 4-Core 2.3 5664 4 104.22 18.4 2009
Monte Rosa XT5 AMD Opteron 2431 “Istanbul” 6-Core 2.4 1844 12 212.43 115.2 2009
HECToR Phase 2b XT6 AMD Opteron 6172 “Magny-Cours” 12-Core 2.1 1856 24 374.17 201.6 2010
Piz Palü1 XE6 AMD Opteron 6272 “Interlagos” 16-Core 2.1 1496 32 402.12 268.8 2011
HECToR Phase 3 XE6 AMD Opteron 6276 “Interlagos” 16-Core 2.3 2816 32 829.03 294.4 2011
Tödi XK7 AMD Opteron 6272 “Interlagos” 16-Core 2.1 272 16 392.90 1444.5 2012

+ NVIDIA Tesla K20X (+14)
Piz Daint XC30 Intel Xeon E5-2670 “Sandy-Bridge” 8-Core 2.6 5272 8 7788.90 1477.4 2013

+ NVIDIA Tesla K20X (+14)
ARCHER XC30 Intel Xeon E5-2697 v2 “Ivy-Bridge” 12-core 2.7 3008 24 1559.35 518.4 2013

The results will be discussed in section VI.

III. CRAY HPC SYSTEMS

CP2K has a long association with the Cray XT series
of systems due to its popularity as both CSCS and EPCC.
CP2K is the most widely used code at present on the CSCS
systems Monte Rosa and Piz Daint, and usage has grown
over the lifetime of the EPCC HECToR service from 4th
to 2nd most popular code (measured by total CPU usage).
In Table I we compile the specifications and performance
of several generations of the Cray MPP architecture starting
with the XT3 in 2006 through to the current day XC30. A
number of trends are immediately apparent:

• Clock speed and cores per node. Barring the earliest
XT3, there has been a steady decrease in CPU clock
speeds, until the transition to Intel CPUs with the
XC30. However, the number of cores per node has
continued to increase. This corresponds to decreasing
power utilisation of each individual core, allowing more
cores to be packed into each compute node within a
fixed thermal envelope. As discussed earlier, this trend
one of the reasons why a mixed-mode MPI/OpenMP
strategy has been implemented in CP2K.

• Per-node performance. These two factors, combined
with increasing FLOPs per cycle - initially 2, then 4
on the Istanbul and later, and 8 on the Intel CPUs.
Note that while AVX instructions were introduced in
the AMD Interlagos (Bulldozer) core, the architecture
shared a floating point unit between every two cores,
keeping the peak FLOPs per cycle to 4. In the 9 years of
data presented, the per-node performance has increased
by a factor of 130 (or 370 if GPUs are included). This

1This system was subsequently renamed and is current known as Monte
Rosa.

equates to a doubling of per-node performance at every
15 months. Clearly Moore’s law continues to hold, even
the extra transistors come in the form of more cores
rather than improved serial performance! To harness the
extra performance available from vectorization requires
a combination of compiler, library, and source code
support. In the case of CP2K, with a recent version of
GNU gfortran or Intel ifort, a large percentage of
the code can be vectorized directly by the compiler. For
some operations, e.g. FFT, we impose particular align-
ment requirements on the arrays passed to the FFTW
library to allow vector instructions to be used. Finally,
some kernels such as the small matrix multiplications
implemented in libsmm are generated with an vector
length set at configure time to allow the compiler to
vectorize for a given architecture.

• AMD-Intel transition. While the per-node perfor-
mance increased with each new system, users were
accustomed to finding their calculations running at a
similar speed or even slower due to reductions in clock
speed. This changed dramatically at the step from XE6
to XC30, where not only did clock speeds increase for
the first time in years, but also the improved hardware
AVX implementation resulted in a typical improvement
of a factor of two or more (see section V for details). As
mentioned before, the CP2K code was already modified
to support AVX, so hardware transition enabled this
improvement with neglible porting effort.

• Network interface. One detail not explicitly stated
in Table I is the network architecture. The XT archi-
tectures all used a torus network, with the compute
nodes attached by one of the SeaStar family of network
adapters. The XE6 and XK7 use the Gemini router,
and on the XC30, compute nodes are connected in a

18Cray CSCS/PSI confidential

Some Early Cray XT3 Orders
! Swiss National

Supercomputing
Centre (CSCS)
! 12 cabinet, ~6 Tflop/s

system
! First system in Europe
! Q2 Delivery
! 2.6 Ghz Opterons
! Site will host Cray

Workshop in Sept 2005
and CUG in 2006

Water benchmarks
• Born-Oppenheimer MD using Quickstep DFT

•  TZV2P basis set
•  280 Ry planewave cut-off
•  LDA exchange-correlation functional

•  32 up to 2048 water molecules

•  H2O-32 – 96 atoms, 256 electrons, 9.9 Å3

•  Typical problem size in ~2005

•  H2O-2048 – 6144 atoms, 49152 electrons, 39.5 Å3

•  Large, even for 2014!

= typical production settings

Water benchmarks

0.5!

5!

50!

500!

1! 10! 100! 1000! 10000!

Ti
m

e
pe

r M
D

st
ei

p
(s

ec
on

ds
)!

Number of cores!

XT3 Stage 0 (2005)!

XC30 ARCHER (2013)!

H2O-512!

H2O-32!
H2O-64!

H2O-128!

H2O-256!

H2O-32!
H2O-64!

H2O-128!

H2O-256!

H2O-512!

H2O-1024!

H2O-2048!
!

Water benchmarks

0.5!

5!

50!

500!

1! 10! 100! 1000! 10000!

Ti
m

e
pe

r M
D

 s
te

p
(s

ec
on

ds
)!

Number of cores!

XT3 Stage 0 (2005)!
XT3 Stage 1 (2006)!
Piz Palü XT3 (2007)!
HECToR 2a XT4 (2007)!
Monte Rosa XT5 (2009)!
HECToR XT6 (2010)!
Piz Palü XE6 (2011)!
ARCHER XC30 (2013)!

Comprehensive Benchmarking
•  H2O-* benchmarks do not address the range of features

now available in CP2K
•  Classical Force Fields
•  Linear-scaling DFT
•  Hybrid DFT (Hartree-Fock Exchange)
•  Many-body correlation (MP2, RPA)

• Aimed at users
•  Performance expectations HECToR Phase 3 -> ARCHER
•  Presented at 1st Annual CP2K Users Meeting (Jan 2014)

Comprehensive Benchmarking

 100

 1000

 1 10 100

T
im

e
 (

se
co

n
d

s)

Number of nodes used

2TH

2TH
2TH

4TH 2TH
4TH 4TH

4TH
4TH

MPI

4TH

MPI
6TH 6TH 6TH 6TH 6TH 6TH

1.97

1.91

2.02
2.06 2.16 2.02 2.09 2.23 2.04

ARCHER
HECToR Phase 3

Comprehensive Benchmarking

 10

 100

 1000

 10 100 1000 10000

Ti
m

e
(s

ec
on

ds
)

Number of nodes used

Performance comparison of the LiH-HFX benchmark

2TH

2TH

4TH
8TH

4TH

6TH

6TH

6TH

6TH
6TH

2.30

2.60

2.55
2.37

ARCHER
HECToR

Comprehensive Benchmarking

 10

 100

 1000

 10 100 1000 10000

Ti
m

e
(s

ec
on

ds
)

Number of nodes used

Performance comparison of the H2O-LS-DFT benchmark

2TH

2TH

4TH
8TH 4TH

4TH 8TH

6TH

6TH

6TH

6TH

2TH
2TH 4TH

2.00

2.06

2.20

3.30

4.66
3.68 3.45

ARCHER
HECToR

Comprehensive Benchmarking

 10

 100

 1000

 10 100 1000 10000

T
im

e
 (

se
co

n
d

s)

Number of nodes used

2TH

2TH

2TH

4TH

8TH 8TH8TH

MPI

MPI

2TH

2TH
4TH

4TH4TH

2.09

2.20

1.65

1.60
1.49

1.691.71

ARCHER
HECToR Phase 3

CP2K with Accelerators
• Heterogeneous systems well established

•  #1,2,6,7 in TOP 500 use Intel Xeon Phi or NVIDIA K20x GPU
•  XC30 & XK7 dual socket = 2 x CPU or CPU + GPU

• CP2K used during initial validation tests of Piz Daint
•  CUDA GPU support for DBCSR
•  Best performance obtained for LS-DFT calculations
•  Work by Zurich, Cray, NVIDIA & CSCS

CP2K with Accelerators
•  Implementation details:

•  libcusmm for block-level of multiplication (4x better than cuBLAS)
•  CPU fills stacks of smm
•  One GPU per MPI process, utilise cores with OpenMP
•  Asynchronous offload to GPU via CUDA streams
•  Asynchronous communication between nodes

• Benchmarks
•  H2O-DFT-LS (6144 atoms, large blocks)
•  TiO2 (9786 atoms, mixed block sizes)
•  AMORPH (13846 atoms, small blocks)

CP2K with Accelerators

50

500

5000

50 500

Ti
m

e
(s

ec
on

ds
)

Number of nodes used

AMORPH – Only CPU (GPU idle)
H2O-DFT-LS – Only CPU (GPU idle)
TiO2 – Only CPU (GPU idle)
AMORPH – CPU+GPU
H2O-DFT-LS – CPU+GPU
TiO2 – CPU+GPU

CP2K with Accelerators

1.18 1.17

1.25

1.03

1.62

1.38

1.03

1.53

1.65

1.28

1

1.2

1.4

1.6

1.8

64 128 256 512

R
at

io

Number of nodes used in the CPU+GPU configuration

AMORPH

H2O-DFT-LS

TiO2

CP2K with Accelerators

1.54
1.47

1.87

1.59

2.01

1.49

1.92

1.00

1.20

1.40

1.60

1.80

2.00

2.20

64 128 256

R
at

io

Number of nodes used

AMORPH
H2O-DFT-LS
TiO2

Summary & Outlook
• CP2K performance has increased steadily year by year

•  Hardware, software and algorithms all important

• Development has followed architectural trends
•  Multi-core -> OpenMP
•  Heterogeneous nodes -> CUDA
•  Work on Xeon Phi port ongoing

• Collaborative development (co-design?) model
•  End-users, code authors, HPC centres, vendors
•  Funding from PASC, IPCC, ARCHER eCSE

Acknowledgements
This work made use of the facilities of HECToR, the UK's
national high-performance computing service, which is
provided by UoE HPCx Ltd at the University of Edinburgh,
Cray Inc and NAG Ltd, and funded by the Office of Science
and Technology through EPSRC's High End Computing
Programme.

This work used the ARCHER UK National Supercomputing
Service (http://www.archer.ac.uk)

Acknowledgement
We are grateful to CSCS for giving us access to and
supporting our use of a wide range of HPC systems.

The first two authors are supported by the Engineering and
Physical Sciences Research Council ‘CP2K-UK’ project
(grant number EP/K038583/1)

Acknowledgements
Special thanks to Prof. Jurg Hutter and Prof. Joost
VandeVondele for historical benchmark data and access to
compute time for benchmarking and code development.

Thanks for your attention, and…
…any questions?

