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Abstract—CP2K is a powerful open-source program for
atomistic simulation using a range of methods including
Classical potentials, Density Functional Theory based on the
Gaussian and Plane Waves approach, and post-DFT methods.
CP2K has been designed and optimised for large parallel HPC
systems, including a mixed-mode MPI/OpenMP parallelisation,
as well as CUDA kernels for particular types of calculations.
Developed by an open-source collaboration including Univer-
sity of Zürich, ETH Zürich, EPCC and others, CP2K has been
well tested on several generations of Cray supercomputers,
beginning with the XT3 in 2006 at CSCS, through XT4,
XT5, XT/XE6 and XK7, to Ivy-Bridge and Sandy-Bridge
based XC30 systems in 2014. We present a systematic view
of benchmark data spanning 9 years and 7 generations of the
Cray architecture, and report on recent efforts to carry out
comprehensive comparative benchmarking and performance
analysis of CP2K on the XE6 and XC30 systems at EPCC. We
also describe work to enable CP2K for accelerators, and show
performance data from the XK7 and XC30 at CSCS.
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I. INTRODUCTION

CP2K is a popular and capable open source program
for atomistic simulation which has been developed and
deployed on a range of Cray systems installed at CSCS
and EPCC. In section II we describe the features of CP2K,
and a short summary of developments which have improved
performance and scalability. Section III provides a history of
the Cray HPC systems which we have benchmarked CP2K
performance on, and the results of a single benchmark are
presented and discussed in section IV. We also report on
a recent performance comparison exercise on the XE6 and
XC30 platforms using a wider range of benchmark systems
(Section V). Finally in section VI we discuss ongoing
developments to CP2K to harness heterogeneous CPU/GPU
architectures.

II. CP2K OVERVIEW

CP2K [1] is a powerful and scalable program for atomistic
simulations of a wide range of systems, including condensed
phase, molecular systems and complex interfaces. Developed
since 2001 by an international collaboration, CP2K is freely
available under the GNU General Public license from the
CP2K web site [2]. Although written in Fortran 95, CP2K
is designed from the outset in an object oriented manner

to allow easy extensibility and composability of different
methods and algorithms. As a result CP2K features a wide
range of force evaluation models including classical poten-
tials, Semi-empirical schemes, Density Functional Theory,
hybrid DFT-Hartree-Fock and post-HF correlation methods
MP2 and RPA, as well as allowing arbitrary combinations of
these. Built on top of these are many tools including Molec-
ular Dynamics in various ensembles, Monte Carlo, geometry
and cell optimisation, nudged elastic band, and Metadynam-
ics (with PLUMED [3]). CP2K consists of around a million
lines of code, and with an average of two commits per day
to the SVN repository, development is rapid. To support this
a set of over 2400 test input files is used as an automated
regression test suite to ensure continued code correctness(see
[4] for details), and also to provide examples for the growing
user community.

The most widely known feature of CP2K is the QUICK-
STEP [5] implementation of Density Functional Theory.
QUICKSTEP adopts a dual basis approach to solving the
Kohn-Sham equations, where atomic-centred Gaussian basis
functionals are used to represent the wave functions, and an
auxiliary basis of Plane Waves is used to expand the elec-
tronic density and efficiently compute the Hartree energy.
The algorithm for transforming between the Gaussian basis
stored as coefficients in a sparse matrix and Plane Waves
stored on a regular 3D grid makes use of auxiliary 3D
real space grids as a means to store the density before the
Plane Wave coefficients are calculated using a Fast Fourier
Transform. The mapping from matrix elements to the real
space grids is referred to a collocation and the reverse as
integration. As a result, the Kohn-Sham matrix (and total
energy) can be computed in quasi-linear time - the FFT is
O(nlogn) - and so can easily scale to thousands of elec-
trons. In addition to QUICKSTEP, CP2K also implements
the Orbital Transformation [6] method, as an alternative
to the traditional diagonalisation approach to wavefunction
orthogonalisation. While still cubically-scaling, OT has been
demonstrated to outperform diagonalisation by a factor of 10
or more for typical systems. The combination of these two
approaches gives CP2K excellent efficiency and the ability to
simulate large systems within the local DFT approximation.
Efficient parallelisation of these algorithms on contemporary
HPC systems has taken place over a number of years, and



we now describe the key developments.

A. Parallelisation and Optimisation

Many improvements to CP2K have been made incre-
mentally over the years, nevertheless we highlight here a
small number of significant changes which have resulted
in significant performance improvements for QUICKSTEP
calculations.

• Distributed Realspace grids. The realspace grids used
to transfer data between Gaussian and Planewave rep-
resentations were originally implemented as replicated
data multi-grids. For typical calculations, the finest
grids might have a few hundred grid points on each
side, and the coarsest a few tens of points, although
calculations with large unit cells and/or high planewave
cutoffs could be much larger. A multi-grid scheme
is used so that diffuse gaussians can be mapped to
coarse grids and highly peaked gaussian to the finer
grids, supporting each gaussian with approximately
the same number of grid points. Thus good accuracy
can be obtained for minimal computational effort. In
2007 Slater and Watkins [7] implemented a domain
decomposition scheme for the realspace grids, which
allows a 1D, 2D or 3D geometric partitioning to be
used depending on the number of processors. For very
large grids, this overcomes the memory bottleneck
associated with replicated data, but also overcomes
communication costs associated with ensuring every
MPI process has an up-to-date copy of the entire
grid. Since the spatial distribution of basis functions
is system-dependent and typically non-uniform, a load
balancing scheme is employed to distribute the task
of mapping each gaussian to/from the grids as evenly
as possible, subject to the spatial constraints of the
decomposition. Once load balancing is completed at
each grid level, the assignment of grid sections to
processes on subsequent levels may be re-ordered to
pair lightly loaded sections with heavily loaded sections
and reduce the maximum total load per process. Finally,
the coarsest grid level(s) are usually replicated since
they are cheap in memory and communication costs,
and the replicated tasks are used to complete the load
balance. For full details of the scheme see [8].

• Fast Fourier Transforms. Distributed FFT can often
be a bottleneck in DFT calculations due to the need for
MPI_Alltoall operations to globally transpose data
(see [9] for an overview of the issues). CP2K originally
used a 1D (slab) decomposition for the Planewave
grids, which at the time was enough to support MPI
parallelism on 100s of processes. However, to enable
scaling beyond this point, a 2D decomposition and
corresponding two-stage transpose was implemented
by VandeVondele and Hutter in 2008. Although CP2K

includes a quite efficient set of hard-coded FFT rou-
tines, these are typically only used as a fall-back in
case an optimised FFT library is not available. CP2K
has a library-independent FFT interface, which can be
implemented by FFTW3 [10] (including MKL via its
FFTW3-compliant interface) or CuFFT if a CUDA-
capable GPU is present. Additional performance tuning
of FFTW3 by specifying the FFTW plan style are
exposed to the user as options in the CP2K input file,
and plans are cached in an FFT scratch data structure
and may be re-used throughout a calculation.

• OpenMP. While the existing MPI implementation was
designed during the era of ‘traditional’ MPP systems
in the early 2000s, the need to scale further and the
development of multi-core systems with more and more
cores per node meant that a mixed-mode parallelisation
scheme was needed. Some OpenMP support existed
from the very early days of CP2K development, when
the code was run on multi-processor IBM systems
(e.g. the eServer p575, with 32 processors in a shared
memory node), but this was modified, corrected in
some places, and extended to cover all of the core
QUICKSTEP operations [11]. While some parts of the
code are still not fully OpenMP parallel, and this can
be seen by the fact that the mixed-mode code does not
perform as well as pure MPI for runs with relatively
few cores, it offers the possibility to extend scalability
and performance well beyond what can be achieved by
MPI alone, and many of our benchmark results make
use of this.

• DBCSR. Aside from regular grids, the other major
data structures in CP2K are matrices with typical
occupancies of 20-100%. Initially, a block-cyclic de-
composition was used for compatibility with ScaLA-
PACK which handled (dense) linear algebra operations.
However, the sparsity of the matrix was not exploited
in communication, and multiplication of sparse with
dense matrices was handled by bespoke routines which
could become a bottleneck for large systems where
OT dominates. As a result, a new sparse matrix li-
brary DBCSR (Distributed Block Compressed Sparse
Row) was developed by Borstnik et al. [12] starting
in 2009, which takes full advantage of the block-
structured sparse nature of the matrices for efficient
computation and communication. An auto-tuned library
for small block DGEMMs (libsmm) is provided and
has been shown to out perform vendor BLAS by up
to 10x for particular sizes (see [13]). Indeed, a similar
feature has now been implemented in Cray Libsci. A
cache-oblivious recursive algorithm is used for local
multiplication, and the parallelisation scheme is based
on Cannon’s algorithm, to ensure communication scales
as O(logP ) [14]. The DBCSR library has been recently
ported to run on hybrid systems equipped with GPUs,



Table I
CRAY SYSTEM SPECIFICATIONS AT EPCC AND CSCS

Name Arch. Processor Clock Nodes Cores/ Peak GFlop/s/ Year
(GHz) Node TFlop/s Node

XT3 Stage 0 XT3 AMD Opteron 146 2.0 84 1 0.336 4.0 2005
XT3 Stage 1 XT3 AMD Opteron 152 2.6 1100 1 5.72 5.2 2006
Piz Palü XT3 AMD Opteron 185 Dual Core 2.6 1664 2 17.31 10.4 2007
HECToR Phase 1 XT4 AMD Opteron 1220 “Santa Ana” Dual Core 2.8 5664 2 63.44 11.2 2007
HECToR Phase 2a XT4 AMD Opteron 2356 “Barcelona” 4-Core 2.3 5664 4 104.22 18.4 2009
Monte Rosa XT5 AMD Opteron 2431 “Istanbul” 6-Core 2.4 1844 12 212.43 115.2 2009
HECToR Phase 2b XT6 AMD Opteron 6172 “Magny-Cours” 12-Core 2.1 1856 24 374.17 201.6 2010
Piz Palü1 XE6 AMD Opteron 6272 “Interlagos” 16-Core 2.1 1496 32 402.12 268.8 2011
HECToR Phase 3 XE6 AMD Opteron 6276 “Interlagos” 16-Core 2.3 2816 32 829.03 294.4 2011
Tödi XK7 AMD Opteron 6272 “Interlagos” 16-Core 2.1 272 16 392.90 1444.5 2012

+ NVIDIA Tesla K20X (+14)
Piz Daint XC30 Intel Xeon E5-2670 “Sandy-Bridge” 8-Core 2.6 5272 8 7788.90 1477.4 2013

+ NVIDIA Tesla K20X (+14)
ARCHER XC30 Intel Xeon E5-2697 v2 “Ivy-Bridge” 12-core 2.7 3008 24 1559.35 518.4 2013

showing good performance [15]. The results will be
discussed in section VI.

III. CRAY HPC SYSTEMS

CP2K has a long association with the Cray XT series
of systems due to its popularity at both CSCS and EPCC.
CP2K is the most widely used code at present on the CSCS
systems Monte Rosa and Piz Daint, and usage has grown
over the lifetime of the EPCC HECToR service from 4th
to 2nd most popular code (measured by total CPU usage).
In Table I we compile the specifications and performance
of several generations of the Cray MPP architecture starting
with the XT3 in 2006 through to the current day XC30. A
number of trends are immediately apparent:

• Clock speed and cores per node. Barring the earliest
XT3, there has been a steady decrease in CPU clock
speeds, until the transition to Intel CPUs with the
XC30. However, the number of cores per node has
continued to increase. This corresponds to decreasing
power utilisation of each individual core, allowing more
cores to be packed into each compute node within a
fixed thermal envelope. As discussed earlier, this trend
one of the reasons why a mixed-mode MPI/OpenMP
strategy has been implemented in CP2K.

• Per-node performance. These two factors, combined
with increasing FLOPs per cycle - initially 2, then 4
on the Istanbul and later, and 8 on the Intel CPUs.
Note that while AVX instructions were introduced in
the AMD Interlagos (Bulldozer) core, the architecture
shared a floating point unit between every two cores,
keeping the peak FLOPs per cycle to 4. In the 9 years of
data presented, the per-node performance has increased

1This system was subsequently renamed and is current known as Monte
Rosa.

by a factor of 130 (or 370 if GPUs are included). This
equates to a doubling of per-node performance at every
15 months. Clearly Moore’s law continues to hold, even
the extra transistors come in the form of more cores
rather than improved serial performance! To harness the
extra performance available from vectorisation requires
a combination of compiler, library, and source code
support. In the case of CP2K, with a recent version of
GNU gfortran or Intel ifort, a large percentage of
the code can be vectorised directly by the compiler. For
some operations, e.g. FFT, we impose particular align-
ment requirements on the arrays passed to the FFTW
library to allow vector instructions to be used. Finally,
some kernels such as the small matrix multiplications
implemented in libsmm are generated with an vector
length set at configure time to allow the compiler to
vectorise for a given architecture.

• AMD-Intel transition. While the per-node perfor-
mance increased with each new system, users were
accustomed to finding their calculations running at a
similar speed or even slower due to reductions in clock
speed. This changed dramatically at the step from XE6
to XC30, where not only did clock speeds increase for
the first time in years, but also the improved hardware
AVX implementation resulted in a typical improvement
of a factor of two or more (see section V for details). As
mentioned before, the CP2K code was already modified
to support AVX, so hardware transition enabled this
improvement with negligible porting effort.

• Network interface. One detail not explicitly stated
in Table I is the network architecture. The XT archi-
tectures all used a torus network, with the compute
nodes attached by one of the SeaStar family of network
adapters. The XE6 and XK7 use the Gemini router,



and on the XC30, compute nodes are connected in a
‘Dragonfly’ topology (essentially a fat-tree with all-
to-all connectivity near the root of the tree), using
the Aries router chip. While each generation of in-
terconnect has provided increasingly high bandwidth
and low latency communications, these have typically
not been the limiting factor for CP2K at the relatively
modest processor counts discussed in section IV. The
effects of the network were most obvious during the
latter stages of the XT architecture, where the limited
message injection rate (around 500,000 messages per
second for SeaStar2+ compared with 4.5 million per
second for Gemini [16]), combined with the rapidly
increasing number of cores (and MPI ranks) per node,
caused poor scalability of the FFT in CP2K. This effect
could only be overcome by using OpenMP to reduce the
number of MPI processes per node, resulting in fewer,
larger messages traversing the network. However, the
introduction of the XE6 and the Gemini router which
was designed to cope with a wide multi-core architec-
ture overcame the issue entirely. Furthermore, the Aries
network improves the sustained injection bandwidth to
10 GB/sec (3 times that of Gemini), and also gives
a large increase in global bandwidth (up to 20 times
depending on configuration). This can greatly improve
CP2K performance when running at very large scale.

IV. MOLECULAR DYNAMICS OF LIQUID WATER WITH
QUICKSTEP

Since early in the development of CP2K ab-initio molec-
ular dynamics of liquid water using the Born-Oppenheimer
approach has been used as a performance benchmark. It
is easy to scale the system size by simply increasing
the unit cell and adding additional water molecules and
it provides a reasonable all-round test that is typical of
many real-world applications involving condensed phases
and reasonably small atoms. Production quality settings for
the basis sets (TZV2P) and the planewave cutoff (280 Ry)
are chosen, and the Local Density Approximation (LDA)
is used for the calculation of the Exchange-Correlation
energy. The configurations were generated by classical equi-
libriation, and the initial guess of the electronic density
is made based on Atomic Orbitals. The smallest bench-
mark system - H2O-32 - contains 32 water molecules (96
atoms, 256 electrons) in a 9.9 Å3 cell, and the largest -
H2O-2048 - 2048 water molecules (6144 atoms, 49152
electrons) in a 39.5 Å3 cell. These, as well as larger systems
are available as part of the CP2K source distribution in
cp2k/tests/QS/benchmark. In the following Figures
1-3, we plot the time per MD step against the number of
CPU cores used. The diagonal dotted lines indicate perfect
linear scaling. As most of the data reported is from machines
which are now decommissioned, we are of course unable
to fully separate the results of code changes and hardware

effects by running newer versions of code on old systems,
and vice versa. Thus, these results represent snapshots of the
performance achievable on a given system at a given time
with particular versions of code.
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Figure 1. Performance of H2O-32 up to H2O-2048 benchmarks on Cray
XT3 (2005) and Cray XC30 (2013)

In Figure 1 we show the measured time per MD step for
benchmarks ranging from 32 up to 2048 water molecules
on both the initial Cray XT3 system at CSCS from 2005
and the ARCHER XC30 system in 2013. For the smallest
system sizes, where the scalability limit could be reached
on the older machine, we observe an improvement in the
peak performance of over 23 times (H2O-32) or 32 times
(H2O-64). The performance achieved by a single compute
node has increased by a factor of 84. This is around 65%
of the improvement in the peak performance of the compute
nodes, and this is due to the fact that on the XT3 a compute
node has only 1 core, compared with 24 on ARCHER, and
for such a small problem size scaling is not perfect even
up to 24 cores. As well as the aforementioned increase in
on-node performance, CP2K now scales to around 10 times
as many cores due to improvements in network performance
combined with better parallelisation (OpenMP, load balanc-
ing etc.). We note that calculations with large systems which
were completely infeasible 10 years ago are now able to be
performed routinely on today’s systems.

Figure 2 presents a more detailed view of the 64 wa-
ter molecule benchmark, showing performance on selected
systems representing each architectural revision from XT3
through to XC30. Here we can clearly see the gradual
improvements in scaling and performance from generation
to generation, as well as the marked leap in performance
from the AMD-based XT and XE systems to the Intel-based
XC30. One interesting point to note is the relatively poor
scaling of the code on the XT6 compared to the XT4 and
XT5. This is due to the relatively under-powered SeaStar
network adapter discussed in section III, and the XE6 with
the Gemini network scales much better, despite having even
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Figure 2. Performance of H2O-64 on selected Cray systems

more cores per node.
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Figure 3. Performance of H2O-64 on XT4 and XT6 with and without
OpenMP

This effect is illustrated very clearly in the XT4 and XT6
results (Figure 3). On the XT4 with 4 cores per node, using
MPI only gives the best performance up to the scalability
limit at 256 cores. After this point, further scaling can be
achieved up to 512 cores by using 4 OpenMP threads per
process. By contrast, on the XT6 (24 cores per node), unless
OpenMP is used the code can barely scale beyond a single
node! Even so, the absolute run times are still slower than
the XT4.

V. COMPREHENSIVE BENCHMARKING

While the H2O-* benchmarks provide a good view of
CP2K performance for local DFT calculations over time,
in recent years CP2K has been extended to include much
more accurate, but also more computationally demanding
methods such as Hartree-Fock exchange [17], linear-scaling
DFT [18], and the MP2 & RPA approaches [19] from many-
body theory. A single benchmark system is no longer enough

to give users useful information about what performance
to expect from CP2K. We present a new benchmark suite
which covers a wider range of CP2K functionality and show
results comparing the EPCC HECToR Phase 3 (XE6) and
ARCHER XC30 systems. We analyse the performance of
CP2K for these test cases and explain the differences in
performance observed between the two machines.

The aim of the benchmark suite is to provide a range
of benchmarks which can be used to guide CP2K users
towards the best configuration (e.g. machine, number of
MPI processors, number of OpenMP threads) to use for
their particular problem. The benchmark suite consists of
five benchmarks; H2O-64, Fayalite-FIST, LiH-HFX,
H2O-DFT-LS and H2O-64-RI-MP2. Descriptions of each
benchmark and its performance are below. Since each some
benchmarks perform MD, and the more expensive ones only
a single-point energy computation, we report the total time
for the calculation against the number of compute nodes
used.

The mixed mode MPI/OpenMP version of the code is used
to measure performance and we observed negligible over-
head from running this version with 1 thread per process and
the pure MPI code. For a fixed number of cores, all possible
combinations of MPI processes and OpenMP threads were
tested, subject to keeping each processes’ threads within a
single NUMA region. For example on HECToR Phase 3, 8
Interlagos cores share a single NUMA region, so we did not
use more than 8 threads as the resulting performance would
be very poor. As many HPC systems charge users by the
node, full nodes are utilised at all times in our tests.

A. H2O-64

The H2O-64 benchmark is taken from the standard water
benchmark suite reported in section IV, and is included for
consistency, even though it is now on the small side for sim-
ulations that would be routinely run on HECToR Phase 3 or
ARCHER. It performs a short Born-Oppenheimer molecular
dynamics run for 10 timesteps in an NVE ensemble at 300K.
The system consists of 64 water molecules (192 atoms, 512
electrons) in a 12.4 Å3 cell, using QUICKSTEP DFT with
the LDA functional, a TZV2P basis set and 280 Ry cut-off.

Figure 4 shows the runtime of the H2O-64 benchmark on
ARCHER and HECToR Phase 3 plotted against the number
of nodes. For each number of nodes we report only the best
(i.e. fastest) of all the process/thread combinations tested.
Above each data point the text gives the number of threads
that gave the best performance where “MPI” means that
using only a single thread per process was fastest. Below
each data point the text gives the ratio of ARCHER/HECToR
Phase 3 runtime. Comparing the performance of the two
systems we can see that ARCHER is around twice as fast
as HECToR Phase 3 and also scales better. For the H2O-64
benchmark we see that for smaller numbers of nodes the
best performance is obtained using the MPI version of the
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Figure 4. Performance comparison for the H2O-64 benchmark plotting
CP2K runtime against the number of nodes used. Above each data point the
number of threads that gave the best performance is given. MPI means that
the single thread (i.e. pure MPI) version of the code performed best. Below
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runtimes is given. Thus a value of 2.03 means that the ARCHER runtime
was 2.03 times faster than the HECToR Phase 3 runtime.

code. For larger numbers of nodes the MPI scaling efficiency
reduces and using threads starts to be beneficial (e.g. when
using more than 8 nodes on HECToR or 32 on ARCHER).

B. Fayalite-FIST

The Fayalite-FIST benchmark is another short
molecular dynamics run of 1000 time steps in a NPT
ensemble at 300K. It consists of 28000 atoms - a 103

supercell with 28 atoms of iron silicate (Fe2SiO4, also known
as Fayalite) per unit cell. The simulation employs a classical
potential (Morse with a hard-core repulsive term and 5.5
Å cutoff) with long-range electrostatics using Smoothed
Particle Mesh Ewald (SPME) summation. While CP2K does
support classical potentials via the Frontiers In Simulation
Technology (FIST) module, this is not a typical calculation
for CP2K but is included to give an impression of the perfor-
mance difference between HECToR Phase 3 and ARCHER
for the MM part of a QM/MM calculation.

The performance of the Fayalite-FIST benchmark
is shown in Figure 5. Unlike the H2O-64 benchmark, for
such a small (classical) problem, MPI scalability is limited
and almost all node counts benefit from using threads. The
difference between the best and worst runtime for a given
number of nodes on ARCHER was typically 1-4% with 64
nodes taking up to 15% longer for the MPI version. The
runtime is dominated by the short-range force calculation
and I/O is also a contributing factor. The code is thus
memory-bandwidth bound, and so using less MPI processes
and giving each process more L3 cache is advantageous.
As observed with the H2O-64 benchmark, ARCHER scales
(slightly) better and is around two times faster than HECToR
Phase 3.
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Figure 5. Performance comparison for the Fayalite-FIST benchmark.

C. LiH-HFX

The LiH-HFX benchmark is the first of three more
demanding benchmarks and is a single-point energy cal-
culation using QUICKSTEP GAPW (Gaussian and Aug-
mented Plane-Waves) with hybrid Hartree-Fock exchange.
It consists of a 216 atom Lithium Hydride crystal with
432 electrons in a 12.3 Å3 cell. These types of calculations
are generally around one hundred times the computational
cost of a standard local DFT calculation, although this can
be reduced using the Auxiliary Density Matrix Method
[20]. Uing OpenMP is of particular benefit here as the
HFX implementation requires a large amount of memory
to store partial integrals. By using several threads, fewer
MPI processes share the available memory on the node and
thus enough memory is available to avoid recomputing any
integrals on-the-fly, improving performance.
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Figure 6. Performance comparison for the LiH-HFX benchmark.

The performance comparison of the LiH-HFX benchmark
is given in Figure 6. No HECToR Phase 3 results are
available for 64 or 128 nodes due to insufficient memory.



ARCHER has 64 GB memory per node compared with 32
GB per node on HECToR Phase 3 and thus it was possible to
run the LiH-HFX benchmark on fewer nodes on ARCHER.
In all our tests the best performance was obtained using at
least 2 threads per process. As with the other benchmarks
ARCHER generally scales better and runs at least 2.3 times
faster than HECToR Phase 3.

D. H2O-DFT-LS

The H2O-DFT-LS (see Figure 7) benchmark is a single-
point energy calculation using linear-scaling DFT. It consists
of 6144 atoms in a 39 Å3 box (2048 water molecules in
total). An LDA functional is used with a DZVP MOLOPT
basis set and a 300 Ry cutoff. For large systems the linear-
scaling approach for solving Self-Consistent-Field equations
will be much cheaper computationally than using standard
DFT and allows scaling up to 1 million atoms for simple
systems. The linear scaling cost results from the fact that the
algorithm is based on an iteration on the density matrix. The
cubically-scaling orthogonalisation step of standard QUICK-
STEP DFT using OT is avoided and the key operation is
sparse matrix-matrix multiplications, which have a number
of nonzero entries that scale linearly with system size. These
are implemented efficiently in the DBCSR library.
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Figure 7. Performance comparison for the H2O-DFT-LS benchmark.

Again examining the results we find that ARCHER is
always at least two times faster than HECTOR Phase 3
and scales better at larger (>128 nodes) processor counts
due to the improved performance of the Aries/Dragonfly
interconnect over the Gemini torus on HECToR Phase 3.
In particular, HECToR Phase 3 gave very poor performance
between 256 and 1024 nodes due to increased MPI com-
munication costs. As a result, on 1024 nodes ARCHER was
4.66 times faster than HECToR Phase 3.

E. H2O-64-RI-MP2

The H2O-64-RI-MP2 benchmark is a single-point en-
ergy calculation using 2nd order Møller-Plesset perturbation

theory (MP2) with the Resolution-of-the-Identity approxi-
mation to calculate the exchange-correlation energy. The
system consists of 64 water molecules in a 12.4 Å3 cell.
This is exactly the same system as used by H2O-64 but
using a much more accurate model, which is around 100
times more computationally demanding than standard DFT
calculations. The performance of H2O-64-RI-MP2 (see
Figure 8) again shows ARCHER being around twice as fast
as HECToR Phase 3, although not scaling as well. When
using more than 128 nodes using threads was always found
to be beneficial to performance.
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Figure 8. Performance comparison for the H2O-64-RI-MP2 benchmark.

Overall, our benchmarking comparison found ARCHER
to be 2-3 times faster in terms of CP2K runtime than
HECToR Phase 3. This is largely expected as the peak
performance of ARCHER is roughly twice that of HECToR
Phase 3 (see Table I). The increased memory per node
on ARCHER relative to HECToR Phase 3 allows problem
sizes that were previous infeasible to be run. ARCHER
was generally found to scale better and to larger processor
counts than HECToR Phase 3. This is due to the improved
performance of the Aries/Dragonfly interconnect compared
with the Gemini torus. For problems using larger numbers
of MPI processes (>1000) where the limit of MPI scaling
may be reached, the mixed-mode MPI/OpenMP version of
CP2K will generally give improved performance over the
pure MPI version. Indeed, for problems that are particularly
memory intensive (e.g. LiH-HFX) the threaded version may
be the only way to successfully run a calculation.

VI. CP2K WITH ACCELERATORS

Heterogeneous systems are now well established in the
HPC community as a concrete alternative to homogeneous
systems to increase compute capability with better energy-
efficiency. The CSCS Cray XC30 system Piz Daint was built
and configured in the fall of 2013 in time for the TOP500
and the Green 500 lists that were published in November



2013. The system is the only machine that appears in the top
10 of both of these lists – where it is the sixth most powerful
and the fourth most energy-efficient, respectively. Each node
of the system is configured with a single-socket Sandy-
Bridge CPU and an NVIDIA K20X GPU (see table I).
Therefore the GPU replaces the other CPU socket in the
node when compared to a homogeneous XC30 system such
as ARCHER. The same approach is used for the XK7 system
Tödi at CSCS.

CP2K was one of the applications used during the initial
validation phase of Piz Daint. In particular benchmarks
based on linear-scaling DFT were chosen because of their
potential to scale to very large number of atoms, and suitabil-
ity for intensive calculations on the GPU. These benchmarks
make use of the DBCSR library, which was ported to GPU
as consequence of this activity using NVIDIA’s CUDA
programming model. A detailed description of the imple-
mentation and an analysis of the various computational and
hardware aspects that influence performance are presented
in [15]. Here, we provide a short high-level description
of the implementation which is included in the CP2K
SVN trunk and freely available from the CP2K website.
Recalling what is already described in section II-A about the
DBCSR library, the local sparse matrix-matrix multiplication
is performed block by block. In the GPU implementation,
the CPU is used to traverse the matrix structure, and generate
stacks of small matrix multiplications to be performed by
the GPU. Data is organized in such a way that the transfers
between the host and the GPU are minimized. A double-
buffering technique, based CUDA streams and events, is
used to maximize the occupancy of the GPU and hide
the data transfer latency. Similar to the libsmm which is
used by the CPU implementation, a corresponding auto-
tuned library of small matrix multiplication kernels has
been developed for the GPU (libcusmm). The overall
performance of the library depends strongly on block size,
usually 2x–4x faster than batched DGEMM using NVIDIA’s
cuBLAS library. When the GPU is fully loaded computation
may be done simultaneously on the CPU by using the
standard algorithm with libsmm. Each local multiplication
is overlapped with the communication step in Cannon’s
algorithm, therefore it becomes crucial to have a fast enough
network data transfer that this can be entirely hidden by the
local computation.

The results for the tests we present here are based
on the mixed-mode MPI/OpenMP version of CP2K. We
have used both of the two CSCS systems equipped with
GPUs: Tödi and Piz Daint. Since we are also interested
in a comparison between homogeneous (CPU only) and
heterogeneous (CPU+GPU) systems, the tests are executed
in two configurations:

• CPU only (GPU idle). The standard CPU code runs
on the single-socket CPU per node with 2 OpenMP
threads and 4 (Piz Daint) or 8 (Tödi) MPI ranks per

node. The GPUs are not involved in the evaluations
and they remain idle.

• CPU+GPU. Execution of the CUDA-optimized version
for simultaneous evaluations on the CPUs and GPUs,
with 8 OpenMP threads and 1 (Piz Daint) or 2 (Tödi)
MPI ranks per node.

In both configurations the corresponding MPI rank distribu-
tions are chosen to reach best performance over the number
of nodes used in the tests.

In addition to the H2O-DFT-LS already described in
the previous section, we use the AMORPH (a somewhat
larger system with 13846 atoms) and TiO2 (9786 atoms)
benchmarks, both of which use a DZVP-MOLOPT basis
set. These are all available as part of the CP2K source dis-
tribution in cp2k/tests/QS/benchmark_DM_LS. The
three benchmarks result in sparse matrices with different
block sizes, which impact differently on the overall perfor-
mance and scalability of the CPU+GPU executions. Small
blocks do not perform as well on the GPU, while bench-
marks with large blocks show worse scalability because of
the higher demand on the network communications. Table II
reports the block sizes and some performance considerations
for each benchmark.

Table II
DIMENSIONS OF THE SMALL MATRIX MULTIPLICATIONS (m, n, AND k

VALUES) FOR EACH BENCHMARK.

Benchmark m, n, k Note

AMORPH m = {5, 13} Small blocks
n = {5, 13}
k = {5, 13}

H2O-DFT-LS m = n = k = 23 Communication limited

TiO2 m = {13, 26} Balanced
n = {13, 26}
k = {13, 26}

Figures 9 and 10 show the runtime of the benchmarks for
the CPU only and CPU+GPU configurations on Piz Daint
and Tödi, respectively. The ratios between the performance
of the two configurations for each benchmark and system
are shown in Figure 11. The configurations are compared
by considering the runtime with 2N nodes for the CPU
only (GPU idle) configuration with respect to N nodes for
the CPU+GPU configuration. In this way we keep the total
number of sockets used the same in each configuration,
which gives a fair comparison of whether using a GPU in the
second socket on the node is beneficial or not. As expected,
the speedup from using a GPU decreases on larger number of
nodes as communication becomes dominant and less work-
load is available for the GPUs. This is particularly evident
for H2O-DFT-LS. The AMORPH benchmark suffers because
the small block sizes reduce the efficiency of the CUDA
code, while the TiO2 benchmark has good performance for
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Figure 9. Performance of the benchmarks on Piz Daint, from 64 up to
1024 nodes. H2O-DFT-LS and TiO2 cannot be run on 64 nodes because
of the limited GPU memory (6 GB) available.
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Figure 10. Performance of the benchmarks on Tödi, from 64 up to 256
nodes. H2O-DFT-LS and TiO2 cannot be run on 64 nodes because of the
limited GPU memory (6 GB) available.

the CPU+GPU configuration, reaching a speed-up of 1.65
on 256 nodes of Piz Daint, and 1.71 on 128 nodes of Tödi.

Figure 12 shows the comparison of the performance
between the two systems for the CPU+GPU configuration.
Execution is around 50% faster on Piz Daint than on Tödi for
64 nodes, increasing to twice as fast for 256 nodes. This is
purely down to the faster CPU and network communications
available on Piz Daint, since both systems have identical
GPUs.

We can also analyze the performance of the DBCSR
library specifically. Table III reports the total number of
small matrix multiplications, the FLOPs executed in DBCSR
part only, and sustained performance of the DBCSR part
with respect to the total runtime for each benchmark as
measured with the CPU+GPU configuration on 1024 nodes
of Piz Daint. Table IV reports the fractions of FLOPs
executed on the GPUs for the Piz Daint benchmarks. We can
see that this increases with the number of nodes involved
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Figure 12. Ratios of the performance of Tödi and Piz Daint for the
CPU+GPU configuration. GPU memory limit (6 GB) is triggered in the
H2O-DFT-LS and TiO2 tests for 64 nodes.

in the tests, and at 1024 nodes almost all small matrix
multiplications are executed on the GPUs. On Tödi this is
the case already with 256 nodes on Tödi due to the poorer
CPU performance of that system.

Table III
PERFORMANCE OF THE DBCSR LIBRARY FOR THE CPU+GPU

CONFIGURATION ON 1024 NODES OF PIZ DAINT.

AMORPH H2O-DFT-LS TiO2

Number of SMM 1.62× 1012 1.44× 1011 5.78× 1011

DBCSR PFLOP 3.20 3.50 7.24

Sustained TFLOP/s 36.26 34.15 76.82

VII. SUMMARY AND OUTLOOK

In conclusion, we have presented an overview of the
main aspects of CP2K which have incrementally improved



Table IV
FLOPS EXECUTED ON THE GPUS (%) FOR PIZ DAINT TESTS.

Number of nodes AMORPH H2O-DFT-LS TiO2

64 87.0

128 91.5 99.1 89.7

256 95.5 99.7 93.7

512 99.5 100.0 98.4

1024 99.8 100.0 99.2

the performance and scaling of the code, some of which
are algorithmic in nature, and others related to optimised
implementation and parallelisation in response to architec-
tural changes such as the increasingly wide multi-core nodes
present in modern HPC systems. We also discussed recent
efforts to enable CP2K for use with CUDA GPU systems.
Work is currently ongoing to perform a similar port to Intel’s
Xeon Phi architecture, and this is expected to be merged into
the SVN trunk soon.

An extensive collection of historical data from ab-initio
molecular dynamics calculations on liquid water has been
presented, covering a period of 9 years, and 7 different
Cray system architectures, from the original XT3 up to the
present day XC30. A combination of hardware performance
improvement as well as software changes resulted in order-
of-magnitude speedups which will benefit CP2K’s wide user
base on the EPCC and CSCS Cray systems, as well as
elsewhere.

We have presented some preliminary results on the XE6
and XC30 from the development of a new comprehensive
CP2K benchmark suite. In the future we plan to add results
from additional HPC systems and publish these on the CP2K
website so that users can make an informed decision about
the best choice of hardware, MPI and OpenMP combinations
for their own work.

Finally, we have shown that for certain classes of calcula-
tions, the CUDA capabilities implemented in CP2K enable
effective use of heterogeneous architectures with both CPUs
and GPUs, and that the XC30 architecture which couples a
single socket Intel CPU with an NVIDIA Kepler GPU can
give excellent performance for calculations such as linear
scaling DFT, which are dominated by DBCSR sparse matrix
operations.

Development of CP2K to adapt to changing HPC architec-
tures continues with close collaboration between end-users,
developers, HPC centres and vendors via schemes such
as ARCHER Embedded Computational Science and Engi-
neering (eCSE), Intel Parallel Computing Centres (IPCC)
and the Swiss Platform for Advanced Scientific Computing
(PASC). We believe that we have demonstrated the success
of this collaborative approach to development, and it will
continue to be key as CP2K moves from Petascale towards
the Exascale future.
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