
Using a Developing MiniApp to Compare Platform Characteristics on Cray Systems

Bronson Messer
Scientific Computing Group

National Center for Computational Sciences, Oak Ridge National Laboratory
Oak Ridge, TN USA

Email: bronson@ornl.gov

Abstract—The use of reduced applications that share many
of the performance and implementation features of large, fully-
featured code bases (“MiniApps”) has gained considerable
traction in recent years, especially in the context of exascale
planning exercises. We have recently developed a MiniApp
designed to serve as a proxy for the Chimera code that we have
dubbed Ziz. As an initial foray, we have used the directionally-
split hydro version of Ziz to quantify a handful of architectural
impacts on Cray XK7 and XC30 platforms and have compared
these impacts to results from a new Infiniband-based cluster
at the Oak Ridge Leadership Computing Facility (OLCF). We
will describe these initial results, along with some observations
about generating useful MiniApps from extant applications and
what these artifacts might hope to capture.

Keywords-MiniApps; application codes; performance;

I. Introduction
The use of reduced applications that share many of the

performance and implementation features of large, fully-
featured code bases (MiniApps) has gained considerable
traction in recent years, especially in the context of exas-
cale planning exercises. The central conceit of MiniApps
relies on the realization that many large scientific codes
contain a small, countable number of hot spots that dominate
their performance characteristics and that other parts of
these large codes contain recurring tropes, where, though
the ultimate aim might be different for each routine, the
performance characteristics are quite similar [1]. The idea is
to encapsulate these behaviors in a simpler, reduced version
of the application, mimicking the important characteristics,
but obviating the need for the user to be a developer/expert
on the code itself. We have recently developed a MiniApp
designed to serve as a proxy for the Chimera code that we
have dubbed Ziz. Chimera [2], [3] is a multi-dimensional,
multi-physics code designed to study core-collapse super-
novae. The code is made up of three essentially indepen-
dent parts: hydrodynamics, nuclear burning, and a neutrino
transport solver combined within an operator-split approach.
The hydrodynamics is directionally split, and the ray-by-
ray transport and the thermonuclear kinetics solve occur
after the radial sweep occurs, when all the necessary data
for those modules is local to a processor. This combina-
tion of directionally-split hydrodynamics and operator-split
local physics provides the context for the communication
and computation patterns found in Chimera. The neutrino

transport in Chimera is performed only in the radial direction
(as this step is the most computationally intensive, and would
preclude realistic runtimes if treated in full generality). The
result is a subcommunicator-local sparse linear solve at each
timestep. The nuclear composition in regions that are not in
nuclear statistical is evolved via a completely local dense
linear solve that is subcycled within each hydrodynamic
timestep for every cell in the domain. Ziz will eventually be
able to capture the behaviors of the directionally- split hydro-
dynamics (i.e. the restricted data transposes), the operator-
split local physics, and the dense and sparse linear solves
used in the kinetics and transport solves. As an initial foray,
we have used the directionally-split hydro version of Ziz to
quantify a handful of architectural impacts on Cray XK7
and XC30 platforms and have compared these impacts to
results from a new Infiniband-based cluster at the Oak Ridge
Leadership Computing Facility (OLCF). We describe these
initial results, along with some observations about generating
useful MiniApps from extant applications and what these
artifacts might hope to capture.

II. Core-collapse supernovae and Chimera

The final act in a massive (M & 10 M� [solar masses])
star’s existence is for the stellar core to suddenly collapse
to super-nuclear densities. Remarkably, the result of core
collapse and the formation of a BH or NS can be the violent
expulsion of the rest of the star, through the transfer of a
modest portion of the ∼1053 ergs (= 1046 J = 100 Bethe)
change in core gravitational binding energy into the outer
parts of the start to produce a ∼1 Bethe explosion. Studying
the CCSN mechanism requires understanding the dynamics
of that energy transfer to connect pre-explosion stars with
explosions and their observational consequences. Forty-plus
years of study have not yet revealed a fully satisfactory
understanding of the CCSN problem, but have revealed a
set of physical, dimensional, and resolution requirements
needed to transform our understanding of stellar explosions
and their consequences.

After several million years of evolution and nuclear en-
ergy release, a massive star’s core is composed of iron (and
similar ‘iron-peak’ elements) from which no further nuclear
energy can be released by fission or fusion. Outside the ‘Fe’-
core are shells representative of previous burning stages—

a silicon shell, oxygen shell, etc., out to a helium shell
surrounded by an envelope of hydrogen. At the base of the
Si-shell, nuclear ‘burning’ continues, growing the Fe-core
below. When the mass of the Fe-core reaches the limiting
Chandrasekhar mass, it starts to collapse. For slightly less
massive stars (M∼8–10 M�) a similar collapse occurs, but
with a core of oxygen and neon.

During the collapse, the inner core will become opaque
to neutrinos and surpass the density of atomic nuclei
(&2.5 × 1014 g cm−3) reaching densities where individual
nuclei merge together into nuclear matter. Above nuclear
density, the nuclear equation of state (EoS) ‘stiffens’ and the
core rebounds like an over-compressed spring, launching a
rebound, or bounce, shock from the newly formed neutron
star (a proto-NS). The rebound shock, initially enclosing
∼0.5 M� of the ∼1.5 M� Fe-core at a radius of ∼10 km,
progresses outward through the rest of the infalling core,
heating and dissociateing the infalling nuclei to free nucleons
and radiating a large burst of neutrinos. Thermal energy
removed from the shocked material by neutrinos and nuclear
dissociation halts the progress of the shock rendering it
a standing accretion shock (SAS) with a radius of 100–
200 km about 50 ms after it was launched. In the SAS
state, the inner regions of the star continue to collapse and
accrete through the shock, dissociate, and settle on the proto-
NS. Heating due to accretion onto the proto-NS drives the
emission of neutrinos of all three flavors (νe, νµ, ντ) and their
anti-particles (ν̄e, ν̄µ, ν̄τ). Below the shock, but above the
proto-NS, the absorption of νe and ν̄e by the free nucleons
below the shock results in a ‘gain’ region of net heating.
In spherically symmetric (1D) simulations, fluid elements
advect through the gain region before they can be heated
sufficiently to reverse their direction and drive an explosion,
thus 1D simulations of Fe-core collapse invariably end in the
accretion of the entire star, a situation that is not matched
by observations of CCSNe, though ONe-core collapse can
lead to weak explosions even in spherical symmetry. It has
been shown recently that multidimensional simulations can
ameliorate this lack of heating and lead to explosions [4]

III. Chimera

Chimera is a multidimensional radiation hydrodynamics
code designed perform precisely these kinds of multidimen-
sional supernova simulations. The name Chimera originates
in the applications’s combination of these three, separate,
mature codes. The primary code modules evolve the stel-
lar fluid dynamics (MVH3), the “ray-by-ray-plus” neutrino
transport (MGFLD-TRANS), and the thermonuclear kinetics
(XNet). These three “heads” are augmented by a sophisti-
cated equation of state for nuclear matter, and a self-gravity
solver capable of an approximation to general-relativistic
gravity. Operator splitting (solving physics components sep-
arately, rather than simultaneously) and dimensional splitting
(solving equations separately for the three spatial dimen-

Start

Hydro Y () sweep

Hydro Z () sweep

Hydro X () sweep

 transport along ray

nuclear burning on each
zone of ray

Each
processor
has 1 ray
of data

local at this
stage

Timestepping
loop

Data transpose

Data transpose

Data transpose

Figure 1. A schematic of Chimera program flow.

sions: r, θ, φ) are the key themes to Chimera’s computational
approach to the multi-dimensional supernova problem.

A. Fluid dynamics

Hydrodynamics are evolved using a dimensionally split,
piecewise parabolic method (PPM), a version of the publicly
available astrophysics PPMLR hydrodynamics code VH1.
For the radial direction (r) the grid moves to track mean
fluid motion and appropriately resolve features like shocks
and the steep density feature at the edge of the proto-neutron
star. Self-gravity is computed via multipole expansion in
spherical harmonics with a global reduction to gather the
coefficients needed by each processor to compute the gravi-
tational force and potential. Spherical symmetric corrections
to gravity for GR replace the non-GR (Newtonian) monopole
(` = 0) term.

B. Nuclear physics

In the lower density regions that comprise the outer half
of the stellar core, physical conditions require the use of a
nuclear network to evolve the time-dependent abundances
of nuclei. The nuclear network incorporated into Chimera
is the publicly available nuclear network code XNet. XNet
solves, for each non-equilibrium zone, a coupled system
of non-linear ODEs (one for each nuclear species) for the
time evolution of the nuclear abundances by the backward
Euler method. Where the nuclear time step is smaller than

the hydrodynamic step, XNet will compute multiple sub-
steps automatically to prevent the short reaction timescales
in a few zones from severely restricting the global simula-
tion time step. Most Chimera simulations have used a 14-
species α-network (4He,12C–60Zn). (We have planned some
complementary 3D simulations using larger networks for
the XK7 ’Titan’ at Oak Ridge under the DOE INCITE
program.) We also use passive Lagrangian tracer particles
as data samplers for use in post-processing nucleosynthesis
with 4000+ isotope network with XNet and other analyses.
Several hundred thousand tracers are used for production
simulations.

C. Neutrino transport

Transport of neutrinos is computed as multi-(energy)-
group angular moments of the neutrino distribution function
in a diffusive approximation flux-limited to prevent aphysical
(superluminal) ‘diffusion’ of neutrinos in semi-transparent
and transparent regions (multi-group flux-limited diffusion,
or MGFLD). The MGFLD equations, including local cou-
plings between all energy groups (via scattering), neutrinos
and anti-neutrinos (via pair emission processes), and to
the local matter, are solved by Newton-Raphson iteration
independently on each radial ‘ray’ per the ray-by-ray ap-
proximation. The neutrino–matter interactions are a modern
set that include non-isoenergetic scattering on electrons and
free nucleons, emission and absorption on free nucleons
and an ensemble of nuclei in NSE, and neutrino–anti-
neutrino pair emission from nucleon-nucleon bremsstrahlung
and e+e−-annihilation. The MGFLD equations are coupled
integro-partial differential equations. The left (or transport)
side of the MGFLD equations include spatial and energy
partial derivatives, while the right (or collision integral) side
includes local couplings between all energy groups (via
scattering), neutrinos and anti-neutrinos (via pair emission
processes), and to the local electron abundance (Ye, via
emission and absorption). The resulting Jacobian has a
block tri-diagonal structure. The off-diagonal blocks are
themselves diagonal and contain only the discretized radial
derivative terms. (Our use of the ‘ray-by-ray’ approximation
in the transport removes the pairs of off-diagonal blocks that
would be created by the omitted θ and φ derivatives and the
inter-process communication that they would create.) The
dense diagonal blocks include all of the local couplings from
the collision integral. In typical production runs, there are 81
unknowns (20 energy groups each for 4 species of neutrinos
plus the Ye) in each block and ∼500 blocks (one for each
radial zone). The linear system from the Newton-Raphson
iteration is solved by the stabilized bi-conjugate gradient
method using an ADI-like preconditioner.

Neutrino-matter interactions (opacities) are interpolated
from tables in (ρ,T,Ye) and terms from the collision integral
are computed for each Newton-Raphson iteration. The opac-
ity data is computed during the run as needed and stored as

a shared data set of the required points for each MPI-rank.

D. Grid

The spherical coordinates used in Chimera are natural for
the CCSN problem given the centrally concentrated proto-
NS and the ray-by-ray approximation. They result in similar
conditions on each processor for the most expensive compu-
tational elements (transport and nuclear burning) and thus a
natural load balancing of the computational work. Spherical
coordinates come with a price: restricted zone sizes (and
time steps) from coordinate convergence at the center and
the pole. The center in Chimera (and similar codes) is treated
(pseudo-)spherically, which suppresses non-radial motions in
the inner core of the nearly spherical proto-NS and relieves
the simulation of the time step restrictions for the non-
radial zone sizes inside the core. The convergence of the
grid at the poles (θ = 0, π) is the other limiting factor
(the time step restricting length for the zone closest to the
pole is ∆` = R ∆φ sin θc). We (and the Garching group) are
implementing the pole-free, overset ‘Yin-Yang’ grid [5] to
avoid the pole-induced time step restrictions. In the Yin-
Yang grid, the zones within 45° of the pole and for one-
quarter of the φ zones along the equator are omitted and
two such grids are rotated to fit together without gaps. The
zones in the Yin-Yang grid are quite similar in size, which
drastically reduces the time step restrictions near the omitted
pole. For a 1° simulation, the Yin-Yang grid eases the non-
radial Courant limiting time step by 80-fold (the difference
between sin 0.5° and sin 45°).

E. Domain decomposition with MPI

The primary sub-domain used in Chimera is a ‘ray’— a
thin domain that spans the entirety of one dimension but
is only one zone wide in the other dimensions. All of the
dimensionally split work is done on independent rays in each
of the directions (r, θ, φ). To pass data to and from the native
radial-ray orientation of Chimera for computing along the
angular dimensions, we use a system of sub-communicators.
Sub-communcators are constructed by taking a group of
MPI tasks that cover the full domain in r and one of
the angular dimensions (θ, for example) while covering
the same narrow extent in the other angular dimension (φ,
as thin a one zone). Data within this ‘slab’ of zones is
transposed by MPI AllToAll on a sub-communicator for
that ‘slab’ that consists of O(100) tasks, with a similar
number of independent sub-communicators to cover the
entire problem domain. After the require computations are
computed in the angular dimension (θ this example) the
data is transposed back to the original radial orientation
by a second MPI AllToAll on the same group of sub-
communicators. A similarly constructed, but different, set of
sub-communicators is require for the other angular dimen-
sion (φ) and a pair of such transposes are required for each
of our O(106) time steps. All-to-all time is kept manageable

N4321

2NN+2N+1

3N

4N

MN

mype +1 =

jcol = 0 1 2 3 N-1

krow =

 M-1

 3

 2

 1

 0

Y

Z

Using M*N processors; X data starts local to proc

MPI_ALLTOALL(MPI_COMM_ROW)

MPI_ALLTOALL(MPI_COMM_COL)

Figure 2. The domain decomposition and construction of transpose sub-
communicators in Chimera.

(only a few percent of the total runtime) by the small size
and independence of the sub-communicators.

Advection of the tracer particles requires a
MPI AllToAllV (the distribution of particles is not
uniform and variable) within the ‘slab’ of the tracer
position into each direction during each time step. Time
step determination, conservation monitoring, and the
computation of 1D average values for computing radial grid
motion require global reductions (some with broadcasts
of computed consequences) during each time step. The
scalable MPI design for Chimera has remained viable after
10 years with only a few minor tweaks required to scale
to O(105) cores. Typically we place a single radial ray on
each MPI task (∼500 zones). This is the maximal strong
scaling permitted in Chimera using MPI only.

F. Threading with OpenMP and overall code complexity

Two components represent the largest computational ef-
fort: the neutrino transport and the nuclear network (in
the case of the larger network). Our threading efforts have
concentrated on these two areas with the near-term goal
of bringing more computational elements to bear on the
smallest MPI-only domains to reduce the time to solution.
Threading of the nuclear network in Chimera was completed
in 2012 and shows good efficiency (3.6 speed-up for 4
cores/task) [3]. The recently implemented ‘ADI-like’ linear
solver for the neutrino transport is fully threaded and shows
similar speed-ups.

The complexity and size of Chimera (currently a little
more than 300K LOC) makes gauging the effect of new
programming models and new hardware constraints difficult.

Although Chimera represents upwards of 10% of the total
INCITE workload each year at the Oak Ridge Leadership
Computing Facility (OLCF), the use of the code by vendors,
computer scientists, and other non-astrophysicists is severely
hampered by this complexity. We seek to alleviate these
difficulties through the construction of a so-called MiniApp
based on Chimera.

IV. MiniApps and Ziz

In general, there is a fundamental tension between the size
and complexity of modern, large-scale scientific application
codes and the design and fielding of new computational
platforms on which these codes are run. The ultimate utility
of current petascale and future exascale platforms will be
judged based on the scientific productivity of their users.
This means that modifying and improving the algorithms
and implementations used in these large-scale codes to allow
them to run efficiently on these new platforms is of primary
importance. It is equally clear that a thorough understanding
of the requirements and limitations of current and planned
software features is absolutely essential in system design.
However, such optimization work is often arduous because
of the sheer size of the code bases, the complexity of
the codes themselves, and, in many cases, their associated
build systems. This often means that accessible benchmarks
are not available at any given instant in the software and
hardware development processes for vendors to optimize
system design points against, for computer science and
applied mathematics researchers to use as laboratories to
test new algorithmic and implementation ideas, and even
for application developers themselves to use as effective test
mechanisms to investigate the impacts of new hardware and
programming model developments. For these reasons and
others, the use of reduced applications that share many of
the performance and implementation features of large, fully-
featured code bases (MiniApps) has gained considerable
traction in recent years, especially in the context of exas-
cale planning exercises. The central conceit of MiniApps
relies on the realization that many large scientific codes
contain a small, countable number of hot spots that dominate
their performance characteristics and that other parts of
these large codes contain recurring tropes, where, though
the ultimate aim might be different for each routine, the
performance characteristics are quite similar [1]. The idea is
to encapsulate these behaviors in a simpler, reduced version
of the application, mimicking the important characteristics,
but obviating the need for the user to be a developer/expert
on the code itself.

It is interesting to note that MiniApps are often described
via exclusion, i.e. by enumerating the things that are not
MiniApps. [6] characterize MiniApps by noting that they
are not to be confused with compact applications wherein a
particular implementation of physics is captured in isolation
nor are they so-called skeleton applications, designed re-

produce a particular pattern of inter-process communication
(a goal so narrow that the computation performed between
communication epochs is sometimes “faked”). [7] expands
this list of what MiniApps are not to include Scalable Syn-
thetic Compact Applications (SSCA), which were produced
through the DARPA High Productivity Computing Systems
(HPCS) program to evaluate the productivity of emerging
HPC systems. The NNSA Exascale Applications Working
Group noted [8] that despite these attempts to constrain
the definition of MiniApps, their role in cooperative R&D
efforts (e.g. in so-called co-design efforts, where hardware
and software designers engage directly with application
programmers to improve the design of both architectures
and algorithms for future systems) require them to be several
things all at once. They must big enough to accurately model
full application behavior, but small enough to be manageable
and, in some sense, parsable, by researchers ranging from
applied mathematicians to compiler writers.

Related to this is the question of whether MiniApps
can be effectively divorced from the underlying physics
being modeled by a particular application code (see, e.g.,
the discussion of this point in [9]). We posit that, in
general, this notion is not a useful operating assumption,
based on our extensive past experience with transitioning
large application codes across many orders of magnitude
in scalability and performance. Indeed, we note that the
realization that HPCCG (one of the original components
of the Mantevo MiniApp suite [1] could only, provide a
stronger tie to applications of interest, by realizing that, “the
context in which the linear system is formed needed [to
be](sic) strengthened” [9] suggests a stronger tie between
performance and intent is often necessary to effectively
understand full application performance.

An ever-expanding group of MiniApps has grown up in
recent years. The Mantevo suite [1] was perhaps the first
and largest set of MiniApps. Mantevo includes MiniApps
designed to mimic the performance of finite-element codes
(MiniFE), molecular dynamics codes (MiniMD), electrical
circuit design codes (MiniXYCE), and others. It is important
to note that the particular choice of MiniApps in the Mantevo
suite is a direct result of the interests and expertise of
the application community at Sandia National Laboratories,
where the suite was developed. Other MiniApps have been
produced at Los Alamos National Laboratory, e.g. CGPOP
[10] and MCMini [11], and at Argonne National Labora-
tory (see, e.g. the MiniApps list at the CESAR website,
https://cesar.mcs.anl.gov/content/software). We have started
a project at OLCF in the past year designed to assemble a
similar collection of codes, particular to the user community
of the OLCF, that can be changed, revised, or even retired
as architectures and software systems evolve.

Part of that initial suite, Ziz1 is a Chimera MiniApp
that currently captures the behaviors of the directionally-
split hydrodynamics (i.e. the restricted data transposes).
Additions to Ziz are planned to model the calculation of
operator-split local physics and the dense and sparse linear
solves used in the kinetics and transport solves. The resulting
MiniApp can be expected to useful as a proxy for a whole
class of multiphysics codes. Individual modules for nuclear
burning, sparse linear system solution, and hydrodynamics
(specifically, flux reconstruction at finite-volume interfaces)
will be produced to allow modular CPU-GPU MiniApps to
be constructed.

V. Experiments with Ziz

We have performed scaling studies for Ziz on 3 different
platforms at OLCF – Titan, Eos, and Rhea.

Titan is a Cray XK7 composed of 200 cabinets. Titan is
a hybrid architecture where each individual compute node
uses both a conventional 16-core AMD 6274 Opteron CPU
connected to 32GB of 1600 MhZ DDR3 SDRAM and an
NVIDIA K20x (Kepler) GPU with 6 GB of GDDR5 mem-
ory. Titan, with 18,688 of these hybrid compute nodes, has
a theoretical peak computational performance of more than
27 PFLOPS. Each of the compute nodes is interconnected
with Crays high-performance, 3D-torus Gemini network.

Eos is a 744-node Cray XC30 cluster. The system has (2)
external login nodes. The compute nodes are organized in
blades. Each blade contains four nodes connected to a single
Aries NIC. Every node has 64 GB of DDR3 SDRAM and
two Intel Xeon E5-2670 CPUs with 8 physical cores each.
Intels Hyper-threading (HT) technology allows each physical
core to work as two logical cores so each node can functions
as if it has 32 cores. Each of the two logical cores can
store a program state, but they share most of their execution
resources. In total, the Eos compute partition contains 11,904
traditional processor cores (23,808 logical cores with Intel
Hyper-Threading enabled), and 47.6 TB of memory.

Rhea is a 196-node commodity-type Linux cluster. Each
of Rhea’s nodes contain two 8-core 2.0 GHz Intel Xeon E5-
2650 processors with Hyper-Threading and 64GB of main
memory. The nodes are connected via Mellanox 4X FDR
Infiniband MT27500 network controllers.

Our initial experiments with Ziz have centered on in-
vestigating the degree to which the scaling performance of
Chimera is mimicked by the MiniApp and how that scaling
behavior changes when the interconnect is changed from
Gemini to Aries to Infiniband. A comparison of Chimera
weak scaling to Ziz ”hydro-only” weak scaling on Titan is
shown in Figure 3. The ”hydro-only” qualification refers to

1A ziz is is a giant griffin-like bird in Jewish mythology, often portrayed
as something somewhat akin to a Greek chimera. The naming of the
MiniApp is in keeping with the Chimera collaboration’s seemingly semi-
literate wordplay and garbled understanding of Western mythologies. The
name is also short and relatively difficult to mistype.

2048 8192 32768 1310721024
cores = angular zones

0

500

1000

1500

ru
n

tim
e

pe
r 1

00
 st

ep
s (

se
c)

 [Z
iz

 *
10

,0
00

]

Fall 2011 CHIMERA, 6-core XT5
Fall 2011 CHIMERA, 16-core XK7
June 2013 CHIMERA, 16-core XK7
Feb. 2014 CHIMERA, 16-core XK7
Ziz, hydro only, 16-core XK7

Figure 3. A comparison of hydro-only Ziz scaling and historical Chimera
scaling experiments. The ordinate (i.e. time required for 100 time steps)
is multiplied by 10000 for the Ziz results: The time required to perform
a hydro-only update is dwarfed by the transport and burning solves in the
full Chimera code.

a version of Ziz wherein only the hydrodynamics module
is included, i.e. there is no active module for radiation
transport or for nuclear kinetics. As expected, the weak
scaling behavior of this version of Ziz becomes less efficient
much more quickly than does the more physics-laden full
Chimera runs. Previous profiling of Chimera has shown
that the hydrodynamics calculation (including the requisite
MPI AllToAll communications) represents roughly 33%
of the total runtime in Chimera for runs at less than O(30K)
cores. For those same runs, roughly 45% of the runtime is
dedicated to the transport solve and ≈20% is spent in the
nuclear burning module, the balance being spread among
other routines, including I/O. The transport and nuclear
burning solves also significantly increase the payload sizes
for the transpose MPI AllToAlls, increasing the number of
double-precision REALs per zone from 6 to 180 (160 for the
transport and 14 for the nuclear burning). Nevertheless, it is
important to understand the hydro-only scaling of the code,
to better understand the turnover in the parallel efficiency
that occurs above O(30K) cores.

Comparing scaling results on different machines presents
a somewhat different picture, however. Shown in Figure
4 are a subset of the same Ziz runs performed on Eos
and on Rhea, along with the Titan scaling. The Eos and
Rhea results are restricted in number because of the size of
each of the machines and the particular modulo arithmetic
that must be satisfied for each dimension in a Ziz (or
Chimera) run (see Section III-E above for an explanation).
Perhaps unsurprisingly, Eos is (a) somewhat faster for a
given number of MPI ranks and (b) weakly scales all the way
out to 10,000 ranks with excellent efficiency. The runtime on
Rhea is significantly longer than either of the Cray platforms,

2048 8192 327681024
cores = angular zones

0

500

1000

1500

ru
n

tim
e

pe
r 1

00
 st

ep
s (

se
c)

 [Z
iz

 *
10

,0
00

]

Ziz, hydro only, titan
Ziz, hydro only, rhea
Ziz, hydro only, eos

Figure 4. A comparison of hydro-only Ziz scaling on Titan, Eos, and
Rhea. The ordinate (i.e. time required for 100 time steps) is multiplied by
10000 for the Ziz results, just as in Figure 3.

but the weak scaling is not quite as bad as for Titan at
low rank counts. It should be noted that the Cray platform
results were both obtained with code compiled with the CCE
compiler suite (CCE 8.2.2 on Titan and CCE 8.1.9 on Eos),
while the Rhea results came from code compiled with Intel
ifort (version 13.1.3). Neither the Eos nor the Rhea results
allowed HyperThreading. Additional tests on Eos with Intel
ifort (version 13.1.3) produced results within 3% of the CCE
results presented in Figures 3 and 4.

A. Mimicking additional computational intensity

In an attempt to better represent the additional computa-
tional load provided by the transport and nuclear kinetics
modules of Chimera we added a fixed number of additional
floating-point operations to Ziz directly after each call to
sweepx1 and sweepx2 (the two subroutines that handle the
radial sweeps in each half-timestep, including the transposes;
essentially the two halves of the middle box in Figure
2). Assuming that the preponderance of the FLOPs in the
transport are found in the LU decomposition of the diagonal
blocks and that the kinetics solve is similarly dominated
by LU decompositions for each radial zone’s network, we
added roughly 70 MFLOPs/zone to Ziz at this point in the
program flow. The corresponding scaling for Titan and Eos
is shown in Figure 5. A curious feature emerges: Although
the overall weak scalability on Titan and Eos is better with
the additional local work, the overall performance of Eos
relative to Titan as substantially degraded. In fact, the actual
wall time to solution for Eos now exceeds that for Titan.
Though we have no established cause for this inversion, we
do offer one additional observation.

Profiling this version of Ziz with CrayPat allowed us to
determine the breakdown of time dedicated to computation
and communication versus the hydro-only version. This
comparison is shown in Table I. fakeflops is the function
containing the additional computational work. The stark

Table I
Ziz CrayPat Profiling - Top functions as % of time

platform hydro only added FLOPs

Titan MPI AllToAll = 38%, parabola = 20% MPI AllToAll = 45%, fakeflops = 45%, parabola < 1%

Eos MPI AllToAll = 30%, parabola = 14% MPI AllToAll = 78%, fakeflops = 19%, parabola < 1%

2048 8192 327681024
cores = angular zones

0

50

100

150

200

250

ru
n

tim
e

pe
r 1

00
 st

ep
s (

se
c)

 [u
ns

ca
le

d]

Ziz, added FLOPs, titan
Ziz, added FLOPs, eos

Figure 5. A comparison of the artificially FLOP-intensive version of Ziz
scaling on Titan and Eos. Note that, unlike earlier figures, the ordinate has
not been scaled here.

difference in the profiles of the FLOP-rich versions on Titan
and Eos suggests that load imbalance on EOS might be the
culprit in the hunt for an explanation of the timing inversion.
The final answer awaits further investigation.

B. Initial work on an OpenACC Ziz version

There is a beta OpenACC version of Ziz under active
development. This port is based on a version of MVH3
that was used as the “code lab” for an early 2012 OLCF
GPU programming tutorial. Aside from a handful of loop re-
orderings that proved necessary for the port, little additional
coding is required. Because Ziz relies heavily on the use of
global variables declared and managed in Fortran modules
(as does Chimera), care must be taken to properly scope
private and copyin variables for acc parallel loops.
Aside from these modest code changes, the only additional
code present in the OpenACC version of Ziz is the addition
of acc parallel loop directives around the single loops
containing calls to the main PPM function (ppmlr) in the
each of directional sweep routines (sweepx1, sweepx2,
sweepy, and sweepz). ppmlr contains the most compu-
tationally intensive hydro routine – parabola – which is
already highly vectorizable. The result is a 94% increase in
the overall per-rank performance on Titan:
OpenAcc Ziz

speed = 887.4 kz/s/pe

Ziz

speed = 457.1 kz/s/pe.

The next step for the OpenACC port of Ziz will be to add
accelerated versions of the LU decompositions performed in
the transport and burning modules. Because these changes
will, for the most part, be confined to formation of the
individual Jacobians and the use of accelerated libraries, the
expected code changes for these additions is expected to be
just as modest as those performed for the hydro module.

The architectural differences between the Cray XK7 and
XC30 platforms include both a different processor and a
different network technology. These two, intertwined facets
of each platform can impact the performance of even a
reduced application like Ziz in unexpected ways. Layering
complexity in the Ziz MiniApp will allow each of the
individual pieces of multiphysics modeled by the code to be
measured and analyzed separately. In addition, the pairwise
and higher-order interactions between the various modules
can also be delineated in this manner.

Acknowledgment

This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Labora-
tory, which is supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC05-
00OR22725. This research was sponsored by the Laboratory
Directed Research and Development Program of Oak Ridge
National Laboratory, managed by UT-Battelle, LLC, for the
U. S. Department of Energy.

References

[1] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willen-
bring, H. C. Edwards, A. Williams, M. Rajan, E. R. Keiter,
H. K. Thornquist, and R. W. Numrich, “Improving perfor-
mance via mini-applications,” Sandia National Laboratories,
Tech. Rep. SAND2009-5574, 2009.

[2] O. E. B. Messer, S. W. Bruenn, J. M. Blondin, W. R. Hix, and
A. Mezzacappa, “Multidimensional, multiphysics simulations
of core-collapse supernovae,” Journal of Physics Conference
Series, vol. 125, p. 012010, 2008.

[3] O. E. B. Messer, J. A. Harris, S. T. Parete-Koon, and M. A.
Chertkow, “Multicore and Accelerator Development for a
Leadership-Class Stellar Astrophysics Code,” Lecture Notes
in Computer Science, vol. 7782, p. 92, 2013.

[4] S. W. Bruenn, A. Mezzacappa, W. R. Hix, E. J. Lentz,
O. E. B. Messer, E. J. Lingerfelt, J. M. Blondin, E. Endeve,
P. Marronetti, and K. N. Yakunin, “Axisymmetric Ab Initio
Core-Collapse Supernova Simulations of 12-25 M� Stars,”
The Astrophysical Journal, vol. 767, p. L6, Apr. 2013.

[5] A. Kageyama and T. Sato, “Yin-yang grid: An overset grid in
spherical geometry,” Geochemistry, Geophysics, Geosystems,
vol. 5, no. 9, 2004.

[6] R. F. Barrett, M. A. Heroux, P. T. Lin, C. T. Vaughan, and
A. B. Williams, “Poster: Mini-applications: Vehicles for co-
design,” in Proceedings of the 2011 Companion on High
Performance Computing Networking, Storage and Analysis
Companion, ser. SC ’11 Companion. New York, NY, USA:
ACM, 2011, pp. 1–2.

[7] S. Dosanjh, R. Barrett, M. Heroux, and A. Rodrigues,
“Achieving exascale computing through hardware/software
co-design,” in Proceedings of the 18th European MPI Users’
Group Conference on Recent Advances in the Message
Passing Interface, ser. EuroMPI’11. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 5–7. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2042476.2042478

[8] R. Springmeyer, C. Still, M. Schulz, J. Ahrens, S. Hemmert,
R. Minnich, P. McCormick, L. Ward, and D. Knoll, “From
Petascale to Exascale: Eight Focus Areas of R&D Challenges
for HPC Simulation Environments,” Lawrence Livermore
National Laboratory, Tech. Rep. LLNL-TR-474731, 2011.

[9] R. F. Barrett, P. S. Crozier, D. W. Doerfler, S. D. Ham-
mond, M. A. Heroux, P. T. Lin, H. K. Thornquist, T. G.
Trucano, and C. T. Vaughan, “Summary of Work for ASC
L2 Milestone 4465: Characterize the Role of the Mini-
Application in Predicting Key Performance Characteristics of
Real Applications,” Sandia National Laboratories, Tech. Rep.
SAND2012-4667, 2012.

[10] A. Stone, J. M. Dennis, M. M. Strout, A. Stone, J. M.
Dennis, and M. M. Strout, “The CGPOP Miniapp, Version
1.0,” Colorado State University, Technical Report CS-11-103,
2011.

[11] R. Marcus, “MCMini: Monte Carlo on GPGPU,” Los Alamos
National Laboratory, Tech. Rep. LA-UR-12-23206, 2012.

