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Abstract—Cray customers are increasingly demanding better
performance per watt and finer grained control of total power
consumption of their data centers. Customers are requesting
features that allow them to optimize application performance
per watt and to conduct research in support of future system
and application power efficiency. New system procurements are
growingly constrained by site power and cooling limitations,
the cost of power and cooling, or both. This paper describes
features developed in support of system power monitoring and
management for the Cray XC30 product line, expected use
cases, and potential future features and functions.
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I. I NTRODUCTION

Cray customers are increasingly demanding better per-
formance per watt and finer grained control of total power
consumption in their data centers. Some features toward
that end are to enable users and data centers to optimize
application and library performance per watt, bill users for
job power consumption, and to conduct research in support
of system energy efficiency. At the same time new sys-
tem procurements are increasingly constrained by total site
power and cooling limitations either in cost or infrastructure.
It is now common for new system bids to be driven by total
cost of ownership (TCO) where the total energy cost for
the life of the system can have a dramatic effect on the
amount of hardware that can be proposed to meet customer
requirements. Use of overly conservative power estimates
when developing system proposals can result in reduced
overall system capabilities and over-provisioning of site-
level infrastructure. As a result, it benefits everyone in the
HPC community to work toward informed and reasoned
energy efficiency.

Toward that goal, Cray has made substantial investments
in its software and hardware capabilities for energy ef-
ficiency all the while continuing to develop best-in-class
extreme scale systems. In the near future, the development
and runtime management of systems will necessitate deliv-
ering exascale performance within a targeted 20 MW power
envelope [1] [2]. It is clear to Cray that both software and
hardware will need to play a part in that engineering.

Accurate and timely power monitoring data is critical
for evaluation and development of hardware and software

features in general, as well as those used to control system
energy consumption [3]. Power monitoring of Cray systems
will be extended over time to enhance current and introduce
new capabilities. Access to finer grained power monitoring
and control is needed to support research and development
in advanced power management. Cray is committed to
understanding changing industry and customer requirements
and is driving to meet these requirements as future hardware
and software designs are developed [4] [5].

In this paper we will first outline the power monitoring
and management features now available on current Cray
XC30 systems and give some details as to how they are
implemented. Section II describes how the current features
can be used to implement some common, while section
III discusses intended use cases of interest to customers.
Following that, section IV previews new features currently
being developed and some of the features planned for
implementation in the 2014 - 2015 time frame.

II. CURRENT XC30 POWER MONITORING AND

MANAGEMENT FUNCTIONALITY

The initial release of base software support for XC30
power monitoring and management functionality shipped in
June of 2013 as part of the System Management Worksta-
tion (SMW) 7.0.UP03 and Cray Linux Environment (CLE)
5.0.UP03 releases. Those releases included support for Cray
Marble blades with Intel Sandy Bridge processors, however
that support was limited in that data collection into the Power
Management Database (PMDB) was disabled by default.
Customers interested in experimenting with the new power
monitoring features in the first release needed to manually
enable data collection.

Subsequent releases have added some additional features
and refinements. The first major update in September 2013
as SMW 7.1.UP00 and CLE 5.0.UP00 enabled data col-
lection into PMDB by default, These releases included
Resource Utilization Reporting (RUR) support of application
energy reporting with its energy plugin, and power manage-
ment and monitoring support for Cray Graphite Blades with
NVIDIA K20 GPUs as accelerators.

The most recent software releases: Cray perftools/6.1.3
(December 2013), SMW 7.1.UP01 (December 2013), and



Figure 1. Cray power monitoring and management software stack

7.2.UP00 (March 2014) provided additional power monitor-
ing and management functionality: support for Intel Xeon
Phi coprocessors, NVIDIA Tesla K40 GPUs, enhanced RUR
user level reporting capabilities, and Cray Programming
Environments (PE) support for Intel Running Average Power
Limiting (RAPL) and custom Cray pmcounters.

The high level power monitoring and management soft-
ware stack represented in Figure 1 calls attention to some
of the major functional blocks of current Cray power mon-
itoring and management stack.

A. XC30 System Environment Data Collection

The Cray software distribution includes System Envi-
ronment Data Collection (SEDC) software which supports
collection of system environmental data including cabinet-
, blade-, and node-level sensors for temperature, current,
and voltage. The SEDC monitoring infrastructure has been
part of the Cray HSS software stack for several product
generations and has been been enhanced in further support
of power monitoring goals. SEDC updates for XC30 include
the addition of all available current sensors and many new
sensors provided by the Intel Xeon chipset. Section IV-B
discusses future plans to convert SEDC from its current use
of flat files for data storage to using the PMDB as its backing
store.

B. High speed out-of-band power/energy monitoring

A new high speed, out-of-band power/energy data col-
lection capability has been developed for the Cray XC30.
This new high speed capability enables collection of cabinet-
, blade-, and node-level power, energy, and related data. This
software has been designed to be extensible as hardware with
finer-grained monitoring capabilities becomes available.

At the blade-level, a new blade controller daemonbcpmd
collects node and Aries Network Card (ANC) point-in-time
power at 10 Hz. The 10 Hz point-in-time power data is
then used to maintain a 64-bit accumulated energy counter
for each of the four nodes and the ANC on each blade.
This point-in-time power and accumulated energy data is
sent from the blades up to the SMW at a default effective
rate of 1 Hz. Note that power and energy data collected
at the blade-level is buffered before it is sent to the SMW.
This data buffering prior to transport to the SMW, using the
Cray event router, is done in order to optimize performance
and minimize small packet processing overhead over the
Hardware Supervisory System (HSS) network. The existing
cabinet controller daemonccsysdhas been updated to collect
cabinet-level power (for both the rectifiers and blowers,
where applicable), accumulated energy, current, and voltage
data which is sent to the SMW at a static rate of 1 Hz.

C. Power Management Database

On the SMW, all power and energy related data is
collected by a new daemonxtpmd. This daemon buffers and
inserts this data into the new PostgreSQL-based [6] PMDB.
The xtpmd daemon also listens for application start, stop,
suspend, and resume events from ALPS. Upon receiving
these events, xtpmd updates PMDB tables tracking: job
start/end time, job-id, application-id, user-id, and applica-
tion node allocation data. Power and energy data at the
component-level for cabinets and blades is stored in the
pmdb.ccdata and pmdb.bcdata tables, respectively. Both
of these tables are partitioned to allow for manageable in-
dexing and their total size is limited by per-table parameters:
maximum number of table partitions and the maximum
number of rows per table partition. The pmdb.ccdata and



pmdb.bcdata tables maintain a configurable maximum size
by table partition rotation: dropping the oldest partitionand
adding a new table partition for new data.

A ‘hooks’ interface allows for specifying scripts to ex-
ecute when a partition is about to be dropped. Along
with the data table sizing parameters, this hook inter-
face are intended to allow for site-level customization
and can be managed via thextpmdconfigutility on the
SMW. A potential use for this interface might be to pe-
riodically backup data to an external disk. The default
hooks that ship with the software release remove entries
from the job-related tables(pmdb.job_timing and
pmdb.job_info) when raw node-level data for given
jobs is dropped. Note that without the default hook function-
ality the pmdb.jobtiming and pmdb.jobinfo tables would
grow un-bounded.

Figure 2 shows an overview of the user-facing PMDB
schema. In addition to the aforementioned job and
component-level data tables, PMDB provides metadata ta-
bles to describe that data and aid in development of custom
SQL queries:

• pmdb.sensorinfo: Lists the id, name, and units for
each sensor referenced in the pmdb.ccdata and
pmdb.bcdata tables,

• pmdb.nodes: Faciliates lookups between NID values
stored in the job tables and component name values
which are used to query the component-level data
tables, and

• pmdb.sensorspec: Details hardware-specific sensor
specification information.

For more details, refer to Chapter 3 of [7]. Readers
interested in accessing the PMDB should pay attention
to the SQL helper functionssource2cname(source)
and cname2source(‘cname’) which are also
described in [7] and their use is demonstrated in
the example scripts that ship with the SMW release
smw:/opt/cray/hss/default/pm/scriptexamples.

D. Accelerator (GPU/MIC) power/energy data collection

In addition to the node-level data listed above for two
socket nodes, point-in-time accelerator power and acceler-
ator accumulated energy data is collected for XC30 blade
types that include accelerators. Low level data collectionof
accelerator data is also accomplished at 10 Hz, leveraging
the same infrastructure developed for the non-accelerated
blades. The hardware components and software that collect
accelerator data is the same for the blade types that support
the NVIDIA GPU (Cray Graphite) and Intel Xeon-Phi
(Cray Granite). As with the node-level energy counters, the
accumulated accelerator energy counter is maintained by
HSS software in a 64-bit register that is not expected to
rollover and will only reset on a blade-controller reboot or
power cycle.

Figure 3. Snapshot of /sys/cray/pmcounters on a(Graphite)node

E. In-band access to power/energy monitoring

Blade level HSS software publishes node (and accel-
erator) power, energy, and related data collected out-of-
band in a way that allows (on-demand) in-band access
from CLE via special sysfs files in /sys/cray/pmcounters.
This in-band access path will not cause system overhead
or application jitter when the data is not being accessed.
The /sys/cray/pmcounters (Figure 3) include all of the
10 Hz data indicated above, as well as some other useful
information including power cap settings that may be in
place. The /sys/cray/pmcounters files are read-only and
available to (unprivileged) users and debug, performance,
and system accounting utilities.

Other ‘meta-counters’ available in /sys/cray/pmcounters
are worth brief mention. The‘freshness’counter is incre-
mented by the lowest level firmware on each pass through
the loop reading the hardware sensors. This can be used
to test data quality. The freshness counter should incre-
menting at approximately 10 Hz. If the freshness counter
stops incrementing, all of the other counters are invalid.
The ‘generation’ counter is incremented any time a power
capping change is made. By reading the generation counter
before and after a code is run, a change in the power cap
can be detected even if the initial and final‘power cap’
counter readings match. The use of the generation counter
this way should be considered a hint for debugging. Finally,
the ‘startup’ counter is included in order to allow for the
detection of a blade controller reset.

Given all of this, the following rules should be con-
sidered when comparing two snapshots of files in the
/sys/cray/pmcountersdirectory on any given node:

• The ‘startup’ counters must match.
• The ‘freshness’counter incremented at a rate of ap-

proximately 10 Hz.
• Accumulated‘energy’ (and ‘accel energy’, if applica-

ble) counters are monotonically increasing.
• Node-level‘power’ counters must never be zero.

Although it is not strictly necessary, some software will read
all of the counters twice and only capture a snapshot if the



Figure 2. PMDB user-facing schema

‘freshness’counter is the same in both. Most use cases are
not impacted if some counters are 100 ms older than the
others in a snapshot.

The Cray RUR software provides an energy plugin that
uses the /sys/cray/pmcounters to report application energy
usage. The RUR energy plugin calculates total application
energy by reading node accumulated energy for all nodes
assigned to an application, both at startup and completion,
subtracting to get node-level energy, and finally summing
energy over all nodes in a job. With several standard output
options and the ability to be extended by the customer,
RUR can be configured to get application energy usage
information into the hands of system administrators, third
party workload management logs, and directly to users.
The latest RUR release in (CLE 5.2.UP01) also adds a
user level opt-in for reporting data directly to user selected
destinations. With this opt-in configuration option it should
be much easier to enable user-level reporting at customer
sites. Note that RUR is installed with CLE, but by default it
is not enabled. RUR configuration information is available
in the Cray publication S-2393 -Managing System Software
for the Cray Linux Environment[8].

Cray Programming Environments software has in-
tegrated support for the Intel RAPL counters and
/sys/cray/pmcounters in the perftools/6.1.3 release (Decem-
ber 2013). This support in PAPI [9] and CrayPat tools
requires CLE 5.1.UP00 or newer to be installed on the
system. For information on how to use this new Cray
PE functionality on a live system try:module load
perftools/6.1.3; man rapl [10].

F. System level power capping

System level power capping on XC30 systems is imple-
mented in a layered approach using a combination of soft-
ware, firmware, and processor hardware support. The XC30
system administrator interested in enabling, configuration,
or modifying power capping settings will do so using the
programxtpmactionrunning on the SMW [11].

The xtpmaction program is the single command line

interface (CLI) program that is intended to support all out-
of-band power monitoring and power capping configuration
settings on XC30 systems. Power capping in xtpmaction is
supported by creating, applying, and updating power capping
‘profiles’. Power capping profiles allow the administrator
to define worst case power limits for each blade type in
the system. There may be multiple power profiles defined
for a system, but only one profile can be enabled at any
time (per partition or system). All blades supported in XC30
systems support a ‘node’ power capping control. Blades with
accelerators (i.e., Cray Granite and Graphite blades) havean
additional ‘accel’ power capping control. The power man-
agement configuration ‘profile’ uses key=valuepairs where
the ‘node’ and optionally ‘accel’ controls are keys, and the
power cap value is expressed in watts. The node=wattskey-
value pair is used at the node level to enable node-level
power cap enforcement via Intel’s Node Manager firmware
support for RAPL [12] [13].

On Cray nodes with accelerators, the optional [ac-
cel=watts] key-value pair can be used to limit that maximum
GPU or MIC power consumption. Note that the ‘accel’
control is a subset of the ‘node’ control, and as such, is
intended to allow for changing the balance of max-power
between the Xeon host processor and the accelerator. The
default for administrator-managed power capping is to only
use the ‘node’ control and allow the accelerator to use
as much power as it wants while staying within thermal
limitations.

Initial support for system power capping on XC30 shipped
with the SMW 7.0.UP03 software release. Support for new
blade types including accelerators have been in subsequent
releases, and Cray intends to continue to support power
capping functionality on all future XC30 blades.

G. P-state at job launch

Cray XC30 systems have support for running jobs with
a fixed p-state frequency. This functionality is provided is
order to allow customers to save energy when they know that
running with the Cray-default Linux ‘performance’ governor



is sub-optimal, desire to trade job-level power consumption
for increased runtime, or conduct research. Research in the
use of p-state by Laros et al. shows effective use of p-state
to save energy on HPC applications [3] [14]. Cray’s support
for running jobs or applications with the Linux ‘userspace’
governor and a fixed frequency can by accessed using
the aprun --p-state=KHz option, or via workload
manager use of the Batch Application Scheduling Interface
Library (BASIL) to request a fixed p-state frequency at job
reservation time. Usage details are described in section 4.2
of [7].

III. U SE CASES FOR CURRENTXC30 POWER

MONITORING AND MANAGEMENT FEATURES

In this section, we will introduce some of the use cases
envisioned and supported by the current power monitoring
and management features of the Cray XC30 system. First,
we will touch on some higher level topics, and then some
simple examples will be presented, but not in great detail.
Three other papers planned for CUG 2014 are expected
to dive deeper into the use of some of the XC30 power
monitoring and management capabilities from the system
operations and applications development and benchmarking
perspectives [15] [16] [17].

A. Access to realtime system power consumption data

First, we will describe the use of thextpget command
line tool. The use of xtpget is intended to be very simple,
and not require the user to have any programming or
database experience. The output of xtpget shows system
power (current, rolling average, and peak), and accumulated
system energy for a user specified count (-c|--count)
number of samples. The user can request continuous output
with a count of zero (--count=0). The default delay
(-d|--delay) and window (-w|--window) settings are
1 and 10 seconds, respectively.

The output ofxtpget -c 15 -d 5 -w 20 is shown
in Figure 4. The example output shows that each line of
output starts with a timestamp followed by current power,
average power, peak power, and accumulated energy for the
system, with the average and peak power values for the
requested 20 second window.

B. Access to system-level PMDB data from the SMW

For access to system-level power and energy data at a
finer-grained level, users with SMW access can query the
PMDB. Because of the flexibility inherent in collecting
finer-grain data, a number of statistics can be calculated
include system power, system accumulated energy, per-
cabinet power statistics, per-cabinet cooling power statistics,
etc.

For example, an aggregate of the power for all cabinets in
the system at a point in time is effectively the total system
power at that point in time. While cabinet power and energy

values are collected and stored at a fixed 1 Hz cadence, the
timestamps for all cabinets will not be at the same exact time
to the millisecond, so it is necessary to use ‘data binning’ to
adjust the values over the entire system to the same second
and then perform the summation. Additionally, if a cabinet
includes a blower, then both rectifier and blower power will
need to be summed to arrive at the total power for that
cabinet. Using this method, it would be possible to build a
per-second time series of historical system power data that
could be used in capacity planning.

In addition to the basic text-based queries mentioned
above, some basic bash programs have been developed for
in-house use that support the generation of plots visually
conveying system and cabinet level power and energy data.
The two plots in Figure 5 show Total System Power, the
sums all of the compute cabinet and blower cabinet data
available for the user’s requested time interval (left), and
Cabinet Power, only the compute cabinet power with each
cabinet plotted individually (right). These plots help to
illustrate the utility of looking at the data from more than one
perspective. Having power data in an SQL database opens up
opportunities for site-specific use cases. The system profiled
in the plots shown in Figures 5 has multiple blade types,
runs a mix of dedicated and shared batch time slots, and is
likely not typical of a production data center.

C. Access to application-level PMDB data from the SMW

Personnel with authorized access to the SMW can ac-
cess detailed power, energy, and application allocation
data from the PMDB and log files on the SMW. In
the following examples, we collect data for an applica-
tion which was run two times, apruns corresponding to
ALPS apids 1348984 and 1348989. The example script
cray pmdb report energy single job.shwas used to gener-
ate the text captured in two sets of text output captured in
Figure 6. A slightly more complicated script was used to
generate the gnuplot output captured in Figure 7. The script
used generate the gnuplot leverages the concepts demon-
strated in the craypmdb report energy single job.sh ex-
ample script but also extracts point-in-time power informa-
tion for each node in the application and feeds that data into
gnuplot. In this example only the node (i.e., nid) assignments
changed between the two runs, but you can see how this may
be very useful in profiling the effects of many different types
of application parameters.

D. System power capping

Perhaps the best use case for power capping on a Cray
system is the use of a power cap that is set up to prevent
unexpected power spikes above and beyond that of the
normal workload of the target system. The first step in
setting up this use case is to profile the system for some
amount of time and get an understanding of the system-
and node-level power consumption typical typical of a site.



Figure 4. xtpget -c 15 -d 5 -w 20

Figure 5. Total System Power (left) and Cabinet Power (right) power plots. 22 hours of four cabinet system data from PMDB’s pmdb.ccdata table

Figure 6. Text based application energy profiling output forapids: 1348984 (left) and 1348989 (right)

The system- and node-level data in the PMDB should help
make that effort straightforward. The next step is to select
a power cap for each of your compute node types that is
slightly higher than the previously measured peak (or at least
higher than the average measured active) power consumption
of the important applications at your site. After determining
what the node-level power capping targets should be, the
xtpmaction CLI can be used to create, edit, and apply

your settings. One may find thatxtpmaction -a power
--interactive tuning support is useful during this step
of the process. The intent of this usage mode is to allow
your applications to run at or near maximum performance
but also avoid unexpected power spikes. This is likely an
iterative process to set up, making small adjustments until
the correct balance for a given site is found. There are several
variations of this use case that can be considered including



Figure 7. gnuplots of application power for apids: 1348984 (left) and 1348989 (right)

different cap settings for nights, weekends, or particulardays
of the week.

For sites that may require power cap settings that are more
restrictive, the use case is likely very similar to what was just
outlined above. The key difference is that aggressive power
capping is likely to have a more drastic negative impact on
any jobs that when left uncapped would exceed the required
cap settings. For these applications it may be possible to
mitigate some of the node-to-node performance imbalances
caused by power capping by running these applications
at a lower frequency with theaprun --p-state=KHz
option.

A third use case for system power capping is in support
of events that call for temporary reduction in power con-
sumption. With up-front planning, a site can be prepared
by creating one or more named power capping profiles
that target different maximum system power limits. The
interactive capabilities of xtpmaction mentioned above can
also be used to do what-if calculations when generating
contingency profiles. This use case is likely to also look at
the trade-offs associated with manually powering off some
nodes during extremely limiting situations where power
capping alone is not practical to run critical jobs with
acceptable performance.

We believe that with current XC30 systems all three of
these use cases above can be implemented today. However,
we also know that there is much more that can be done in
this area with the help of third party workload management
software, more on that topic in Section IV-A.

E. Application level p-state at job launch

As a demonstration ofaprun --p-state=KHz capa-
bility, the graphs in Figure 8 show application energy, and
application performance for a series of DGEMM runs on

older prototype XC30 hardware. The raw numbers in this
data are less important than the clear indication that there
are opportunities to save energy using the p-state controls,
and that tools are available to collect sensor data to evaluate
the results of benchmarks and real application runs.

IV. PROPOSED NEW POWER MONITORING AND

MANAGEMENT FEATURES

In this section, we will preview feature either in de-
velopment or planned for development. All features and
functionality, dates, and figures specified are preliminary
and based on current expectations and are subject to change
without notice.

A. Workload manager (external) power monitoring and
management interface

Cray is in the process of implementing interfaces that
allow third party workload managers (and other authorized
software/users) running on select service nodes the ability
to monitor and control the power and energy consumption
of Cray XC30 systems. At the lowest level, we are imple-
menting RESTful Web Services APIs and JSON-encoded re-
quest/response packets. Cray is building an OpenStack [18]
style service on top of the low-level APIs calledcapmc(Cray
AdvancedPower Monitoring andControl). This service and
underling APIs is a first step in integrating Cray system
monitoring and management with OpenStack components.
In addition to implementing the JSON-based RESTful Web
Services API in accordance with OpenStack conventions,
the OpenStack Keystone [19] service will be integrated to
provide authentication (authN) and high-level authorization
(authZ) services. The capmc service is intended to allow
workload management software (or other authorized users)
a convenient layered interface for software development,



Figure 8. DGEMM Node-level energy and System Mflops for test runs at: Turbo, 2.7 - 1.2 GHz

testing, and integration. We expect that third party workload
manager (WLM) vendors and others will be able to use
these new capabilities exposed via the capmc service to
implement advanced power monitoring and management use
cases including: the ability to turn off idle nodes, manage
node level power capping, and access power and energy data
for the running system, nodes, and applications [20] [21]
[22].

The capmc service implements multiple subcommands
(sometimes referred to as applets):

1) capmc nodeon, nodeoff, node rules, and
node status: These subcommands are all related to
managing how many compute nodes are powered on or
off. The nodeon and nodeoff commands turn power
on and boot the nodes into a usable state or cleanly
shutdown and power off the requested nodes. Thenode on
and node off subcommands will be implemented as
non-blocking operations, in that the service will complete
after communication of the request to the system. These
subcommands will only fail if that communication fails or
invalid parameters are detected.

The noderules subcommand informs the third party
software about hardware (and perhaps site-specific) rules
and timing constraints that allow for efficient and effective
management of idle node resources. The data returned by
the noderules command will inform the caller how long on
and off operations should be expected to take, the minimum
amounts of time nodes should be left off to actually save
energy, and perhaps limits on the number of nodes that
should be turned on or off at any given time to prevent rapid
changes is system power consumption on platforms enforc-
ing ramp-rate-limiting. While the nodestatus subcommand
is not limited to use when managing idle nodes, it provides
third party software the ability to validate that requested

node on or nodeoff operations have completed. Note that
this ability to check on the status of nodes after performing
asynchronous operations is not required but expected to be
useful.

2) get systempower, and getsystempower details:
The get systempower subcommand is used to access
minimum, average, and maximum power for the sys-
tem for a specified window of time. The caller is ex-
pected to supply a starting time and window length. The
get systempower details subcommand is used to request
minimum, average, and maximum power data for each of the
cabinets in the system. As the getsystempower subcom-
mand, the caller of getsystempower details is expected
to provide a starting time and time window length. The
ability to access historical data is limited by the size of
the system and the amount of resources dedicated to the
backing database (PMDB). These calls are also expected to
limit the maximum valid time window to one hour. It is
expected that third party WLM software will poll for this
type of system power data on each scheduling cycle, on a
one to five minute timer, or on-demand from an interactive
system workload administrator.

3) get node energy counter, getnode energy stats,
and get node energy: The get node energy stats,
get node energy, getnode energy counter allow flexible
access to node energy data by nid-list, job-id, or ALPS
application-id (apid). For these commands the flexibility
starts with the option of supplying an apid that the system-
service can then use to generate node-list, start-time and
end-time information. The caller can also use an apid
with an explicit start-time and end-time options to get
information on a running application.

Theget node energy statssubcommand returns total en-
ergy for the selected nodes, average energy for nodes in



the set, standard deviation of energy for nodes in the set,
two ordered pairs of (NID, energy) for the minimum and
maximum energy nodes, the duration of the interval in
seconds, and the node count. All energy values are in joules.
This output format is expected to be very useful and efficient
when dealing with large node counts, as it can fully leverage
the capabilities of the system-service database to generate
statistics.

The get node energy subcommand takes the same user
inputs as getnode energy stats but rather than returning
statistics it returns the time window in seconds for the data
returned, the total node count, and an array of node/energy
data with one element for each selected node. This output
format will scale with the number of selected nodes, and
allows the caller more flexibility in processing the energy
data.

The get node energy counter subcommand requires an
explicit point in time and does not calculate energy used
over a time window like the previous two subcommands.
The data returned by getnode energy counter is the raw
accumulated energy counter value for each selected node.
The raw accumulated energy (snapshot) data for any given
node is only useful when compared to another snapshot for
the same node. This command places the most amount of
work in the hands of the caller but allows for the most
flexibility. Using this call third party software can track total
energy, and running energy usage of long running applica-
tions, where the runtime of the application may be longer
then the depth of data in the system-service database. This
also would allow the third party WLM software to directly
deal with other advanced use cases like suspend/resume, job
migration, etc. Note that this interface can not be used to
access data at granularity of less then one second.

4) get power cap capabilities and getpower cap,
set power cap: The get power cap capabilities and
get power cap, setpower cap subcommands allow for
third party software management of node level power
capping. The high level goal of these three subcommands
is to enable flexible, efficient node-level (and finer when
available) capabilities that can support multiple use cases
without enforcing policy.

Given a list of nodes, the subcommand
get power cap capabilities will return information about
power capping capabilities, controls, and valid ranges.
These capabilities are returned in a structured way where
information is grouped for all cases where the hardware is
common. So even though the call may request capabilities
for all of the compute nodes in a system, the maximum
response size is limited to one group for each hardware
node configuration in the system. On current two socket
XC30 nodes, there is a single ‘node’ control that will
have minimum/maximum range information in watts. Cray
XC30 nodes with accelerators have an additional ‘accel’
control that also has minimum/maximum range information

in watts. This infrastructure is an extension of the static
system power capping introduced in section II-F.

The get power cap subcommand will return the power-
capping control(s) and current settings for all re-
quested compute nodes. Note that a power-cap setting
(value) of 0 is a special case for‘not-capped’. The
set power cap subcommand allows the authorized caller to
set the same controls that are returned by getpower cap
within the minimum/maximum constraints returned by
get power cap capabilities. It is expected that third party
software will interact with these three power-capping sub-
commands using formatted JSON.

One way to envision using the node level power capping
would be to provision multiple batch queues, where each
queue is assigned a different node-level power cap. The
number of nodes assigned to each queue could be either
static, or dynamic but for simplicity we will consider the
static use case. The power cap settings and the number
of nodes assigned to the queues can then be used to limit
total worst case system power draw. In this configuration we
would expect that there might be policies put in place that
reward use of the lower power queues. The WLM would use
capmc’s power capping subcommands at queue initialization
time, and whenever static (or dynamic) adjustments in the
number of nodes assigned to queues are made. Another
use case would allow users to indicate a desired per-node
power reservation at job submission to the WLM. The WLM
would in turn use the requested total power for the job
as a scheduling constraint, and at job launch time, the
WLM would use the capmc setpower cap subcommand
to configure the node-level constraints for all of the nodes
assigned to the job.

The ability for WLM to monitor and manage system and
node level power makes several new use cases available
and should allow system to run much closer to site power
limits while maximizing total system performance. Cray has
started working with WLM vendors to communicate the
proposed capmc APIs; vendors in turn are expected to start
evaluating how these new capabilities might fit into their
product roadmaps.

B. Unified PMDB + SEDC Database

Cray has plans in place to modify SEDC software to use
the PMDB as its backing store. This change will allow for
much easier access to data with standard SQL queries from
the SMW, as well as enable use cases that integrate access to
SEDC sensors with the high-speed data currently collected
and stored in the PMDB. The current plan will add two
new sensor data tables to the PMDB, one for data collected
at the blade-level and the other for data collected at the
cabinet level. This mirrors the current PMDB support for
blade and cabinet level data collection and table partitioning.
The SEDC work is also targeting improvements in SEDC
data configuration management.



C. Moving PMDB off-SMW

Cray is investigating options for moving the PMDB off
of the SMW. Motivations for moving the database off-
SMW include the ability to scale to very large system sizes
while retaining node-level data for long periods of time and
decoupling database-related load from the SMW. Another
motivation is a potential for more direct access to the data
than is available on the SMW. At this point, we expect that
continuing to run the PMDB on the SMW is a good option
for many site configurations. With that in mind, this work
will also consider other possible on-SMW PMDB hardware
and software configurations.

V. CONCLUSION

In this paper we have highlighted the current power mon-
itoring and management capabilities available to customers
using Cray XC30 systems. We have described and partially
demonstrated some basic use cases for current functionality,
as well as providing some outlook and information about
future power monitoring and management features in the
development and planning stages. It is our intent for this
information to be useful in promoting ongoing dialogue
between the Cray Power Management team and customers
interested in HPC system and application power monitoring,
management, and efficiency.
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