
Performance of the fusion 
code GYRO on three four 

generations of Crays 

Mark Fahey  
mfahey@utk.edu   

University of Tennessee, Knoxville 
 

 



Contents 

• Introduction 

• GYRO Overview 

• Benchmark Problem 

• Test Platforms 

• Results 

• Conclusions and Future Work 



Introduction 
• GYRO is a code used for the direct numerical simulation of 

plasma microturbulence 
– Developed by Jeff Candy and Ron Waltz at General Atomics  
– Has been ported to a variety of modern MPP platforms including 

several modern commodity clusters, IBM SPs, and Cray XC, XT, 
and XE series machines 

– Performance and scaling of GYRO on some of these systems has 
been shown before; here a comparison of performance and 
scaling is shown on four generations of Crays including the Cray 
XC30  

–  The hybrid OpenMP/MPI implementation performance is also 
compared 

–  Four machines were used, all of which are located at the National 
Institute for Computational Sciences at the University of 
Tennessee at Knoxville and Oak Ridge  

3 



GYRO Overview 
• Simulation of fusion microturbulence 
• Computes the turbulent radial transport of particles and 

energy in tokamak plasmas 
• Solves 5-D coupled time-dependent nonlinear 

gyrokinetic-Maxwell equations with gyrokinetic ions and 
electrons 

• Can operate as a flux-tube (local) code, or as a global 
code, with electrostatic or electromagnetic fluctuations 

• Propagates system forward using either 4th-order 
explicit RK integrator or a 2nd-order, implicit-explict RK 
integrator with fourth-order, explicit Eulerian algorithm 

4 



Basic gyrokinetic equations 

 
• f is the gyrocenter distribution (measures the deviation 

from a Maxwellian), and Φ(r) = [φ,A||] are EM fields 
• La, Lb and F are linear operators 
• <*> is a gyroaveraging operator 
• f(r,v1,v2) is discretized over a 5-dimensional grid 

5 



Discretization schemes at 30,000 ft 

• Toroidal angle: fully spectral decomposition of the 
fluctuating quantities (f, φ, A∥) is made  

• Radius: linear advective derivatives on f are treated with an 
upwind differences, whereas derivatives on fields are 
treated with centered differences  

• poloidal angle: for f, there is no fixed grid in θ. Instead, a 
transformation is used and then an upwind scheme in τ is 
used to discretize ∂f/∂τ 

• velocity space: recast the velocity-space integration. Then, 
in both ε and λ, an exact Gauss-Legendre quadrature 
scheme is numerically generated (by nonlinear root-finding) 
at run-time  6 



Discretization schemes at 30,000 ft (cont.) 

• nonlinearity: The nonlinear Poisson bracket is evaluated 
with a conservative difference-spectral analogue of the 
Arakawa method. This scheme ensures exact conservation 
of density and generalized entropy at vanishing time step 
(independent of grid resolution)  

• collisions: Collisions are represented by a second-order 
diffusive-type operator in λ. This operator is split from the 
collisionless problem and an irregular-grid generalization of 
the Crank-Nicholson method is used 

• time-advance: Either a 2nd-order IMEX RK scheme, with the 
electron parallel motion (∂/∂θ) treated implicitly, or an 
explicit 4th-order RK scheme is used 

7 



MPI Implementation 
• Eulerian schemes solve the gyrokinetic Maxwell equations 

on a fixed grid 
 f(r,τ,ntor,λ,E)                  f(i,j,n,k,e)  

• For different code stages, the distribution of an index 
across processors is incompatible with the evaluation of 
operators on that index  
–  for example, a derivative in r requires all i to be on processor 
–  therefore, 2 and 3 index transpose operations must be executed  

• Transpose operations use MPI_ALL_TO_ALL.  
–  utilizing subcommunicators COMM ROW and COMM COLL  
–  These operations can be scaling limiters 

• run up to 49,152 MPI processes on Cray XE6 at OLCF  
8 



MPI/OpenMP implementation 
• Hybrid parallelization (MPI+OpenMP) modifications were put into 

GYRO starting Dec 2011 
•  The typical model is used 

–  for a given MPI task, we have additional OpenMP threads which share memory  
–  total core count is the product (number of MPI tasks) times (number of 

OpenMP threads per task). 

• All the OpenMP code tends to target loops over radius, which are 
left undistributed by MPI.  These loops tend to have the structure 

–     do 1=1,n_x 
–     do ip=-n_band,n_band 
–        do (distributed stuff) 

•  For large radial grids and large gyro bandwidth there's quite a lot of 
work for OpenMP. 

9 



Benchmark problem – nl02a 
• An 8-toroidal-mode electrostatic (ions and electrons) case  
•  8 x 400 x 12 x 8 x 28 x 2  grid 
•  100 timesteps (real simulation would require at least 250,000) 
• Kinetic electrons and electron collisions and electromagnetic effects 
• Radial annulus with non-periodic boundary conditions and a flat 

profile 
•  400-point radial domain and 8 toroidal modes gives high spatial 

resolution 
• Grid is typical of production runs and represents roughly the 

minimum grid size to obtain physically accurate results  
• Yet 8 modes is still considered small, multiscale cases use more than 

100 modes 
10 



Test platforms 
Darter – Cray XC30 
•  4 cabinets;  1,496 nodes with two 8-core Intel Xeon E5-2670s and 32GB of 

memory 
•  Each core operates at 2.6 GHz, aggregate 248.9 TF peak 
•  Cray Aries Interconnect with a Dragonfly topology 

Beacon – Cray Cluster Solution  (CCS) 
•  Intel Xeon/Xeon Phi cluster; IB interconnect 
•  16 development/compute nodes 

•  two Intel Xeon E5-2670 processors and two Intel Xeon Phi 5110P 
coprocessors (preproduction) 

•  48 compute nodes 
•  two Intel Xeon E5-2670 processors and four Intel Xeon Phi 5110P 

coprocessors 
11 



Test platforms 
Ares – Cray XE6/XK6 
•  36 nodes (1 Cabinet)  

•  20 nodes with two 16-core AMD Opterons and 32 GB memory 
•  16 nodes with one 16-core Opteron and 16 GB memory and one Tesla 

X2090 with 6 GB memory 
•  40 homogeneous 16-core nodes @2.2 GHz, 5.6 TF peak; Aggregate 18.5 TF peak 
•  Cray Gemini Interconnect 

Kraken – Cray XT5 
•  100 cabinets;  9,408 nodes with two 6-core AMD Opterons and 16 GB memory 
•  Each core operates at 2.6 GHz, 1.17 PF peak 
•  Cray SeaStar2+ Interconnect 

12 



Compilers, OS, … 
Machine Architecture OS Compiler 
Darter XC30 CLE 5.1 Cray 8.1.9 
Darter XC30 CLE 5.1 Intel 13.1 
Beacon CCS MPSS 2.1 Intel 13.1 
Ares XE6 CLE 4.2 PGI 12.10 
Kraken XT5 CLE 3.1 PGI 12.10 

13 

•  The XC30 is listed twice because we did tests with both the Intel and Cray compilers 

•  The choice of compiler is based on machine and its processor architecture and 
also heavily weighted by the default compiler presented to the users.  

•  For the XT5 and XE6, they have AMD Opteron processors and the PGI compiler 
has proven over time to be a good choice.  

•  On the CCS and XC30, the processors are Intel Xeons and using Intel makes 
very good sense.  

•  The Cray compiler is the default on the XC30, so it was tested in addition to the 
Intel compiler.  

 



14 

 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240
 260

 50  100  150  200  250  300  350  400  450  500  550

Ti
m

es
te

ps
 p

er
 S

ec
on

d

Processors

GYRO nl02a Benchmark - Darter (Intel E5-2670) Hyper-Threading

Cray compiler - HT 1
Cray compiler - HT 2
Intel compiler - HT 1
Intel compiler - HT 2

Compared the Cray 
compiler and the Intel 
compiler.  
The Cray compiler 
default optimization 
produces much better 
performing code than 
the Intel compiler at “-
O3”. Therefore, for the 
remaining tests, the 
Cray compiler was used 
on the XC30.  
Certainly more testing 
could be done with both 
compilers to produce 
better performing code 
especially with inlining.  
 
Tested the use of 
Hyperthreading at 
runtime without doing 
any source code 
optimizations.  
The figure clearly shows 
that turning on 
Hyperthreading at 
runtime does not 
improve the 
performance of GYRO, 
but rather hinders it. 



15 

 0

 50

 100

 150

 200

 250

 50  100  150  200  250  300  350  400  450  500  550

Ti
m

es
te

ps
 p

er
 S

ec
on

d

Processors

GYRO nl02a Benchmark - MPI only

Darter (Intel E5-2670)
Darter (Intel E5-2670)

Beacon (Xeon E5-2670)
Ares (AMD Interlagos)
Kraken (AMD Istanbul)

The XC30 is roughly 3× 
faster than the XT5 and 
XE6 computers; 
surprisingly, the XE6 is 
not significantly faster 
than the XT5. 
 
It also shows that the 
XC30 is 25% faster than 
the CCS system which 
has the same 
processors, and the 
CCS system has higher 
memory bandwidth.  
 
It is likelythat the XC30 
is faster because of the 
compiler, the custom 
interconnect, and 
potentially the highly 
tuned OS. 



16 

 0

 50

 100

 150

 200

 250

 1  2  3  4  5  6  7  8

Ti
m

es
te

ps
 p

er
 S

ec
on

d

Threads

GYRO nl02a Benchmark - MPI/OpenMP - 64 MPI processes only

Darter
Beacon-Xeon

Beacon-Phi
Ares

Kraken

The OpenMP 
implementation scales 
well regardless of 
machine.  
 
The performance 
difference between the 
XC30 and the other 
machines is even 
greater, and it shows 
much better scaling 
properties on par with 
the MPI scaling. 
 
Note that some data 
points are missing due 
to machine size 
constraints 



17 

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1  2  3  4  5  6  7  8

Ti
m

es
te

ps
 p

er
 S

ec
on

d

Threads

GYRO nl02a Benchmark - MPI/OpenMP - 128 MPI processes only

Darter
Beacon-Xeon

Ares
Kraken

Very similar 
conclusions to be 
made for the this 
case as well. The 
XC30 continues to 
show excellent 
OpenMP thread 
scaling even on a 
small problem 



Conclusions and Future Work 
• GYRO scales well in both MPI and OpenMP dimensions 

(though somewhat machine dependent) 
–  hybrid MPI/OpenMP tests show excellent scaling on the XC30 

• There is a large jump in performance from Opterons to 
Xeons 

• Cray compiler does a good job optimizing GYRO by default 

• Continuing to try out experiment on Xeon Phis and NVIDIA 
GPGPUs and OpenAcc 

18 



Thank You ! 

Questions 
 

mfahey@utk.edu 


